
1

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 1

Software Testing

Lecture Notes 1 (of 4)

No issue is meaningful unless it can be put to
the test of decisive verification.

C.S. Lewis, 1934

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 2

Contents
• Introduction, Testing process
• Unit Testing:

– Black-box Testing
– White-box Testing

• Integration Testing
• System Testing
• Accepance Testing
• Regression Testing
• Distribution of Faults in a large Industrial

Software System (ISSTA 2002)

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 3

Outline of the Lecture

• Triangle program
• Introduction
• Basic definitions
• Black-box testing

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 4

Triangle program (simple version)

• The triangle problem is the most widely used example in
software testing literature.

• The program accepts three integers, a, b, and c as input.
The three values are interpreted as representing the lengths
of sides of a triangle. The program prints a message that
states whether the triangle is scalene (oregelbunden),
isosceles (likbent) or equilateral (liksidig).

• On a sheet of paper, write a set of test cases (i.e., specific
sets of data) that you feel would adequately test this
program.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 5

Evaluation of set of test cases (one point for each “yes” answer)
1. Do you have a test case that represents a valid scalene triangle? (note that test cases such as

1,2,3 and 2,5,10 do not warrant a “yes” answer, because there does not exist a triangle having
such sides.)

2. Do you have a test case that represents a valid equilateral triangle?
3. Do you have a test case that represents a valid isosceles triangle? (2,2,4 would not be counted)
4. Do you have at least three test cases that represent valid isosceles triangles such that you have

tried all three permutations of two equal sides (e.g., 3,3,4; 3,4,3; and 4,3,3)?
5. Do you have a test case in which one side has a zero value?
6. Do you have a test case in which one side has a negative value?
7. Do you have a test case with three integers greater than zero such that the sum of two of the

numbers is equal to the third? (That is, if the program said that 1,2,3 represents a scalene
triangle, it would contain a bug.)

8. Do you have at least three test cases in category 7 such that you have tried all three
permutations where the length of one side is equal to the sum of the lengths of the other two
sides (e.g., 1,2,3; 1,3,2; and 3,1,2)?

9. Do you have a test case with three integers greater than zero such that the sum of two of the
numbers is less than the third? (e.g., 1,2,4 or 12,15,30)

10. Do you have at least three test cases in category 9 such that you have tried all three
permutations (e.g., 1,2,4; 1,4,2; and 4,1,2)?

11. Do you have a test case in which all sides are 0 (i.e., 0,0,0)?
12. Do you have at least one test case specifying noninteger values?
13. Do you have at least one test case specifying the wrong number of values (e.g., two rather than

three, integers)?
14. For each test case, did you specify the expected output from the program in addition to the

input values.
January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 6

Triangle program (improved version)

The program accepts three integers, a, b, and c as
input. The three values are interpreted as
representing the lengths of sides of a triangle. The
integers a, b, and c must satisfy the following
triangle property (the sum of any pair of sides
must be greater than the third side).

a < b + c

2

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 7

Testing a ballpoint pen

• Does the pen write in the right
color, with the right line thickness?

• Is the logo on the pen according to
company standards?

• Is it safe to chew on the pen?
• Does the click-mechanism still

work after 100 000 clicks?
• Does it still write after a car has run

over it?

What is expected from this pen?
Intended use!!

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 8

Goal: develop software to meet its intended use!
But: human beings make mistake!

⇒ Product of any engineering activity must be verified
against its requirements throughout its development.

bridge automobile television word processor

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 9

• Verifying bridge = verifying design,
construction, process,…

• Software must be verified in much the same
spirit. In this lecture, however, we shall
learn that verifying software is perhaps
more difficult than verifying other
engineering products.

We shall try to clarify why this is so.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 10

Customer Developer

Requirements definition
Requirements specification

Functional requirements
Nonfunctional requirements

Design SpecificationCode = System

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 11

Basic Definitions
The terminology here is taken from standards developed by the institute of Electronics
and Electrical Engineers (IEEE) computer Society.

• Error: people make errors. A good synonym is mistake. When people make mistakes
while coding, we call these mistakes bugs. Errors tend tend to propagate; a requirements
error may be magnified during design and amplified still more during coding.

• Fault: a fault is the result of an error. It is more precise to say that a fault is the
representation of an error, where representation is the mode of expression, such as
narrative text, data flow diagrams, hierarchy charts, source code, and so on. Defect is a
good synonym for fault, as is bug. Faults can be elusive. When a designer makes an error
of omission, the resulting fault is that something is missing that should be present in the
representation. We might speak of faults of commission and faults of omission. A fault of
commission occurs when we enter something into a representation that is incorrect.
Faults of omission occur when we fail to enter correct information. Of these two types,
faults of omission are more difficult to detect and resolve.

