
TDDD05 Component-based software. IDA, Linköpings universitet, C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Problems and Solutions
in Classical Component
Systems

Language Transparency
Location/Distribution Transparency
Example: Yellow Page Service
IDL principle
Reflective Calls, Name Service

2

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Remember: Motivation for COTS

Component definition revisited:
Program units for composition with

standardized basic communication

standardized contracts

independent development and deployment

A meaningful unit of reuse
Large program unit

Dedicated to the solution of a problem

Standardized in a likewise standardized domain

Goal: economically stable and scalable software production

3

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Obstacles to Overcome …

Technical – Interoperability
Standard basic communication

Heterogeneity:
different platforms, different programming languages

Distribution:
applications running on locally different hosts
connected with different networks

Economically – Marketplace
Standardize the domain
to create reusable, standardized components in it

Create a market for those components
(to find, sell and buy them)
– which has some more technical implications

4

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Technical Motivations

When the Object Management Group (OMG) was formed
in 1989, interoperability was its founders' primary, and
almost their sole, objective:

A vision of software components working smoothly
together, without regard to details of any component's
location, platform, operating system, programming
language, or network hardware and software.

- Jon Siegel

5

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Heterogeneity problems
to be solved by component systems

Language transparency:
interoperability of programs

on the same platform, using

different programming languages

Platform transparency:
interoperability of programs

written for different platforms using

the same programming language

Heterogeneity:
Different platforms, different programming languages

Requires language and platform transparency

6

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Language Transparency Problems

Calling concept
Procedure, Co-routine, Messages, …

Calling conventions and calling implementation
Call by name, call by value, call by reference, …
Calling implementation: Arguments on stack, in registers, on heap, ...

Data types
Value and reference objects
Arrays, unions, enumerations, classes, (variant) records, …

Data representation
Coding, size, little or big endian, …
Layout of composite data

Runtime environment
Memory management, garbage collection, lifetime …

7

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Options In General

For n languages:

Direct language mapping:

1:1 adaptation of pairs of languages: O(n2)

Mapping to common language:

Adaptation to a general exchange format: O(n)

Compiling to common type system:

Standardize a single format (as in .NET): O(1) but very restrictive,
because the languages become very similar

8

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Solutions in
Classical Component Systems

Calling concept:
standardized by the communication library (RPC)

Calling conventions and implementation:
Standardized by the communication library (EJB - Java , DCOM - C)

Implementation for every single language (CORBA)

Data types:
Existing type system as standard (EJB – Java types)

New standard type system (CORBA IDL-to-Language mapping)

Data representation:
Standard (EJB – Java representation, DCOM – binary standard)

Adaptation to a general exchange format (CORBA GIOP/IIOP)

Runtime environment
Standard by services of the component systems

9

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Language Transparency Implementation

Stubs and Skeletons
Stub

Client-side proxy of the component

Takes calls of component clients in language A
and sends them to the

Skeleton
Takes those calls and sends them to the server component
implementation in language B

Language adaptation could take place in Stub or Skeleton (or both)
Adaptation deals with calling concepts, data formats, etc.

Solution of distribution transparency problem postponed ...

10

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stubs and Skeletons

Client
Java

Server
Component

C++
Client

C

Stub SkeletonStub

Call

11

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stubs and Skeletons

Skeleton

ComponentImpl

+ m (Data d)

<<interface>>
ServerComponent

Stub

+ m (Data d)

+m(Data d)

A typical instance of the proxy pattern
Stub (client-side proxy) delegates calls to Skeleton

Skeleton (server-side proxy) delegates to servant (implementation)

12

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Distribution

Location transparency / Distribution transparency:
interoperability of programs independently of their execution location

Problems to solve:
Transparent basic communication

Transparently initiate a local/remote call

Transparently transport data locally or remotely via a network

How to handle references transparently?

