[rODD05 Component-based software. IDA, Linkopings universitet, C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Problems and Solutions
in Classical Component
Systems

» Language Transparency

» Location/Distribution Transparency
= Example: Yellow Page Service

= IDL principle

» Reflective Calls, Name Service

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Obstacles to Overcome ...

= Technical — Interoperability
= Standard basic communication

= Heterogeneity:
different platforms, different programming languages
= Distribution:
applications running on locally different hosts
connected with different networks

= Economically — Marketplace

= Standardize the domain

to create reusable, standardized components in it
= Create a market for those components

(to find, sell and buy them)

— which has some more technical implications

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Heterogeneity problems
to be solved by component systems

= Language transparency:
interoperability of programs

= on the same platform, using
= different programming languages

= Platform transparency:
interoperability of programs
= written for different platforms using
= the same programming language

« Heterogeneity:
= Different platforms, different programming languages
= Requires language and platform transparency

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Remember: Motivation for COTS

= Component definition revisited:
Program units for composition with

= standardized basic communication
= standardized contracts
= independent development and deployment

= A meaningful unit of reuse
= Large program unit
= Dedicated to the solution of a problem
= Standardized in a likewise standardized domain

= Goal: economically stable and scalable software production

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Technical Motivations

When the Object Management Group (OMG) was formed
in 1989, interoperability was its founders' primary, and
almost their sole, objective:

A vision of software components working smoothly
together, without regard to details of any component's
location, platform, operating system, programming
language, or network hardware and software.

- Jon Siegel

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Language Transparency Problems

= Calling concept
= Procedure, Co-routine, Messages, ...
= Calling conventions and calling implementation
= Call by name, call by value, call by reference, ...
= Calling implementation: Arguments on stack, in registers, on heap, ...
= Data types
= Value and reference objects
= Arrays, unions, enumerations, classes, (variant) records, ...
= Data representation
= Coding, size, little or big endian, ...
= Layout of composite data
= Runtime environment
= Memory management, garbage collection, lifetime ...

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Options In General

For n languages:

= Direct language mapping:
. 1:1 adaptation of pairs of languages: O(n?)

= Mapping to common language:
= Adaptation to a general exchange format: O(n)

= Compiling to common type system:

= Standardize a single format (as in .NET): O(1) but very restrictive,
because the languages become very similar

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Language Transparency Implementation

« Stubs and Skeletons
= Stub
= Client-side proxy of the component

= Takes calls of component clients in language A
and sends them to the

= Skeleton

= Takes those calls and sends them to the server component
implementation in language B

« Language adaptation could take place in Stub or Skeleton (or both)
= Adaptation deals with calling concepts, data formats, etc.

= Solution of distribution transparency problem postponed ...

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Stubs and Skeletons

« A typical instance of the proxy pattern
= Stub (client-side proxy) delegates calls to Skeleton
= Skeleton (server-side proxy) delegates to servant (implementation)

<<interface>>
ServerComponent
+m (Datad)
Componentimpl
+m (Datad)
Stub Skeleton
+m(Data d)

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Solutions in
Classical Component Systems

= Calling concept:
= standardized by the communication library (RPC)
= Calling conventions and implementation:
= Standardized by the communication library (EJB - Java, DCOM - C)
= Implementation for every single language (CORBA)
= Data types:
= Existing type system as standard (EJB — Java types)
= New standard type system (CORBA IDL-to-Language mapping)
= Data representation:
= Standard (EJB - Java representation, DCOM - binary standard)
= Adaptation to a general exchange format (CORBA GIOP/IIOP)
= Runtime environment
= Standard by services of the component systems

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Stubs and Skeletons

Server
Client Client Component
Java (o] C++

Stub ' Stub ' Skeleton.

| Call

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Distribution

= Location transparency / Distribution transparency:
interoperability of programs independently of their execution location
= Problems to solve:
= Transparent basic communication
= Transparently initiate a local/remote call
= Transparently transport data locally or remotely via a network
= How to handle references transparently?
= Distributed systems are heterogeneous
= So far, we handled platform-transparent design of components
= Usual suspects in distributed systems
= Transactions
= Synchronization