• Failure: a failure occurs when a fault executes. Two subtleties arise here: one is that
failures only occur in an executable representation, which is usually taken to be source
code, or more precisely, loaded object; the second subtlety is that this definition relates
failures only to faults of commission. How can we deal with failures that correspond to
faults of omission?

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 12

Error, Fault, Failure

Human error (Mistake, Bug)

Can lead to

Can lead to

Fault (Defect, Bug)

Failure

3

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 13

Basic Definitions (cont.)
• Incident: when a failure occurs, it may or may not be

readily apparent to the user (or customer or tester). An
incident is the symptom associated with a failure that alerts
the user to the occurrence of a failure.

• Test: testing is obviously concerned with errors, faults,
failures, and incidents. A test is the act of exercising
software with test cases. A test has two distinct goals: to
find failures or to demonstrate correct execution.

• Test Case: test case has an identity and is associated with
a program behavior. A test case also has a set of inputs and
a list of expected outputs.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 14

Test Case ID:
Purpose:
Preconditions:
Inputs:
Expected Outputs:
Postconditions:
Execution History:
Date Result Version Run By

Typical Test case Information

Requirements
Specification Fault

Resolution

Fault
Isolation

Design

Coding

Testing

Fault
Classification

Error

Error

Error

Error

Fault

Fault

Fault

Incident

Fix

A Testing Life Cycle

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 15

Types (strategy) of testing
• Black-box: a strategy in

which testing is based on
requirements and
specifications.

• White-box: a strategy in
which testing is based on
internal paths, structure,
and implementation.

• Gray-box: peek into the
“box” just long enough to
understand how it has
been implemented.

Program

Test cases

Specification
Black-box testing

Program

Test cases

Specification
White-box testing

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 16

Testing level

• Unit testing
• Integration testing
• System testing
• Acceptance testing

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 17

Types of Faults
(dep. on org. IBM, HP)

• Algorithmic: division by zero
• Computation & Precision: order of op
• Documentation: doc - code
• Stress/Overload: data-str size (dimensions of tables, size of buffers)
• Capacity/Boundary: x devices, y parallel tasks, z interrupts
• Timing/Coordination: real-time systems
• Throughout/Performance: speed in req.
• Recovery: power failure
• Hardware & System Software: modem
• Standards & Procedure: organizational standard; difficult for

programmers to follow each other

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 18

Unit & Integration Testing

Objective: to ensure that code implemented
the design properly.

Design SpecificationCode = System

4

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 19

C
om

po
ne

nt
 c

od
e

C
om

po
ne

nt
 c

od
e

Tested components

Tested components

Unit
test

Unit
test

Integration
test

Design Specification

Integrated modules

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 20

Unit Testing

• Black-box Testing
• White-box Testing

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 21

Test

Object

Input

Output

Failure?

Oracle

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 22

Two Types of Oracles

• Human: an expert that can examine an
input and its associated output and
determine whether the program delivered
the correct output for this particular input.

• Automated: a system capable of
performing the above task.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 23

Proving code correct

• Formal proof techniques
• Symbolic execution
• Automated theorem proving

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 24

Black-box / Closed-box Testing
• incorrect or missing functions
• interface errors
• performance error

input

output

5

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 25

Block-Box Testing Techniques

• Definition: a strategy in which testing is based on
requirements and specifications.

• Applicability: all levels of system development
– Unit
– Integration
– System
– Acceptance

• Disadvantages: never be sure of how much of the system
under test (SUT) has been tested.

• Advantages: directs tester to choose subsets to tests that
are both efficient and effective in finding defects.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 26

Black-box Testing

1. Exhaustive testing
2. Equivalence class testing (Equivalence

Partitioning)
3. Boundary value analysis
4. Decision table testing
5. Use case testing

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 27

Exhaustive testing

• Definition: testing with every member of
the input value space.

• Input value space: the set of all possible
input values to the program.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 28

Equivalence Class Testing

• Equivalence Class (EC) testing is a technique used
to reduce the number of test cases to a manageable
level while still maintaining reasonable test
coverage.

• Each EC consists of a set of data that is treated the
same by the module or that should produce the
same result. Any data value within a class is
equivalent, in terms of testing, to any other value.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 29

Identifying the Equivalence Classes
Taking each input condition (usually a sentence or
phrase in the specification) and partitioning it into
two or more groups:

– Input condition
• range of values x: 1-50

– Valid equivalence class
• 1< x < 50

– Invalid equivalence classes
• x < 1

x > 50

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 30

Guidelines
1. If an input condition specifies a range of values; identify one valid

EC and two invalid EC.
2. If an input condition specifies the number (e.g., one through 6

owners can be listed for the automobile); identify one valid EC and
two invalid EC (- no owners; - more than 6 owners).