Distributed systems are heterogeneous

So far, we handled platform-transparent design of components

Usual suspects in distributed systems

Transactions

Synchronization
…

13

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Transparent Local/Remote Calls

Communication over proxies (-> proxy pattern)
Proxies redirect call locally or remotely on demand

Proxies always local to the caller

RPC for remote calls to a handler
Handler always local to the callee

Déjà vu! We reuse Stubs and Skeletons

14

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Remote Stubs and Skeletons

Remote
Client

Server component
C++

Local
Client

Stub SkeletonStub

Remote Call

Local Call

Site 1 Site 2

15

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stubs and Skeletons for Distribution

Skeleton

ComponentImpl

+m(Data d)

<<interface>>
ServerComponent

Stub

+m(Data d)

+ m (Data d)

RPC

A variant of the Proxy pattern,
using remote procedure call (RPC) when forwarding requests

16

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stubs and Skeletons

Skeleton Component
Impl

Client Stub

Site 1 Site 2

RPC

17

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stubs and Skeletons so far …
(same platform)

SkeletonStub

Language 1

1. Map call data to an
exchange format

2. Call Skeleton

Language 2

3. Receive Call from Stub
4. Retrieve data from the

exchange format

18

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

… and now

SkeletonStub

Language 1
Site 1
1. Map data / call

to a byte stream
exchange format

2. Send message,
e.g. via TCP/IP network socket

Language 2
Site 2
3. Receive message

from network socket
4. Retrieving data / call

from the byte stream
exchange format

message
(bytes)

19

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Client Stub

Stubs, Skeletons, and Adapters

Skeleton CompImplStub

Site 1 Site 2

Adapter AdapterClient

Many stubs and skeletons may need to share the same communication infrastructure
(e.g., TCP/IP ports)

Stub and skeleton objects must be created and referenced by need.

Put this support functionality in a separate Adapter layer (“run-time system for RPC”)

Remark: In CORBA, this ”Adapter” functionality will be split between the
ORB (communication) and the so-called Object-Adapter (multiplexing). 20

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Reference Problem

Target of calls

Call-by-reference parameters, references as results

Reference data in composite parameters and results

Scope of references
Thread/process

Computer

Agreed between communication partners

Net wide

How to handle references transparently?

21

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Approach

World-wide unique addresses
E.g. computer address + local address

URL, URI (uniform resource identifiers)

Mapping tables for local references
Logical-to-physical

Consistent change of local references possible

(In principle) one adapter per computer manages references
1:n relation adapter to skeletons

1:m relation skeletons to component objects

Lifecycle and garbage collection management

Identification (“Who is this guy …?”)

Authorization (“Is he allowed to do this …?”)

22

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Change of Local References

Why are you interested in a reference?

Need a reference to computation service (function)
Sufficient to have a reference to the component

Adapter creates or hands out reference to an arbitrary object on demand

Need a reference to store/retrieve data service
Use a data base

Adapter creates or hands out an arbitrary object instance
wrapping the accesses to the data base

Need a reference to stated transaction to leave and resume
Adapter must keep correct the mapping logical-to-physical address

Problems with use of self reference inside and outside service

23

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow-Page Service

Yellow Pages service
Lookup of a name (database access with caching by YP object)

Internally: 2 types of requests (in adapter/stub/skeleton layers)
Lookup Request: given

Service type (Yellow pages, phone book, ...)

Address: specifies the YP service object (i.e., a reference)

Requested method (lookup, ...)

and array of parameter objects, e.g. name (string) to look up

Creation Request: Creation of a new YP service object on server

Service type
Address = -1 (denotes creation request)

YP service objects registered in YP skeleton in a hashtable of YP objects

24

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stub

Example: Yellow Page Service (1)
Service component

Skeleton CompImplStub

Site 1 Site 2

Adapter AdapterClient

Provides the service implementation

25

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (1)
Service component

class YellowPages extends YellowPagesInterface {
private Hashtable cache = new Hashtable ();
//JDBC data base connection:
private static DataBase db = … ;
public String lookup(String name) {
String res;
if ((res = cache.lookup(name)) != null)

return (String)res;
if ((res = db.lookup(name)) != null){

cache.put(name,res);
return (String)res;