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Transparent Local/Remote Calls

= Communication over proxies (-> proxy pattern)
= Proxies redirect call locally or remotely on demand
= Proxies always local to the caller

= RPC for remote calls to a handler
= Handler always local to the callee

= Déja vul We reuse Stubs and Skeletons

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Stubs and Skeletons for Distribution

« A variant of the Proxy pattern,
using remote procedure call (RPC) when forwarding requests

<<interface>>
ServerComponent
+m(Data d)
Componentimpl
+m(Data d)
Stub RPC Skeleton
+m (Datad)

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Stubs and Skeletons so far ...
(same platform)

Stub Skeleton

Language 1 Language 2

3. Receive Call from Stub
4. Retrieve data from the
exchange format

1. Map call data to an
exchange format
2. Call Skeleton

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Remote Stubs and Skeletons

Site 1 Site 2
Remote| Local Server component
Client Client C++

Stub ' Stub ' Skeleton'

I Local Call
Femote Call I L‘
I

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Stubs and Skeletons

Site 1 Site 2

skeleton | , Component

Client | o Stub
RPC T

[rDDDOS5 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.
... and now
I T
Stub ! skeleton
message
(bytes)
Language 1 I Language 2
Site 1 | Site 2
1. Map data/ call | 3. Receive message
to a byte stream from network socket
exchange format | 4. Retrieving data / call
2. Send message, | from the byte stream
e.g. via TCP/IP network socket I exchange format

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Stubs, Skeletons, and Adapters

Site 1 Site 2

|
|
|
|
Client ||| Stub [pAdapter J->Adapter o skeleton -t CompImpl

Many stubs and skeletons may need to share the same communication infrastructure
(e.g., TCP/IP ports)
Stub and skeleton objects must be created and referenced by need.

Put this support functionality in a separate Adapter layer (“run-time system for RPC”)

Remark: In CORBA, this "Adapter” functionality will be split between the

ORB (communication) and the so-called Object-Adapter (multiplexing).

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Approach

« World-wide unique addresses
= E.g. computer address + local address
= URL, URI (uniform resource identifiers)
= Mapping tables for local references
= Logical-to-physical
= Consistent change of local references possible
= (In principle) one adapter per computer manages references
= 1:n relation adapter to skeletons
= 1:m relation skeletons to component objects
= Lifecycle and garbage collection management
= Identification (“Who is this guy ...?”)
= Authorization (“Is he allowed to do this ...?”)

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

= Yellow Pages service
= Lookup of a name (database access with caching by YP object)

= Internally: 2 types of requests (in adapter/stub/skeleton layers)
= Lookup Request: given
= Service type (Yellow pages, phone book; ...)
= Address: specifies the YP service object (i.e., a reference)
= Requested method (lookup, ...)
= and array of parameter objects, e.g. name (string) to look up
= Creation Request: Creation of a new YP service object on server
= Service type
= Address = -1 (denotes creation request)
YP service objects registered in YP skeleton in a hashtable of YP objects

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Reference Problem

« Target of calls
« Call-by-reference parameters, references as results
= Reference data in composite parameters and results

= Scope of references
= Thread/process
= Computer
= Agreed between communication partners
= Net wide

= How to handle references transparently?

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Change of Local References

Why are you interested in a reference?