3. If an input condition specifies a set of input values and there is
reason to believe that each is handled differently by the program;
identify a valid EC for each and one invalid EC.

4. If an input condition specifies a “must be” situation (e.g., first
character of the identifier must be a letter); identify one valid EC (it
is a letter) and one invalid EC (it is not a letter)

5. If there is any reason to believe that elements in an EC are not
handled in an identical manner by the program, split the equivalence
class into smaller equivalence classes.

6

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 31

Identifying the Test Cases

1. Assign a unique number to each EC.

2. Until all valid ECs have been covered by test cases, write a new test
case covering as many of the uncovered valid ECs as possible.

3. Until all invalid ECs have been covered by test cases, write a test
case that cover one, and only one, of the uncovered invalid ECs.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 32

Applicability and Limitations
• Most suited to systems in which much of the input data

takes on values within ranges or within sets.

• It makes the assumption that data in the same EC is, in
fact, processed in the same way by the system. The
simplest way to validate this assumption is to ask the
programmer about their implementation.

• EC testing is equally applicable at the unit, integration,
system, and acceptance test levels. All it requires are inputs
or outputs that can be partitioned based on the system’s
requirements.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 33

Equivalence partitioning

outputs

Valid inputsInvalid inputs

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 34

Specification: the program accepts four to
eight inputs which are 5 digit integers
greater than 10000.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 35

Specification: the program accepts four to
eight inputs which are 5 digit integers
greater than 10000.

Less than 4 Between 4 and 8 More than 8

Number of input values

Less than 10000 Between 10000 and 99999 More than 99999

Input values

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 36

Boundary Value Testing
Boundary value testing focuses on the
boundaries simply because that is where so
many defects hide. The defects can be in the
requirements or in the code.

The most efficient way of finding such
defects, either in the requirements or the
code, is through inspection (Software
Inspection, Gilb and Graham’s book).

7

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 37

Technique

1. Identify the ECs.
2. Identify the boundaries of each EC.
3. Create test cases for each boundary value

by choosing one point on the boundary,
one point just below the boundary, and
one point just above the boundary.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 38

Boundary value analysis

Less than 10000 Between 10000 and 99999 More than 99999

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 39

Boundary value analysis

Less than 10000 Between 10000 and 99999 More than 99999

10000

9999 10001

99999

99998 100000

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 40

Applicability and Limitations

Boundary value testing is equally applicable
at the unit, integration, system, and
acceptance test levels. All it requires are
inputs that can be partitioned and
boundaries that can be identified based on
the system’s requirements.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 41

Decision Table Testing

Decision tables are an excellent tool to
capture certain kinds of system
requirements and to document internal
system design. They are used to record
complex business rules that a system must
implement. In addition, they can serve as a
guide to creating test cases.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 42

Technique

Action-n

…

Action-2

Action-1

Actions

Condition-m

…

Condition-2

Condition-1

Conditions

Rule P…Rule 2Rule 1

The general format of a decision table:

8

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 43

Technique (cont.)

Action-n

…

Action-2

Action-1

Expected
Results

Condition-m

…

Condition-2

Condition-1

Inputs

Test Case P…Test Case 2Test Case 1

A decision table converted to a test case table:

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 44

X

F

T

F

Rule 6

X

X

T

T

F

Rule 5

XXA4

XA3

XA2

XXA1

__ FTC3

FFTTC2

FTTTC1

Rules
7,8

Rules
3,4

Rule 2Rule 1

• _ : “don’t care” entry. The don’t care entry has two major interpretations: the condition is
irrelevant, or the condition does not apply. Sometimes the “n/a” symbol for this latter
interpretation.
• Limited entry decision tables: all the conditions are binary.
• Extended entry decision tables: conditions are allowed to have several values.
• Decision tables are deliberately declarative (as opposed to imperative); no particular order
is implied by the conditions, and selected actions do not occur in any particular order.

A decision table with ”don’t care” entry

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 45

Triangle program (new conditions)

The program accepts three integers, a, b, and c as
input. The three values are interpreted as
representing the lengths of sides of a triangle. The
integers a, b, and c must satisfy the following
conditions:
– C1: 1 <= a <= 200
– C2: 1 <= b <= 200
– C3: 1 <= c <= 200
– C4: a < b + c
– C5: b < a + c
– C6: c < a + b

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 46

XXXA5: Impossible

XA4: Equilateral

XXXA3: Isosceles

XA2: Scalene

XA1: Not a triangle

NYNYNYNY_C4: b = c?

NNYYNNYY_C3: a = c?

