
1

Christoph Kessler, IDA, 
Linköpings universitet, 2007.

TDDC18 / FDA149
Component-Based Software

Metamodeling and 
Metaprogramming

1. Introduction to metalevels

2. Different Ways of Metaprogramming

3. UML Metamodel and MOF

4. Component markup

U. Assmann: Invasive Software Composition, Sect. 2.2.5 Metamodeling;
C. Szyperski: Component Software, Sect. 10.7, 14.4.1 Java Reflection

Christoph Kessler, IDA, Linköpings universitet, 2007
Some slides by courtesy of U. Assmann, IDA / TU Dresden, 2004

2 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Metadata

Meta:  means “describing”
Metadata:  describing data   (sometimes: self-describing data). 

The language (esp., type system) for specifying metadata 
is called metamodel.

Metalevel: the elements of the meta-level (the meta-objects) 
describe the objects on the base level
Metamodeling: description of the model elements/concepts in the 
metamodel

Metadata

Data,
Code,

Information

Meta level
Concepts level

Base 
level

3 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Metalevels in Programming Languages

“Real World” Entities car driving car color

Level 0 - Software Objects car 1 car1.colorcar1.drive()

Level 1 - Software Classes
(meta-objects)
(Model) Car

void 
drive() {}

int 
color

Class Method Attribute

Level 2 - Language concepts
(Metaclasses in the metamodel)

Programming Language ConceptLevel 3 - Meta-Concepts in the 
metameta model, the metalanguage
(language description)

4 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Metalevels in Programming Languages

“Real World” Entities car driving car color

Level 0 - Software Objects car 1 car1.colorcar1.drive()

Level 1 - Software Classes
(meta-objects)
(Model) Car

void 
drive() {}

int 
color

Class Method Attribute

Level 2 - Language concepts
(Metaclasses in the metamodel)

Programming Language ConceptLevel 3 - Meta-Concepts in the 
metameta model, the metalanguage
(language description)

5 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Classes and Metaclasses

class WorkPiece { Object belongsTo; } 
class RotaryTable { WorkPiece place1, place2; }
class Robot { WorkPiece piece1, piece2; }
class ConveyorBelt { WorkPiece pieces[]; } 

public class Class {
Attribute[] fields;
Method[] methods;
Class ( Attribute[] f, Method[] m) {

fields = f; 
methods = m;

}
}
public class Attribute {..}
public class Method {..}

Metaclasses 

Classes in a software system

Concepts of a metalevel can be 
represented at the base level.
This is called reification.

Examples:
• Java Reflection API  [Szyperski 14.4.1]
• UML metamodel (MOF)

6 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Reflection 
(Self-Modification, Metaprogramming)

Reflection is computation about the metamodel in the base model.

The application can look at its own skeleton (metadata)
and may even change it

Allocating new classes, methods, fields
Removing classes, methods, fields

Enabled by reification of meta-objects at base level  (e.g., as API)

Metadata

Data,
Code,
Information

Data,
Code,
Information

Meta level

Base level

Remark: In the literature, “reflection”
was originally introduced to denote 
“computation about the own program”
[Maes'87] but has also been used in 
the sense of “computing about other
programs” (e.g., components).



2

7 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Example: 
Creating a Class from a Metaclass

Create a new class at runtime
by instantiating the metaclass:

Class WorkPiece =  new Class( new Attribute[]{ "Object belongsTo" },  new Method[]{});

Class RotaryTable = new Class( new Attribute[]{ "WorkPiece place1", "WorkPiece place2" }, 

new Method[]{});

Class Robot =  new Class( new Attribute[]{ "WorkPiece piece1", "WorkPiece piece2" }, 

new Method[]{});

Class ConveyorBelt = new Class( new Attribute[]{ "WorkPiece[] pieces" },  new Method[]{});

public class Class {
Attribute[] fields;
Method[] methods;
Class ( Attribute[] f, Method[] m) {

fields = f; 
methods = m;

}
}
public class Attribute {..}
public class Method {..}

class WorkPiece { Object belongsTo; } 
class RotaryTable { WorkPiece place1, place2; }
class Robot { WorkPiece piece1, piece2; }
class ConveyorBelt { WorkPiece pieces[]; } 

Metaprogram at base level 8 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Introspection

Read-only reflection is called introspection

The component can look up the metadata of itself or another 
component and learn from it  (but not change it!)