}
return “Sorry”;

}
}

26

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Client Stub

Example: Yellow Page Service (2)
Client

Skeleton CompImplStub

Site 1 Site 2

Adapter AdapterClient

Wants to transparently use the service

27

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (2)
Client

class Client {

…
YellowPageInterface yps = YellowPageInterface.getOne();

…

String res = (String)yps.lookup(...string to lookup...);

…

}

28

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stub

Example: Yellow Page Service (3)
Stub (client site)

Skeleton CompImplStub

Site 1 Site 2

Adapter AdapterClient

1:1 mapping to service component
Manages services objects of that component on client site

Is called from the client

29

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (3)
Client Stub

class YellowPageStub extends YellowPageInterface {
private ClientAdapter ca = new ClientAdapter();
private static Hashtable yellowPageObjects = new Hashtable();

public String lookup(String name) {
ca.invoke(“Yellow Pages”, yellowPageObjects.get(this),

“lookup”, Object[]{name});
return (String)ca.res;

}
// client-side constructor:
public YellowPageInterface getOne() {
ca.invoke(“Yellow Pages”, Integer(-1), “new”, null);
yp = new YellowPageStub();
yellowPageObjects.put(yp, ca.res);
return yp;

}
} 30

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stub

Example: Yellow Page Service (4)
Client Site Adapter

Skeleton CompImplStub

Site 1 Site 2

Adapter AdapterClient

Manages the basic communication on client site
Is called from the client stubs

31

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (4)
Client Adapter

class ClientAdapter {
Socket s = new Socket(serverHost, serverPort); //magic
public Object res;
public void invoke(String service; Integer addr; String method; Object[] args) {

ObjectOutputStream os = new ObjectOutputStream(s.getOutputStream());
ObjectInputStream is = new ObjectInputStream(s.getInputStream());
os.writeObject(service);
os.writeObject(addr);
os.writeObject(method);
if (addr==Integer(-1) && method.equals(“new”)) {

os.flush();
res = is.readObject(); }

else {
os.writeObject(args);
os.flush();
res = is.readObject();}
s.close(); }

}
} 32

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stub

Example: Yellow-Page Service (5)
Server-side Adapter

Skeleton CompImplStub

Site 1 Site 2

Adapter AdapterClient

Manages the basic communication on server site
Calls the service skeletons

33

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (5)
Server-side Adapter

class ServiceAdapter extends Thread {
ServerSocket ss = new ServerSocket(0); //magic
public void run() {

while(true) {
try { Socket s = ss.accept();

ObjectInputStream is =
new ObjectInputStream(s.getInputStream());

ObjectOutputStream os =
new ObjectOutputStream(s.ObjectOutputStream());

String service =(String) is.readObject();
if (service.equals(“Yellow Pages”)

new YellowPagesSkeleton(os,is).start();
else if (service.equals(“Phone Book”)

new PhoneBookSkeleton(os,is).start();
else if …
else System.err.println(“Unknown service.”);

} catch(...) {…}
}

}
} 34

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Stub

Example: Yellow Page Service (6)
Skeleton

Skeleton CompImplStub

Site 1 Site 2

Adapter AdapterClient

1:1 mapping to service component
Manages service objects of that component on server site

35

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Yellow Page Service (6)
Skeleton

class YellowPagesSkeleton extends Thread implements Skeleton {
static Hashtable yellowPageObjects = new Hashtable();
YellowPagesSkeleton(ObjectOutputStream os, ObjectInputStream is) { … }

public void run() { …
Integer addr = (Integer) is.readObject();
if (addr == Integer(-1)) { // creation of the service:

