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Introduction: EJB

 An EJB is standard distributed component
 The EJB is a part of the J2EE standard from Sun
 Server side component architecture
 Implementation by independent tool vendors

 Proprietory: IBM (WebSphere), BEA (WebLogic),
Sun and Netscape (iPlanet), Oracle, Borland

 Open source: JBoss (www.jboss.org)

 Enterprise JavaBeans ≠ JavaBeans

Introduction: EJB

 Separate business logic from middleware services:
 networking
 transactions
 persistence
 logging
 resource pooling

 EJB Container / Application server
 Manages beans
 Provides middleware services

 Allows JSPs, Servlets, Java applications, and other
EJBs act as clients


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Implicit Middleware

 Explicit middleware (e.g. CORBA) :
 Write to API
 Difficult to write, maintain and support

 Implicit middleware (e.g. EJB)
 Write isolated business logic
 Declarative middleware service specifications
 Middleware services automatically
 Tool support
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EJB Architecture

 Client calls a method on the EJB object
 EJB object delegates the call to a bean
 EJB receives the result
 EJB passes the result to the caller

To create an EJB provide

 Home interface
 Defines the life cycle methods of the bean

 Remote interface
 Defines the business methods of the bean

 Bean class
 Business logic



EJB Container
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EJB Object (Remote Interface)

 Extends javax.ejb.EJBObject
 Defines business methods clients call
(implementation in the bean class)

 Acts as a proxy

package ejbExample.interfaces
// This is a remote interface for HelloBean
public interface Hello extends javax.ejb.EJBObject
{

public String Hello() throws java.rmi.RemoteException;
}

EJB Container
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EJB Home Object Characteristics

 Extends javax.ejb.EJBHome
 Acts as a factory to create EJB instances
 Allows clients to create/remove/find EJBs

package ejbExample.interfaces

// This is a home interface for HelloBean

public interface HelloHome extends javax.ejb.EJBHome

{

Hello create() throws java.rmi.RemoteException,
javax.ejb.CreateException;

}

EJB Container

Summary: EJB Architecture
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Summary: an EJB consist of

 Enterprise Bean class
 Supporting classes
 EJB Object
 Remote interface
 Home object
 Deployment descriptor (XML)
 Vendor-specific files
 (Local interface)

EJB-jar file

Deployment

 EJB deployment descriptor (XML)
 ejb-jar.xml
 Attributes of the beans specified declaratively
 Deployment descriptor language is a
composition language

 EJB-jar file is verified by container
 Container generates stubs and skeletons

How clients find the Home object

 Java Naming and Directory Interface (JNDI)
 Similar to CORBA naming service
 Mapping between resource names and physical
locations

 No machine address to home object hard
coded

 Address to JNDI server is needed
 Kept in the initial context
 Use initial context factory to acquire an initial context
(is the JNDI driver)

 Vendor specific, bound to J2EE server implementation

EJB Container

EJB Architecture
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Context ctx = new InitialContext();
HelloWorldHome home = (HelloWorldHome)

PortableRemoteObject.narrow(ctx.lookup("HelloWorld"),
HelloWorldHome.class);

Types of Beans

 Session beans
 Stateless
 Stateful

 Entity beans
 Message-Driven beans

So, what does the container do?

 Generate stubs and skeletons
 Create EJB instances as needed. Pooling
instances.

 Persisting entity beans.
 Handles security and transactions via EJB
object



How can container vendors compete?

 Caching strategies
 Development tool integration
 Database access optimization
 Performance

XDoclet

 Deployment descriptor
 Generate from declarative specification

 Remote interface
 home interface
 local interface
 local home interface
 primary key class

 Specification as comments in the
Bean class

Demonstration

Our first bean

Local interfaces

 When beans call beans locally
 Optimization
 Call by value/reference problem

Entity Beans

 Represent business data stored in database
 Database types converted to Java types
 Change of values in the Entity Bean is
propagated to the DB

How is Persistence Achieved?

 Bean managed persistence (BMP)
 Container managed persistence (CMP):

 Object to relational database mapping (common)
 Object databases (uncommon)
 Container generates persistence as subclass
 EJB-QL, query language

 An entity bean is a view into the data
source, e.g., a database



Façade design pattern for EJB
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Security

 Authentication - JAAS
 Authorization
 Deployment descriptor

 Roles
 Roles and methods

 No instance level based security

Demonstration

An entity bean

Message-Driven beans

 Don't have home, remote or local interfaces
 Have a single business method:

 onMessage

 No static type check
 No return values
 No exceptions
 Stateless

Point-to-Point

Queue

Publish - Subscribe

Topic



Why Message-Driven Beans?

 Performance
 Reliability
 Support for multiple senders and receivers
 Easy integration to legacy systems

Final thoughts

 Is it object-oriented?
 Separation of data and operations (entity beans
and session beans)

 No inheritance between beans
 Suitable for which tasks?

 One architecture. Anomalies if trying to do
anything else

 Component marketplace?
 Not today!

Resources

 Szyperski, chapter 14
 Sun EJB tutorial

http://java.sun.com/j2ee/learning/tutorial/index.html

 Ed Roman: Mastering EJB
http://www.theserverside.com/books/wiley/masteringEJB/index.jsp

 JBoss, Open source EJB Container
http://www.jboss.org


