TDDG18 ;"‘“W Wh’*@

Component-Based Software B §

o

Model-Driven Architecture
(MDA)

Literature:

A. Kleppe, J. Warmer, W. Bast:
MDA Explained: The Model Driven Architecture (TM): Practice and Promise.
Addison-Wesley, 2003. Available for students as electronic copy in Kvartersbibliotek B.

S. Mellor, K. Scott, A. Uhl, D. Weise:
MDA Distilled — Principles of Model-Driven Architecture. Addison-Wesley, 2004.

Model

m Set of elements that describes
some physical, abstract, or hypothetical system

e Abstraction from one or several properties
» E.g., real size, material, level of detail

e Means of communication

o Cheaper to build than the real system

o More suitable for analysis (e.g., by static analysis or simulation)
than the real system

o Decision help

= Examples:
o Modelica models for physical/technical systems
o UML model = abstraction of a program (software system)
» Level of detail can vary from coarse-grained blocks to executable

OMG: www.omg.org/mda code
Qhristqph Kes§ler, IDA,
Linkdpings universitet, 2007. C. Kessler, IDA, Linképings universitet. 2 TDDC18 Component-Based Software, 2007
SLE SuE
Relations between model and code A t’; Platform R t’é
a"’mxuvﬂ‘"‘. aﬁ"rs;uv""“.
m Specification of an execution environment ’ ‘
for a set of models
e E.g.: CORBA, EJB;
Model| Model| Model| Model Java JVM, C++;
S Linux, Solaris, Windows, RTOS;
¥ SPARC, |A-64, PowerPC;
‘ Code‘ ‘Code ‘ ‘Code ‘ ‘ Code‘ VHDL;
Codeonly Code Rounditrip Model-centric o Needs to have at least one implementation
visualization engineering . .
» Which can build upon one or more other platforms
(composed realization)
MDA idea: » Or stand alone
Generate the system (primitive realization)
from the model!

C. Kessler, IDA, Linkspings universitet. 3 TDDC18 Component-Based Software, 2007 C. Kessler, IDA, Link5pings universitet. 4 TDDC18 Component-Based Software, 2007
SLE SuE
Mapping between models B t’; Marking models B t’;
a"’mxuvﬂ‘"‘. aﬁ"rs;uv""“.

m MDA: lterative and incremental development
by successive model refinement, up to code generation

Described at
the metamodel
level

® Mapping:
pping Source model

e.g. UML model

mapping functign

Target model

€.g. Java code

Applicable to all
source models

that conform to
the metamodel

e Can be automated by providing an executable specification
o In full generality not completely automatizable

» UML only semi-formal, not really executable

» Needs manual editing for complementation

TDDC18 Component-Based Software, 2007

C. Kessler, IDA, Linkspings universitet. 5

m Marks
= light-weight, non-intrusive, persistent extensions to models
that capture information required for model transformations
without polluting these models

o "sticky notes” attached to model elements
o Specific to a mapping

u in UML?
e Hungarian notation for special class names etc.

o Special elements defined by a marking model
(specified as UML extension)

TDDC18 Component-Based Software, 2007

C. Kessler, IDA, Linkdpings universitet 3

P,

H
KL

Background: Customizing UML

m E.g., to construct MDA marking models

Two UML Extension Mechanisms:

m Stereotypes
= Type qualifiers to customize existing language elements
(e.g., classes, associations)

o Example: Definition and use of stereotype <<persistent>>:

<<stereotype>> <<persistent>>

|
Class persistent Account

= MOF

Can also introduce new graphical symbols in both cases
7 "

C. Kessler, IDA, Linkdpings universitet. DDC18 Component-Based Software, 2007

MOF (Meta-Object Facility)
B The language in which UML is specified

A subset of UML itself: (- reified)

e Types
(classes, primitives, types, enumerations)

o Generalizations (inheritance)
o Attributes

o Associations

o Operations

annotatedElement *
Element

Comment

m Example: Definition of a UML comment in MOF: * | body: String

®m MOF specifies only structural and behavioral aspects

o Not how to store, graphically represent, or edit UML models
— left to tool providers

