
1

Christoph Kessler, IDA,
Linköpings universitet, 2007.

TDDC18
Component-Based Software

Model-Driven Architecture
(MDA)

Literature:

A. Kleppe, J. Warmer, W. Bast:
MDA Explained: The Model Driven Architecture (TM): Practice and Promise.
Addison-Wesley, 2003. Available for students as electronic copy in Kvartersbibliotek B.

S. Mellor, K. Scott, A. Uhl, D. Weise:
MDA Distilled – Principles of Model-Driven Architecture. Addison-Wesley, 2004.

OMG: www.omg.org/mda

Literature:

A. Kleppe, J. Warmer, W. Bast:
MDA Explained: The Model Driven Architecture (TM): Practice and Promise.
Addison-Wesley, 2003. Available for students as electronic copy in Kvartersbibliotek B.

S. Mellor, K. Scott, A. Uhl, D. Weise:
MDA Distilled – Principles of Model-Driven Architecture. Addison-Wesley, 2004.

OMG: www.omg.org/mda

2 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

Model

� Set of elements that describes
some physical, abstract, or hypothetical system

z Abstraction from one or several properties

E.g., real size, material, level of detail

z Means of communication

z Cheaper to build than the real system

z More suitable for analysis (e.g., by static analysis or simulation)
than the real system

z Decision help

� Examples:

z Modelica models for physical/technical systems

z UML model = abstraction of a program (software system)

Level of detail can vary from coarse-grained blocks to executable
code

3 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

Relations between model and code

Model

Code Code CodeCode

Model ModelModel

Code only Code
visualization

Roundtrip
engineering

Model-centric

MDA idea:
Generate the system

from the model!
4 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

Platform

� Specification of an execution environment
for a set of models

z E.g.: CORBA, EJB;
Java JVM, C++;
Linux, Solaris, Windows, RTOS;
SPARC, IA-64, PowerPC;
VHDL; …

z Needs to have at least one implementation

Which can build upon one or more other platforms
(composed realization)

Or stand alone
(primitive realization)

5 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

Mapping between models

� MDA: Iterative and incremental development
by successive model refinement, up to code generation

� Mapping:

z Can be automated by providing an executable specification

z In full generality not completely automatizable

UML only semi-formal, not really executable

Needs manual editing for complementation

Source model

Target model

e.g. UML model

mapping function

e.g. Java code

Described at
the metamodel
level

Applicable to all
source models
that conform to
the metamodel

6 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

Marking models

� Marks
= light-weight, non-intrusive, persistent extensions to models
that capture information required for model transformations
without polluting these models

z ”sticky notes” attached to model elements

z Specific to a mapping

� in UML?

z Hungarian notation for special class names etc.

z Special elements defined by a marking model
(specified as UML extension)

2

7 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

Background: Customizing UML

� E.g., to construct MDA marking models

Two UML Extension Mechanisms:

� Stereotypes
= Type qualifiers to customize existing language elements
(e.g., classes, associations)

z Example: Definition and use of stereotype <<persistent>>:

� MOF

Can also introduce new graphical symbols in both cases

Class
<<stereotype>>

persistent
<<persistent>>

Account

8 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

MOF (Meta-Object Facility)

� The language in which UML is specified

� A subset of UML itself: (Æ reified)

z Types
(classes, primitives, types, enumerations)

z Generalizations (inheritance)

z Attributes

z Associations

z Operations

� Example: Definition of a UML comment in MOF:

� MOF specifies only structural and behavioral aspects

z Not how to store, graphically represent, or edit UML models
– left to tool providers

z Except for an XML-based metadata interchange format: XMI

Element

Comment

body: String

annotatedElement *

*

9 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

Marking model example

� Definition of a mark element with attributes

Class

<<stereotype>>
JavaMarks{ required }

identifier: String
synchronized: Boolean

10 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

UML Profiles

� Collection of stereotypes and metamodel extensions
for a special domain or platform

z Creates an UML dialect

z Needs standardization

� Examples:

z UML Real-time profile

z UML profile for CORBA

11 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

PIM, PSM

� PIM (Platform-independent model)

� PSM (Platform-specific model)
created from a marked PIM by mapping
(+ manual complementation afterwards)

� Marking a PIM for different mappings
leads to different PSM’s

� Can be iterated

� Code generation from last PSM

Unmarked
PIM

Marked
PIM

Marks for
platform A
Marks for
platform B

Unmarked
PSM for

Platform B

Unmarked
PSM for

Platform A

mappingA mappingB

12 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

PIM, PSM, Model transformations

PIM

PSM
(PIM)

(PSM)

Platform-
indep.types

Platform-
specific types

Model
transf.

Model
transf.

Transf. specif.

Transf. specif.

(source)
code

Code generation
specification

3

13 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

Requirements

Analysis

Low-level design

Coding

Testing

Deployment

Mostly text

PIM

PSM

Code

Code

(Semi-)automatic
transformation

Formal model, e.g. in UML + profile(s)

Formal model, e.g. in UML + profile(s)

(Semi-)automatic
code generation

This could involve multiple
model refinement steps...

PIM:
business-oriented,
abstracts from
platform issues,
survives technology
changes

PIM:
business-oriented,
abstracts from
platform issues,
survives technology
changes

Model-driven software development

feed-
back

14 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

Source code generation with templates
(boilerplates, code skeletons)

Example: Velocity http://velocity.apache.org

� Velocity Template Language (for static metaprogramming)

� Generate Java source code from Java-PSM in UML

#classModifiers ($class) class $class.name {

#foreach ($field in $class.fields)

#fieldModifiers ($field) $field.type.name $field.name ;

#end

#foreach ($constructor in $class.constructors)

#constructorModifiers ($constructor) $class.name (…) { }

#end

#foreach ($method in $class.methods) …

#end

}

Example template
in Velocity,

generating a
simple Java class

15 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

MDA vs. MDA-light

OMG-MDA®:

� Clean separation of business
logic and platform issues ☺

� More reuse potential ☺
better maintainable, debuggable

� Still under development /

MDA-light

� Long way to go in one shot /

� PIM polluted with marks for low-
level technical stuff /

� Works today in practice ☺

z E.g. xtUML framework at Saab

PIM

PSM

Code

PIM

Code

Model compiler

Code generator

Model compiler AND
code generator in one

16 TDDC18 Component-Based Software, 2007C. Kessler, IDA, Linköpings universitet.

Summary: MDA

� Increased reuse

z PIM survives change of platform

� Increased programmer productivity

z Part of the code is generated automagically,
hence less code to be written by hand

� Relies on good tools:
Model editors, model repositories, model transformers, code generators

z free: Eclipse EMF, GME (ISIS, Vanderbilt U.) for Visual Studio.NET, GMT for
Eclipse, IBM MTF, OpenMDX (www.openmdx.org), UMT, ...

z and many commercial ones, e.g. Telelogic TAU

� Still in its infancy

z Could become the mainstream software engineering technology by 2020

� Consistency problem:
How to map manual edits in PSM or generated code
back to a source model?

z Automatic Roundtrip Engineering (ARE)