Integer address = new Integer(yellowPageObjects.size()) ;
yellowPageObjects.put(address, new YellowPage());
os.writeObject(address);}

else { // service query:
YellowPage yp = (YellowPage) yellowPageObjects.get(addr);
String method = (String) is.readObject();
if (method.equals(“lookup”) {

String name = (String) is.readObject();
String res = yp.lookup(name); // finally: the call to the service
os.writeObject(res); }

else if (method.equals(“store”) { … }
else System.err.println(“Unknown service method.”); }

os.flush(); s.close();
}} 36

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Sequence Diagram, Creation

Client Skeleton Service
CompImpl

Stub Adapter
Client
Site

Adapter
Server
Site

getOne invoke
(“getOne”)

Socket
Communication

handle

start()

Socket
Communication
Call object

res
handle

return
Stub
Object

new

return
Service
CompImpl

37

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Sequence Diagram, Call

Client Skeleton Service
CompImpl

Stub Adapter
Client
Site

Adapter
Server
Site

lookup invoke
(handle,
“lookup”)

Socket
communication

start()

res
Objectreturn

String

lookup

return
String

Socket
Communication
Call object

38

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Technical remark

Note: This was a simplification!
Some issues are solved differently e.g. in CORBA or Java RMI.

”Adapter” functionality is, in CORBA, split up between ORB (communication/run-time
system) and Object Adapter.

The communication mechanism, here Java sockets etc., is in CORBA provided by
the ORB (which abstracts from language or platform specific communication
mechanism/API).

The server object registry (static hashtable yellowPageObjects), here in the Skeleton,
which is used to direct a call to the ”right” server object, would in CORBA reside in
the Object Adapter (who is responsible for activating / terminating ”its” server
processes and objects, resolving interoperable object references, and directing
calls from the ORB to the right target object).

Client Stub
Skeleton CompImplStub

Site 1 Site 2

OA OAClient ORB ORB

39

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Who Realizes Stubs and Skeletons?

Programmer ?
Much handcraft, boring and error prone

Insight
Stub

Export interface is component dependent

Implementation is source language dependent

Skeleton

Import interface is component dependent

Implementation is target language dependent

Idea
Generate export and import interfaces of Stub and Skeleton
from a component interface definition

Take a generic language adapter for the implementation

40

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Interface Definition Language (IDL)

Language to define the
Interfaces of components

Data types of parameters and results

Programming-language independent type system
General enough to capture all data types in HPL (host progr. lang.)

Procedure of construction
Define component with IDL

Generate stubs and skeletons with required languages
using an IDL compiler

Implement the frame (component) in respective language
(if possible reusing some other, predefined components)

41

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Automatic Generation of
Stubs and Skeletons

Server
Implementation

Server HPL
Compiler

Server
Skeleton

Client
Stub

Client program Server program

IDL InterfaceIDL Interface

IDL-
Compiler

Client
Implementation

Client HPL
Compiler

generate

42

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

IDL Interface Can Be Generated

Specification in IDL and
host language
Determined language
binding,
standardized IDL-to-
language mapping
Generation of stubs and
skeleton is IDL-compiler
independent
Language-specific IDL
compilers
CORBA

Specification in host
language only
Retrieve the IDL spec from
the HPL interface definitions
(see lecture on metaprogr.)

Have only one source of IDL
compilers, guaranteeing
consistency
Quasi standard

Java, DCOM, .NET

43

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Required Formal Properties
of the IDL-to-Language mapping

Let τPL: IDL → TSPL be the mapping from an
interface definition language IDL to the
type system TS of a programming language PL

Well-definedness
for all PL : τPL: IDL → TSPL is well defined
Completeness
for all PL : τPL

-1: TSPL → IDL is well defined
Soundness
for all PL : τPL

-1 τPL: IDL → IDL is ιIDL
for all PL : τPLτPL

-1: TSPL → TSPL is ιPL

44

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example revisited

IDL compiler must generate code for server-side adapter
(example code contained the service dispatcher)