o Except for an XML-based metadata interchange format: XMl

C. Kessler, IDA, Linkdpings universitet. 8 TDDC18 Component-Based Software, 2007

= =
Marking model example g‘jb; UML Profiles A t’;
u”’mxuﬂ‘"“. u""sxuv""“.
m Definition of a mark element with attributes m Collection of stereotypes and metamodel extensions
for a special domain or platform
o Creates an UML dialect
o Needs standardization
<<stereotype>> B Examples:
{ required } JavaMark: . .
Class avaliarks o UML Real-time profile
identifier: String i
synchronized: Boolean o UML profile for CORBA
C. Kessler, IDA, Lmkogmss universitet. 9 TDDC18 Component-Based Software, 2007 C. Kessler, IDA, Lmkogmss universitet. 10 TDDC18 Component-Based Software, 2007
= =
PIM, PSM %fjt’i PIM, PSM, Model transformations g‘jt’i
u”’mxuﬂ‘"“. u""sxuv""“.
® PIM (Platform-independent model) p— PIM Platform-
nmarke i
Indep.types
® PSM (Platform-specific model) Model +'_Transf. specif.
created from a marked PIM by mapping transf.
(+ manual complementation afterwards) PSM »|Platform-
Marks for (PIM) specific types
. . . platform A
® Marking a PIM for different mappings Marked Marks for MOd‘“}' #‘—Transf. specif.
leads to different PSM’s platform B transf.
mapping,, mappingg (PSM)
® Can be iterated Unmarked Unmarked)
PSM for PSM for Code generation
Platform A Platform B specification
m Code generation from last PSM
C. Kessler, IDA, Linkspings universitet. 11 TDDC18 Component-Based Software, 2007 C. Kessler, IDA, Linkspings universitet. 12 TDDC18 Component-Based Software, 2007

Dy - . O e
Model-dri ft d I t *;jba Source code generation with templates SALY
odel-driven sottware developmen RS (boilerplates, code skeletons) R
PIM:) .
business-oriented, Example: Velocity http://velocity.apache.org
abstracts from . i i
Mostly text platform issues, m Velocity Template Language (for static metaprogramming)
- survives technology .
Analysis GIENES ® Generate Java source code from Java-PSM in UML
Formal model, e.g. in UML + profile(s) #classModifiers ($class) class $class.name { Exair:r\ﬁlllélloirirtl)?late
Low-level desian (Semi-)automatic This could involve multiplg gforeachl(Gieidlinclassisla=)) generating a
g transformation model refinement steps... #fieldModifiers ($field) $field.type.name $field.name ; simple Java class
Formal model, e.g. in UML + profile(s) #end
- Semi) .
feed- Coding (Semi-)automatic #foreach ($constructor in $class.constructors)
back]/ 4 code generation 3
Cod ‘ #constructorModifiers ($constructor) $class.name (...) { }
ode
#end
CEE #foreach ($method in $class.methods)
Code #end
-
C. Kessler, IDA| DEpIOYmem ‘ 13 TDDC18 Component-Based Software, 2007 C. Kessier, IUA, LINKOPINGS universitet. 14 1Ly 19 vupunoicuasou sunware, 2007

—
TR
MDA vs. MDA-light Summary: MDA B\ t’i
q”’mxuv""“.
OMG-MDA®: MDA-light = Increased reuse
m Clean separation of business ® Long way to go in one shot ® ¢ PIM survives change of plaﬁo_m?
logic and platform issues © ® PIM polluted with marks for low- ® Increased programmer productivity
. L e Part of the code is generated automagically,
= More reuse pptentlal © level technical stuff ® hence less code to be written by hand
better maintainable, debuggable = Works today in practice ®
= Still under development ® o E.g. xtUML framework at Saab = Relies on good tools:

Model editors, model repositories, model transformers, code generators

o free: Eclipse EMF, GME (ISIS, Vanderbilt U.) for Visual Studio.NET, GMT for
PIM Eclipse, IBM MTF, OpenMDX (www.openmdx.org), UMT,

e and many commercial ones, e.g. Telelogic TAU

Model compiler

= Still in its infancy
Model compiler AND

code generator in one e Could become the mainstream software engineering technology by 2020

= Consistency problem:
How to map manual edits in PSM or generated code
Code back to a source model?

15 TDDC18 Camponent Based Software, 2007 o Kessior B AWEOMALiG RQUNdirip Engineering, (ARE) TDDC18 Camponent Based Software, 2007

C. Kessler, IDA, Linkop