= Need a reference to computation service (function)
= Sufficient to have a reference to the component
= Adapter creates or hands out reference to an arbitrary object on demand

= Need a reference to store/retrieve data service
= Use adata base

= Adapter creates or hands out an arbitrary object instance
wrapping the accesses to the data base

= Need a reference to stated transaction to leave and resume
= Adapter must keep correct the mapping logical-to-physical address
= Problems with use of self reference inside and outside service

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow Page Service (1)
Service component

Site 1 Site 2

—
CompImpl

Client Stub Adapter Adapter - Skeleton

Provides the service implementation

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow Page Service (1)
Service component

class YellowPages extends YellowPagesinterface {
private Hashtable cache = new Hashtable ();
//[JDBC data base connection:
private static DataBase db = ... ;
public String lookup(String name) {
String res;
if ((res = cache.lookup(name)) != null)
return (String)res;
if ((res = db.lookup(name)) = null){
cache.put(name,res);
return (String)res;
}
return “Sorry”;

}

o

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow Page Service (2)
Client

class Client {
YellowPagelnterface yps = YellowPagelnterface.getOne();

String res = (String)yps.lookup(...string to lookup...);

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow Page Service (3)
Client Stub

class YellowPageStub extends YellowPagelnterface {
private ClientAdapter ca = new ClientAdapter();
private static Hashtable yellowPageObjects = new Hashtable();

public String lookup(String name) {

ca.invoke(“Yellow Pages”, yellowPageObjects.get(this),
“lookup”, Object[]{name});

return (String)ca.res;

}

// client-side constructor:

public YellowPagelnterface getOne() {
ca.invoke(“Yellow Pages”, Integer(-1), “new”, null);
yp = new YellowPageStub();
yellowPageObjects.put(yp, ca.res);
return yp;

}

| ool

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow Page Service (2)
Client

Site 1 Site 2

client stub Adapter Adapter - skeleton - CompImpl

Wants to transparently use the service
1

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow Page Service (3)
Stub (client site)

Site 1 Site 2

Client Stub Adapter Adapter - skeleton - CompImpl

1:1 mapping to service component
Manages services objects of that component on client site

Is called from the client

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow Page Service (4)
Client Site Adapter

Site 1 Site 2

client Stub Adapter Adapter - skeleton = CompImpl

Manages the basic communication on client site
Is called from the client stubs

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow Page Service (4)
Client Adapter

class ClientAdapter
Socket s = new Socket(serverHost, serverPort); //magic
public Object res;
public void invoke(String service; Integer addr, String method; Object[] args) {
ObjectOutputStream os = new ObjectOutputStream(s.getOutputStream());
ObjectinputStream is = new ObjectinputStream(s.getinputStream());
os.writeObject(service);
os.writeObject(addr);
os.writeObject(method);
if (addr==Integer(-1) && method.equals(‘new’)) {
os.flush();
res = is.readObject(); }
else {
os.writeObject(args);
os.flush();
res = is.readObject();}
s.close(); }

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow Page Service (5)
Server-side Adapter

class ServiceAdapter extends Thread {
ServerSocket ss = new ServerSocket(0); /magic
public void run() {
while(true) {
try { Socket s = ss.accept();
ObjectinputStream is =
new ObjectinputStream(s.getinputStream());
ObjectOutputStream os =
new ObjectOutputStream(s. ObjectOutputStream());
String service =(String) is.readObject();
if (service.equals(“Yellow Pages”)
new YellowPagesSkeleton(os,is).start();
else if (service.equals(“Phone Book”)
new PhoneBookSkeleton(os,is).start();
elseif ...
else System.err.printin(“Unknown service.”);
}eatch(...){...}

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow Page Service (6)
Skeleton

class YellowPagesSkeleton extends Thread implements Skeleton {
static Hashtable yellowPageObjects = new Hashtable();
YellowPages Skeleton(ObjectOutputStream os, ObjectinputStreamis) { ... }
public void run() { ...
Integer addr = (Integer) is.readObject();
if (addr == Integer(-1)) { // creation of the service:
Integer address = new Integer(yellowPageObjects.size()) ;
yellowPageObjects.put(address, new YellowPage());
os.writeObject(address);}
else { // service query:
YellowPage yp = (YellowPage) yellowPageObjects.get(addr);
String method = (String) is.readObject();
if (method.equals(“lookup”) {
String name = (String) is.readObject();
String res = yp.lookup(name); // finally: the call to the service
os.writeObject(res); }
else if (method.equals(“store”) { ... }
else System.err.printin(“Unknown service method.”); }
os.flush(); s.close();