This is very nasty

One server-side adapter per site –
should be independent of client components provided

Current solution prevents dynamic loading of services

Idea:
Decoupling of adapter and skeletons

Provide a basic (name) service for identifying the components
(skeletons) of a site

Components register with name and reference

Generic adapter provides this service

45

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Name Service

Adapter

NameService

+ m (Data d)

<<interface>>
Component

Stub

+resolve(Name):Skeleton
+register(Name,Skeleton)

+ m (Data d)

ComponentImpl

+ m (Data d)

Skeleton

46

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Generic Server Adapter

class ServiceAdapter extends Thread {
ServerSocket ss = new ServerSocket(0);
NameService ns = new NameService();
public void run() {

while(true) {
try {

Socket s = ss.accept();
ObjectInputStream is = new ObjectInputStream (s.getInputStream());
ObjectOutputStream os = new ObjectOutputStream (s.getOutputStream());
String service = (String) is.readObject();
Skeleton sk = null;
if ((sk = ns.resolve(service)) != null) {

sk.init(os, is);
sk.start(); }

else System.err.println(“Unknown service.”);
} catch(...) {…} …

}
}

47

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Name Server Generalized

Search for the right site providing a desired component
(extended name service)

Search for a component with known properties, but unknown
name (trader service)

Like an extended name service

Components register with name, reference, and properties

Match properties instead of names

Return reference (site and service)

Needs standardized properties (Terminology, Ontology)

Functional properties (domain specific functions …)

Non-functional properties (quality of service …)

48

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Summary

Component systems provide location, language and platform
transparency

Stub, Skeleton

One per component
Technique: IDL compiler

Adapters on client and server site

Generic

Technique: Name services

Is the IDL compiler essential?
No! Generic stubs and skeletons are possible, too.

Technique: Reflection and dynamic invocation

49

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Reflection & Dynamic Invocation

Reflection
to inspect the interface of an unknown component

for automatic / dynamic configuration of server sites

Dynamic invocation
to call the components

Problem
Language incompatibilities (solved)

Access to interfaces (open)

Solution: IDL is already the standard
Standardize an IDL run time representation and access

Define a IDL for IDL representation and access

50

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Example: Generic Server Skeleton Using
Reflection
class GenericSkeleton extends Thread {

static ExtendendHashtable objects = new ExtendedHashtable();
ObjectOutputStream os;
ObjectInputStream is;
…
public void run() { …
Integer addr= (Integer) is.readObject(); //handler
String mn = (String) is.readObject(); //method name
Class[] pt = (Class[]) is.readObject(); //parameter types
Object[] args= (Object[]) is.readObject(); //parameters
Object o = objects.getComponent(addr);

//object reference by reflective call
Method m = o.getClass().getMethod(mn, pt);

//method object by reflection
Object res = m.invoke(o,args); //method call by reflection
os.writeObject(res);
os.flush(); s.close();

}

51

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Services

Predefined functionality standardized
Reusable

Distinguish
Basic

Useful (only) with component services

Examples discussed: name and trader service

Further: multithreading, persistency, transaction, synchronization

General (horizontal services)

Useful (per se) in many domains
Examples: Printer and e-mail service

Domain specific (vertical services)
Result of domain analysis

Examples: Business objects (components)

52

TDDD05 Component-based software. IDA, Linköpings universitet. C. Kessler, 2005-2010. Some slides by courtesy of Uwe Assmann, IDA / TU Dresden.

Summary: What Classical Component
Systems Provide

Technical support: remote, language and platform transparency
Stub, Skeleton

One per component (technique: IDL compiler)

Generic (technique: reflection and dynamic invocation)

Adapters on client and server site

Generic (technique: Name services)

Economically support: reusable services
Basic: name, trader, persistency, transaction, synchronization

General: print, e-mail, …

Domain specific: business objects, …

More on these issues in the next lecture: CORBA