Typical application: find out features of components

Classes, methods, attributes, types

Very important for late (run-time) binding

Metadata

Data,
Code,

Information

Data,
Code,

Information

9 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Introcession
Read and Write reflection is called introcession

The component can look up the metadata of itself or another 
component and may change it

Typical application:  dynamic adaptation of parts of own program

Classes, methods, attributes, types

Metadata

Data,
Code,

Information

10 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Reflection Example

for all c in self.classes do
generate_class_start(c);
for all a in c.attributes do

generate_attribute(a);
done;
generate_class_end(c);

done;

Reading Reflection 

(Introspection):

Full Reflection
(Introcession):

for all c in self.classes do
helpClass = makeClass( c.name + "help“ );
for all a in c.attributes do

helpClass.addAttribute(copyAttribute(a));
done;
self.addClass(helpClass);

done;

A reflective system is a system that uses this information about itself 
in its normal course of execution.

A reflective system is a system that uses this information about itself 
in its normal course of execution.

11 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Metaprogramming 
on the Language Level

enum { Singleton, Parameterizable } BaseFeature;
public class LanguageConcept {

String name;
BaseFeature singularity;
LanguageConcept ( String n, BaseFeature s )  {
name = n;
singularity = s;

}
}

LanguageConcept Class = new LanguageConcept("Class", Singleton);
LanguageConcept Attribute = 

new LanguageConcept("Attribute", Singleton);
LanguageConcept Method = 

new LanguageConcept("Method", Parameterizable);

Language concepts
(Metamodel)

Metalanguage concepts
Language description concepts
(Metametamodel)

Good for language
extension / customization, 
e.g. with UML MOF, or for 

compiler generation

12 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Made It Simple

Level 0: objects

Level 1: classes, types

Level 2: language elements

Level 3: metalanguage, language description language



3

13 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Use of Metamodels and 
Metaprogramming

To model, describe, introspect, and manipulate

Programming languages,  such as Java Reflection API

Modeling languages,  such as UML or Modelica

XML

Compilers

Debuggers

Component systems,  such as JavaBeans or CORBA DII

Composition systems,  such as Invasive Software Composition

Databases

... many other systems ...

Christoph Kessler, IDA, 
Linköpings universitet, 2007.

TDDC18 / FDA149
Component-Based Software

2. Different Ways of 
Metaprogramming

- meta-level vs. base level
- static vs. dynamic

Metaprograms are programs that compute about programsMetaprograms are programs that compute about programs

Metaprogram

Program Program’
run-time input run-time output

15 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Metaprograms can run at base level
or at meta level

Metaprogram execution at the metalevel:

Metaprogram is separate from base-level program

Direct control of the metadata as metaprogram data structures

Expression operators are defined directly on the metaobjects

Example:  Compiler, program analyzer, program transformer  

Program metadata =  the internal program representation  

has classes to create objects describing base program clas-
ses, functions, statements, variables, constants, types etc.

Metaprogram execution at the base level:

Metaprogram/-code embedded into the base-level program

All expressions etc. evaluated at base level

Access to metadata only via special API,  e.g. Java Reflection
16 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Base-level program
data memory: 
Repository
with Objects
as Artefacts Base Level

Metalevel
Repository
with Concepts/
Types/Descriptions
as Artefacts

Metaobjects

Reflection

Meta-
program

Base-Level Metaprogram

Class someclass =  foo.getClass();Class someclass =  foo.getClass();

17 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Base Level

Metalevel
Metaobjects

Meta-
program

Meta-level Metaprogram

for each class c

add a new method int bar() {...}

for each class c

add a new method int bar() {...}

18 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Recall:  Metaprograms are programs that compute about programs.

Static metaprograms

Execute before runtime

Metainformation removed before execution – no runtime overhead

Examples:  Program generators, compilers, static analyzers

Dynamic metaprograms

Execute at runtime

Metadata stored and accessible during runtime

Examples:  

Programs using reflection (Introspection, Introcession); 

Interpreters, debuggers

Static vs. Dynamic Metaprogramming



4

19 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Base Level

MetalevelMetaobjects
Meta-
program

Static Metaprogramming

Static Time Run Time

Metaprogram and metaobjects 
exist only at compile time. 
No run-time overhead.

20 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Base Level

MetalevelMetaobjects
Meta-
program

Example: Static Metaprogramming (1)

Static Time Run Time

Metaprogram and metaobjects 
exist only at compile time. 
No run-time overhead.

...malloc( N * sizeof(myType)); ...malloc( N * 8 );

8myType

4Integer

type table
Compiler

21 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Example: Static Metaprogramming (2)

C++ templates

Example: generic type definition

(Meta)Information about generic type
removed after compiling!

template <class E>
class Vector {

E *pelem;
int size;
E get( int index ) {...}
...

}
...
Vector<int> v1;
Vector<float> v2;

class Vector_int {
int *pelem;
int size;
int get( int index ) {...}
...

}
class Vector_float {

float *pelem;
int size;
float get( int index ) {...}
...