35 BB

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow-Page Service (5)
Server-side Adapter

Site 1 Site 2

client stub Adapter Adapter |- Skeleton & CompImpl

Manages the basic communication on server site
Calls the service skeletons

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Yellow Page Service (6)
Skeleton

Site 1 Site 2

client stub Adapter Adapter o skeleton J! CompImp]

1:1 mapping to service component
Manages service objects of that component on server site

[rDDDOS5 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.
Sequence Diagram, Creation
Client Adapter Adapter | skeleton || Service
Client Server CompImpl
Site Site
getone invoke Socket
(“getone”) communication
call object
start()
new
return
Service
« Soc_ket . CompImpl
res Communication
return handle handle
Stub
Object

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Sequence Diagram, Call

Client stub Adapter Adapter || Skeleton || Service
Client Server compImpl
Site Site
Jooku, 7nvoke
p (handle, socket

“Tookup™) | communication
call object

start()
Tookup
return
Socket String
communication
< res
return object

string

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Technical remark

Note: This was a simplification!
Some issues are solved differently e.g. in CORBA or Java RMI.

Site 1 . Site 2

[[
|
Client l Stub J ‘ ske1eton-J CompImp]

”Adapter” functionality is, in CORBA, split up between ORB (communication/run-time
system) and Object Adapter.

The communication mechanism, here Java sockets etc., is in CORBA provided by
the ORB (which abstracts from language or platform specific communication
mechanism/API).

The server object registry (static hashtable yellowPageObjects), here in the Skeleton,
which is used to direct a call to the "right” server object, would in CORBA reside in
the Object Adapter (who is responsible for activating / terminating "its” server
processes and objects, resolving interoperable object references, and directing

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Who Realizes Stubs and Skeletons?

= Programmer ?
= Much handcraft, boring and error prone

« Insight
= Stub
= Export interface is component dependent
= Implementation is source language dependent
= Skeleton
= Import interface is component dependent
= Implementation is target language dependent

« ldea

= Generate export and import interfaces of Stub and Skeleton
from a component interface definition

._Take a generic language adapter for the implementation

39

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Automatic Generation of
Stubs and Skeletons

IDL-
Compiler

A Client Client Server

— . Server
[Implementation Stub Skeleton

Implementation

O Client HPL
e Compiler

Server HPL
Compiler

Client program

Server program

41

the ORB to the right target object).

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Interface Definition Language (IDL)

= Language to define the
= Interfaces of components
= Data types of parameters and results

« Programming-language independent type system
= General enough to capture all data types in HPL (host progr. lang.)

« Procedure of construction
= Define component with IDL

= Generate stubs and skeletons with required languages
using an IDL compiler

= Implement the frame (component) in respective language
(if possible reusing some other, predefined components)

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

IDL Interface Can Be Generated

Specification in IDL and Specification in host

host language language only
= Determined language = Retrieve the IDL spec from
binding, the HPL interface definitions

= standardized IDL-to- (see lecture on metaprogr.)

language mapping
= Generation of stubs and = Have only one source of IDL
skeleton is IDL-compiler compilers, guaranteeing

independent consistency

= Language-specific IDL = Quasi standard
compilers

- CORBA . Java, DCOM, .NET

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Required Formal Properties
of the IDL-to-Language mapping

Let t,,: IDL — TS,; be the mapping from an
interface definition language IDL to the
type system TS of a programming language PL

- Well-definedness
forall PL: tp,: IDL — TS, is well defined

« Completeness
forall PL: tp,": TSp, — IDL is well defined

. Soundness
forall PL: tp, ' tp,: IDL — IDL is v,
forall PL: tp,tp,: TSp, — TSp, 1S 1)

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Name Service

<<interface>> Cemremetii

Component +m (Datad)

+m (Datad)

Skeleton
NameService
+resolve(Name):Skeleton
+register(Name,Skeleton)
Stub Adapter
+ m (bata d)

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Name Server Generalized

= Search for the right site providing a desired component
(extended name service)

= Search for a component with known properties, but unknown
name (trader service)

= Like an extended name service

= Components register with name, reference, and properties
= Match properties instead of names

= Return reference (site and service)

= Needs standardized properties (Terminology, Ontology)
= Functional properties (domain specific functions ...)
= Non-functional properties (quality of service ...)

