
Enterprise JavaBeans

Mikhail Chalabine
(a number of) slides by

Jens Gustavsson

Introduction: EJB

 An EJB is standard distributed component
 The EJB is a part of the J2EE standard from Sun
 Server side component architecture
 Implementation by independent tool vendors

 Proprietory: IBM (WebSphere), BEA (WebLogic),
Sun and Netscape (iPlanet), Oracle, Borland

 Open source: JBoss (www.jboss.org)

 Enterprise JavaBeans ≠ JavaBeans

Introduction: EJB

 Separate business logic from middleware services:
 networking
 transactions
 persistence
 logging
 resource pooling

 EJB Container / Application server
 Manages beans
 Provides middleware services

 Allows JSPs, Servlets, Java applications, and other
EJBs act as clients



EJB Architecture

Client

EJB

EJB

EJB

EJB

EJB Container

Client

Client Database

Clients (typical use cases)

HTML-
client EJB

EJB

EJB

EJB

EJB Container

Java
application

Database

Web server

Servlet
or JSP

Implicit Middleware

 Explicit middleware (e.g. CORBA) :
 Write to API
 Difficult to write, maintain and support

 Implicit middleware (e.g. EJB)
 Write isolated business logic
 Declarative middleware service specifications
 Middleware services automatically
 Tool support



Distributed Objects

Client

Distributed
objectRemote

interface

Network

Distributed Objects

Client Stub

Skeleton
Distributed
objectRemote

interface

Network

Remote
interface

Distributed Objects

Client Stub

Skeleton
Distributed
object

Request
Interceptor

Remote
interface

Network

Remote
interface

Remote
interface

Distributed Objects the EJB way

Client Stub

Skeleton Bean

EJB
Object

Remote
interface

Network

Remote
interface

Remote
interface

EJB Architecture

 Client calls a method on the EJB object
 EJB object delegates the call to a bean
 EJB receives the result
 EJB passes the result to the caller

To create an EJB provide

 Home interface
 Defines the life cycle methods of the bean

 Remote interface
 Defines the business methods of the bean

 Bean class
 Business logic



EJB Container

Enterprise JavaBeans

Client Stub

Skeleton

Bean
EJB
Object

Network

EJB Container

EJB Object (Remote Interface)

Client Stub

Skeleton

Bean
EJB
Object

Network

EJB Object (Remote Interface)

 Extends javax.ejb.EJBObject
 Defines business methods clients call
(implementation in the bean class)

 Acts as a proxy

package ejbExample.interfaces
// This is a remote interface for HelloBean
public interface Hello extends javax.ejb.EJBObject
{

public String Hello() throws java.rmi.RemoteException;
}

EJB Container

EJB Home Object (Home Interface)

Client Stub

Skeleton

Bean
EJB
Object

Network

EJB
Home

EJB Home Object Characteristics

 Extends javax.ejb.EJBHome
 Acts as a factory to create EJB instances
 Allows clients to create/remove/find EJBs

package ejbExample.interfaces

// This is a home interface for HelloBean

public interface HelloHome extends javax.ejb.EJBHome

{

Hello create() throws java.rmi.RemoteException,
javax.ejb.CreateException;

}

EJB Container

Summary: EJB Architecture

Client

Bean
EJB
Object

EJB
Home



Summary: an EJB consist of

 Enterprise Bean class
 Supporting classes
 EJB Object
 Remote interface
 Home object
 Deployment descriptor (XML)
 Vendor-specific files
 (Local interface)

EJB-jar file

Deployment

 EJB deployment descriptor (XML)
 ejb-jar.xml
 Attributes of the beans specified declaratively
 Deployment descriptor language is a
composition language

 EJB-jar file is verified by container
 Container generates stubs and skeletons

How clients find the Home object

 Java Naming and Directory Interface (JNDI)
 Similar to CORBA naming service
 Mapping between resource names and physical
locations

 No machine address to home object hard
coded

 Address to JNDI server is needed
 Kept in the initial context
 Use initial context factory to acquire an initial context
(is the JNDI driver)

 Vendor specific, bound to J2EE server implementation

EJB Container

EJB Architecture

Client
Bean

EJB
Object

EJB
Home

JNDI

1
2

3

Context ctx = new InitialContext();
HelloWorldHome home = (HelloWorldHome)

PortableRemoteObject.narrow(ctx.lookup("HelloWorld"),
HelloWorldHome.class);

Types of Beans

 Session beans
 Stateless
 Stateful

 Entity beans
 Message-Driven beans

So, what does the container do?

 Generate stubs and skeletons
 Create EJB instances as needed. Pooling
instances.

 Persisting entity beans.
 Handles security and transactions via EJB
object



How can container vendors compete?

 Caching strategies
 Development tool integration
 Database access optimization
 Performance

XDoclet

 Deployment descriptor
 Generate from declarative specification

 Remote interface
 home interface
 local interface
 local home interface
 primary key class

 Specification as comments in the
Bean class

Demonstration

Our first bean

Local interfaces

 When beans call beans locally
 Optimization
 Call by value/reference problem

Entity Beans

 Represent business data stored in database
 Database types converted to Java types
 Change of values in the Entity Bean is
propagated to the DB

How is Persistence Achieved?

 Bean managed persistence (BMP)
 Container managed persistence (CMP):

 Object to relational database mapping (common)
 Object databases (uncommon)
 Container generates persistence as subclass
 EJB-QL, query language

 An entity bean is a view into the data
source, e.g., a database



Façade design pattern for EJB

EJB Container

Entity
Bean

Session
Bean

Session
Bean Entity

Bean

Entity
Bean

Security

 Authentication - JAAS
 Authorization
 Deployment descriptor

 Roles
 Roles and methods

 No instance level based security

Demonstration

An entity bean

Message-Driven beans

 Don't have home, remote or local interfaces
 Have a single business method:

 onMessage

 No static type check
 No return values
 No exceptions
 Stateless

Point-to-Point

Queue

Publish - Subscribe

Topic



Why Message-Driven Beans?

 Performance
 Reliability
 Support for multiple senders and receivers
 Easy integration to legacy systems

Final thoughts

 Is it object-oriented?
 Separation of data and operations (entity beans
and session beans)

 No inheritance between beans
 Suitable for which tasks?

 One architecture. Anomalies if trying to do
anything else

 Component marketplace?
 Not today!

Resources

 Szyperski, chapter 14
 Sun EJB tutorial

http://java.sun.com/j2ee/learning/tutorial/index.html

 Ed Roman: Mastering EJB
http://www.theserverside.com/books/wiley/masteringEJB/index.jsp

 JBoss, Open source EJB Container
http://www.jboss.org