}
...
Vector_int v1;
Vector_float v2;

expanded at 
compile time to 
equivalent of:

22 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

IR

Programs in 
Target Form

Programs in 
Target FormIR’

Programs 
in Source 
Form

Programs 
in Source 
Form

Compilers Are Static Metaprograms

Meta-
program
(Level 2)

Analysis,
Transformations

Parsing,
Analysing

Code 
Generation /
Pretty Printing

Run time objects
(Level 0)

Classes etc. represented by IR objects = metaobjects
=  instances of IR classes (metaclasses)

Metaclasses:  The compiler’s own
data types to represent IR structures

23 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Compilers are Static Metaprograms

/* array - construct the type `array 0..n-1 of ty' with alignment a or ty's */
Type array( Type ty,  int n,  int a )     
{

if (ty && isfunc(ty)) {
error( "illegal type `array of %t'\n", ty );
return array ( inttype, n, 0 );

}
if (a == 0)

a = ty->align;
if (level > GLOBAL && isarray(ty) && ty->size == 0)

error( "missing array size\n“ );
if (ty->size == 0) {

if (unqual(ty) == voidtype)
error( "illegal type `array of %t'\n", ty );

else if (Aflag >= 2)
warning( "declaring type `array of %t' is undefined\n", ty );

} else if (n > INT_MAX / ty->size) {
error( "size of `array of %t' exceeds %d bytes\n", ty, INT_MAX );
n = 1;

}
return tynode ( ARRAY, ty, n * ty->size, a, (Generic)0 );

}

Source:  lcc C compiler,

excerpt of file ”types.c”

(type table management)

7ARRAY(7,chartype)

1chartype

4inttype

52ARRAY(13,inttype)

0voidtype

type table excerpt

char x[7];

int a[13];

...

24 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Base-level program
data memory: 
Repository
with Objects
as Artefacts

Base Level

Metalevel
Repository
with Concepts/
Types/Descriptions
as Artefacts

Metaobjects

Reflection

Meta-
program

Dynamic Metaprogramming

Class someclass =  foo.getClass();Class someclass =  foo.getClass();



5

25 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Summary:  Ways of Metaprogramming

DebuggerJava Reflection

JavaBeans
introspection

Run time
(dynamic metaprogramming)

Compiler
transformations;

COMPOST

C++ template programs
C sizeof(...) operator
C preprocessor

Compile/Deployment time
(static metaprogramming)

Meta levelBase levelMetaprogram runs at:

Reflection

26 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Reflective Architecture

A system with a reflective architecture maintains metadata and a 
causal connection between meta- and base level.

The metaobjects describe 
structure, features, semantics of domain objects

This connection is kept consistent

Reflection is thinking about oneself (or others) at the base level
with the help of metadata

Metaprogramming is programming with metaobjects,
either at base level or meta level

Christoph Kessler, IDA, 
Linköpings universitet, 2007.

TDDC18 / FDA149
Component-Based Software

3. UML Metamodel and MOF

28 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

UML Metamodel and MOF

UML metamodel
specifies UML semantics
in the form of a (UML) class model (= reification)
specified in UML Superstructure document (OMG 2006) 
using only elements provided in MOF

UML metametamodel:  MOF (”Meta-Object Facility”)
self-describing
subset of UML (= reification)
for bootstrapping the UML specification

UML Extension possibility 1:  Stereotypes
e.g., <<metaclass>>  is a stereotype (specialization) of a class

by subclassing metaclass ”Class” of the UML metamodel

29 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

UML metamodel hierarchy

Metametalevel (L3)

Metalevel (L2)

Base level (L1)

Object level (L0)

ModelElement : ModelElement
name: Name

Class : ModelElement

isActive: Boolean

Cat : Class
name: String
color: Color
age: Integer

tom : Cat

name: ”Tom”
color: White 
age: 7

is instance of

is instance of

is instance of

UML metameta-
model: MOF

UML base-level
class diagrams

UML metamodel

30 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

UML Metamodel (Simplified Excerpt)

ModelElement

Generalizable
Element

Generalization Feature

name: Name

isRoot: Boolean
isLeaf: Boolean
isAbstract: Boolean

discriminator: Name ownerScope: ScopeKind
visibility: VisibilityKind

BehavioralFeature
isQuery: Boolean

Operation
isAbstract: Boolean
concurrency: CallConcurKind

StructuralFeature
Classifier

<<metaclass>>
Class

Attribute

multiplicity: Multiplicity
changeable: ChangeableKind
targetScope: ScopeKind

initialValue: Expression

isActive: Boolean
Interface Datatype

*1

1 *
subtype

supertype
*

owner

type
1 *



6

31 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Example:  Reading the UML Metamodel

Some semantics rules expressed in the UML metamodel above:

Each model element must have a name.