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example revisited

= |IDL compiler must generate code for server-side adapter
(example code contained the service dispatcher)

= This is very nasty

= One server-side adapter per site —
should be independent of client components provided

= Current solution prevents dynamic loading of services

= ldea:
= Decoupling of adapter and skeletons

= Provide a basic (name) service for identifying the components
(skeletons) of a site

= Components register with name and reference
= Generic adapter provides this service

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Generic Server Adapter

class ServiceAdapter extends Thread {
ServerSocket ss = new ServerSocket(0);
NameService ns = new NameService();
public void run() {
while(true) {
try {
Socket s = ss.accepi();
ObjectInputStream is = new ObjectinputStream (s.getinputStream());
ObjectOutputStream os = new ObjectOutputStream (s.getOutputStream());
String service = (String) is.readObject();
Skeleton sk = null;
if ((sk = ns.resolve(service)) != null) {
sk.init(os, is);
sk.start(); }
else System.err.printin(“Unknown service.”);
. }eatch(...) {...} ...

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Summary

= Component systems provide location, language and platform
transparency

= Stub, Skeleton
= One per component
= Technique: IDL compiler

= Adapters on client and server site
= Generic
= Technique: Name services

= s the IDL compiler essential?
= No! Generic stubs and skeletons are possible, too.
= Technique: Reflection and dynamic invocation

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Reflection & Dynamic Invocation

= Reflection
= to inspect the interface of an unknown component
= for automatic / dynamic configuration of server sites

= Dynamic invocation
= to call the components

« Problem
= Language incompatibilities (solved)
= Access to interfaces (open)

= Solution: IDL is already the standard
= Standardize an IDL run time representation and access
= Define a IDL for IDL representation and access

49

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Services

« Predefined functionality standardized
= Reusable
« Distinguish
= Basic
= Useful (only) with component services
= Examples discussed: name and trader service
= Further: multithreading, persistency, transaction, synchronization
= General (horizontal services)
= Useful (per se) in many domains
= Examples: Printer and e-mail service
= Domain specific (vertical services)
= Result of domain analysis
= Examples: Business objects (components)

51

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Example: Generic Server Skeleton Using
Reflection

class GenericSkeleton extends Thread {

static ExtendendHashtable objects = new ExtendedHashtable();
ObjectOutputStream os;
ObjectInputStream is;

public void run() { ...
Integer addr= (Integer) is.readObject(); //handler
String mn = (String) is.readObject(); //method name
Class[] pt = (Class[]) is.readObjeck(); //parameter types
Object[] args= (Object[]) is.readObject(); //parameters
Object o = objects.getComponent(addr);
/lobject reference by reflective call
Method m = o.getClass().getMethod(mn, pt);
//method object by reflection
Object res = m.invoke(o,args); //method call by reflection
os.writeObject(res);

os.flush(); s.close();

[rODD05 Component-based software. IDA, Linkopings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA/ TU Dresden.

Summary: What Classical Component
Systems Provide

« Technical support: remote, language and platform transparency
= Stub, Skeleton
= One per component (technique: IDL compiler)
= Generic (technique: reflection and dynamic invocation)
= Adapters on client and server site
= Generic (technique: Name services)

« Economically support: reusable services
= Basic: name, trader, persistency, transaction, synchronization
= General: print, e-mail, ...
= Domain specific: business objects, ...

= More on these issues in the next lecture: CORBA