NNNNYYYY_C2: a = b?

YYYYYYYYNC1: a, b, c form a triangle?

Rule 9Rule 8 Rule 7Rule 6Rule 5Rule 4Rule 3Rule 2Rule 1

Decision table for the Triangle problem

Technique

• If the integers a, b, and c do not constitute a triangle, we do not even care about possible
equalities (rule 1).

• If two pairs of integers are equal, by transitivity, the third pair must be equal; thus the
negative entry (N) makes these rules impossible (rule3, 4, and 6).

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 47

X

F

F

F

T

T

T

Rule
11

X

T

F

F

T

T

T

Rule
10

TTTTTTTF_C2: b < a + c ?

TTTTTTF__C3: c < a + b ?

XXXA5: Impossible

XA4: Equilateral

XXA3: Isosceles

A2: Scalene

XXXA1: Not a triangle

FTFTFT___C6: b = c?

TTFFTT___C5: a = c?

FFTTTT___C4: a = b?

TTTTTTTTFC1: a < b + c ?

Rule
9

Rule
8

Rule
7

Rule
6

Rule
5

Rule
4

Rule
3

Rule
2

Rule
1

Refined Decision table for the Triangle problem

Choice of conditions: Here we expand the old condition (C1: a, b, c form a triangle?) to a
more detailed view of the three inequalities of the triangle property. If any one of these fails,
the three integers do not constitute sides of a triangle.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 48

1111111181632Rule Count

X

F

F

F

T

T

T

Rule
11

X

T

F

F

T

T

T

Rule
10

TTTTTTTF_C2: b < a + c ?

TTTTTTF__C3: c < a + b ?

XXXA5: Impossible

XA4: Equilateral

XXA3: Isosceles

A2: Scalene

XXXA1: Not a
triangle

FTFTFT___C6: b = c?

TTFFTT___C5: a = c?

FFTTTT___C4: a = b?

TTTTTTTTFC1: a < b + c ?

Rule
9

Rule
8

Rule
7

Rule
6

Rule
5

Rule
4

Rule
3

Rule
2

Rule
1

Decision table for the Refined Decision table with Rule Counts

• If n conditions exist, there must be 2 power n rules (e.g., above 6 conditions; 64 rules).
• Rules in which no don’t care entries occur count as one rule. Each don’t care entry in a

rule doubles the count of that rule.

9

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 49

X

F

F

F

T

T

T

11

X

T

F

F

T

T

T

10

TTTTTTTF_C2: b < a + c ?

TTTTTTF__C3: c < a + b ?

XXXA5: Impossible

XA4: Equilateral

XXA3: Isosceles

A2: Scalene

XXXA1:
Not a triangle

FTFTFT___C6: b = c?

TTFFTT___C5: a = c?

FFTTTT___C4: a = b?

TTTTTTTTFC1: a < b + c ?

987654321

Not a TriangleDT2

Not a TriangleDT3

ScaleneDT
11

IsoscelesDT
10

IsoscelesDT9

impossibleDT8

IsoscelesDT7

ImpossibleDT6

ImpossibleDT5

EquilateralDT4

Not a TriangleDT1

Expected outputcbaCase
ID

Test Cases for the Triangle Problem

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 50

X

F

F

F

T

T

T

11

X

T

F

F

T

T

T

10

TTTTTTTF_C2: b < a + c ?

TTTTTTF__C3: c < a + b ?

XXXA5: Impossible

XA4: Equilateral

XXA3: Isosceles

A2: Scalene

XXXA1:
Not a triangle

FTFTFT___C6: b = c?

TTFFTT___C5: a = c?

FFTTTT___C4: a = b?

TTTTTTTTFC1: a < b + c ?

987654321

Not a Triangle241DT2

Not a Triangle421DT3

Scalene543DT
11

Isosceles223DT
10

Isosceles232DT9

impossible???DT8

Isosceles322DT7

Impossible???DT6

Impossible???DT5

Equilateral555DT4

Not a Triangle214DT1

Expected outputcbaCase
ID

Test Cases for the Triangle Problem

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 51

Applicability and Limitations

Decision table testing can be used whenever
the system must implement complex
business rules when these rules can be
represented as a combination of conditions
and when these conditions have discrete
actions associated with them.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 52

Use Case Testing

• Test cases that exercise a system’s
functionalities from start to finish.

• Use cases were created by Ivar Jacobsen in
his book Object-Oriented Software
Engineering: A use case driven approach.

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 53

Unified Modeling Language Notation

• Actor
• Scenario

Create
Course

Enroll

Drop

Administrator

Student

January 2007 CUGS, SE, Mariam Kamkar, IDA, LiU 54

Applicability and Limitations

• System and acceptance testing.