A class can be a root, leaf, or abstract  

(inherited from GenerizableElement)

A class can have many subclasses and many superclasses

(1:N relations to class ”Generalization”)

A class can have many features, e.g. attributes, operations

(via Classifier)

Each attribute has a type

(1:N relation to Classifier),

e.g. classes, interfaces, datatypes
32 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

UML vs. programming language
metamodel hierarchies

Metametalevel (L3)

Metalevel (L2)

Base level (L1)

Object level (L0)

ModelElement : ModelElement
name: Name

Class : ModelElement

isActive: Boolean

Cat : Class
name: String
color: Color
age: Integer

tom : Cat

name: ”Tom”
color: White 
age: 7

is instance of

is instance of

is instance of

UML metameta-
model: MOF

UML base-level
class diagrams

UML metamodel
java.lang.Class

class Cat {
String name;
Color color;
Integer age;
...

}

Cat tom = new
Cat(”Tom”, White, 7);

models

models

models

is instance of

is instance of

--

33 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Caution

A metamodel is not a model of a model
but a model of a modeling language of models.

A model (e.g. in UML) describes a language-specific software item
at the same level of the metalevel hierarchy.

In contrast, metadata describes it from the next higher level, 
from which it can be instantiated.

MOF is a subset of UML able to describe itself
– no higher metalevels required for UML.

Christoph Kessler, IDA, 
Linköpings universitet, 2007.

TDDC18 / FDA149
Component-Based Software

4. Component Markup

... A simple aid for introspection and reflection...

35 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Markup Languages

Convey more semantics for the artifact they markup

HTML, XML, SGML are markup languages

Remember: a component is a container

A markup can offer contents of the component 
for the external world, i.e., for composition

It can offer the content for introspection

Or even introcession

36 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Hungarian Notation

Hungarian notation is a markup method that defines 
naming conventions for identifiers in languages

to convey more semantics for composition in a component 
system

but still, to be compatible with the syntax of the component 
language

so that standard tools can still be used

The composition environment can ask about the 
names in the interfaces of a component 
(introspection)

and can deduce more semantics from naming conventions



7

37 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Generic Types in COMPOST

<< ClassBox >>

class SimpleList {
genericTType elem;
SimpleList next;
genericTType getNext() {

return next.elem;
}

}

T

class SimpleList {
WorkPiece elem;
SimpleList next;
WorkPiece getNext() {

return next.elem;
}

}

<< ClassBox >>

38 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Java Beans Naming Schemes

Metainformation for JavaBeans is identified by markup
in the form of Hungarian Notation.

This metainformation is needed, e.g., by the JavaBeans Assembly tools
to find out which classes are beans and what properties and events they 
have.

Property access

setField(Object value);

Object getField();

Event firing

fire<Event>

register<Event>Listener

unregister<Event>Listener

39 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Markup by Comments

Javadoc tags,  XDoclet

@author

@date

@deprecated

Java 1.5 attributes

Can annotate any declaration
e.g. class, method, interface,

field, enum, parameter, ...

predefined and user-defined

class C extends B {
@Overrides
public int foo() { ... }
...

}

C# attributes

//@author

//@date

//selfDefinedData

C# /.NET attributes

[author(Uwe Assmann)]

[date Feb 24]

[selfDefinedData(...)]

40 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

Markup is Essential 
for Component Composition

because it identifies metadata,
which in turn supports introspection and introcession

Components that are not marked-up cannot be composed

Every component model has to introduce 
a strategy for component markup

Insight:  
A component system that supports composition techniques 
must be a reflective architecture!

41 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

What Have We Learned?    (1)

Reflection is a program’s ability to reason about and possibly modify 
itself or other programs with the help of metadata.

Reflection is enabled by reification of the metamodel.  

Introspection is thinking about a program, but not modifying.

A metaprogram is a program that computes about programs

Metaprograms can execute at the base level or at the metalevel.

Metacode can execute statically or at run time.

Static metaprogramming at base level 
e.g. C++ templates, AOP

Static metaprogramming at meta level
e.g. Compiler analysis / transformations

Dynamic metaprogramming at base level
e.g. Java Reflection

42 TDDC18 Component-Based SoftwareC. Kessler, IDA, Linköpings universitet.

What Have We Learned?    (2)

The UML metamodel is a description of UML
specified in terms of the UML metametamodel, MOF  

UML models describe program objects on the same level of the 
meta-hierarchy level.

Component and composition systems are reflective architectures
Markup marks the variation and extension points of components

e.g., using Hungarian notation
Composition introspects the markup
Look up  type information, interface information, property 
information
or full reflection


