
Aspect-Oriented Programming
and AspectJ

Mikhail Chalabine
(a number of) slides by

Jens Gustavsson

Outline

 Problems with OOP
 Introduction to AOP
 AspectJ

Object Oriented Programming

 Objects represents things in the real world
 Data and operations combined
 Encapsulation
 Objects are self contained
 Separation of concerns

Example

class Account {

private int balance = 0;

public void deposit(int amount) {

balance = balance + amount;

}

public void withdraw(int amount) {

balance = balance - amount;

}

}

Example

class Logger {

private OutputStream stream;

Logger() {

// Create stream

}

void log(String message) {

// Write message to stream

}

}

Example

class Account {
private int balance = 0;
Logger logger = new Logger();

public void deposit(int amount) {
balance = balance + amount;
logger.log("deposit amount: " + amount);

}

public void withdraw(int amount) {
balance = balance - amount;
logger.log("withdraw amount: " + amount);

}
}

Crosscutting

 Code in objects that does not relate to the functionality
defined for those objects.

 Imagine adding:
 User authentication
 Persistence
 Timing
 …

 Mixing of concerns lead to:
 Code scattering
 Code tangling

Mixing Concerns

 Correctness
 Understandability
 Testability

 Maintenance
 Find code
 Change it consistently
 No help from OO tools

 Reuse

 XML parsing in org.apache.tomcat
 red shows relevant lines of code
 nicely fits in one box

XML parsing

 URL pattern matching in org.apache.tomcat
 red shows relevant lines of code
 nicely fits in two boxes (using inheritance)

URL pattern matching

 logging in org.apache.tomcat
 red shows lines of code that handle logging
 not in just one place
 not even in a small number of places

logging is not modularized

Aspect Oriented Programming

 Aspect = Concern that crosscuts other
components.
Amore precise definition comes later!

 Components written in component language
 Provide a way to describe aspects in aspect
language

 Not to replace OOP
 Does not have to be OO based

Aspect Weaving

Components
in component
language

Executable
program

Aspects in
aspect
language

Weaver

Weaving Time

 Preprocessor
 Compile time
 Link time
 Load time
 Run time

Example

class Account {

private int balance = 0;

public void deposit(int amount) {

balance = balance + amount;

}

public void withdraw(int amount) {

balance = balance - amount;

}

}

Example (ad hoc syntax)

define aspect Logging {

Logger logger = new Logger();

when calling any method(parameter "amount") {

logger.log(methodname + " amount: " + amount);

}

}

Aspect Weaving

Account class
System with
logging

Logging aspect
WeaverLogger class

Concepts added by AOP
Languages

 Join points
 Pointcuts
 Advice
 Aspects
 Weaving

Join Point

 A location in (component) code where a
concern crosscuts (static join point model)

 A well-defined point in the program flow
(dynamic join point model, e.g., in AspectJ)

 Examples:
 Method / class declaration
 A call to a method
 etc.

public void Account.deposit(int)

Pointcut

 A pointcut picks out certain join points and
values at those points

 Specifies when a join point should be matched

 In the followin the balanceAltered pointcut
picks out each join point that is a call to either
the deposit() or the withdraw()method of an
Account class

pointcut balanceAltered() :

call(public void Account.deposit(int)) ||

call(public void Account.withdraw(int));

Pointcut (further examples)

 call(void SomeClass.make*(..))
 picks out each join point that's a call to a void method defined
on SomeClass whose the name begins with "make"
regardless of the method's parameters

 call(public * SomeClass.* (..))
 picks out each call to SomeClasse's public methods

 cflow(somePointcut)
 picks out each pointcut that occurs in the dynamic context of
the join points picked out by somePointcut

 pointcuts in the control flow, e.g., in a chain of method calls

A piece of Advice

 Code that is executed at a pointcut (when a join
point is reached)

before(int i) : balanceAltered(i) {

System.out.println("The balance changed");

}

Aspect

 Groups join points, pointcuts and advice.
 The unit of modularity for a crosscutting concern.

public aspect LoggingAspect {

pointcut balanceAltered() :
call(public void Account.deposit(int)) ||

call(public void Account.withdraw(int));

before(int i) : balanceAltered(i) {
System.out.println("The balance changed");

}
}

Take a breath ... so far we have

 Agreed that tangled, scattered code that appears
as a result of mixing different crosscutting
concerns in (OO) programs is a problem

 Sketched a feasible solution - AOP
 Introduced

 Join points
 Pointcuts
 Advice
 Aspects
 Weaving

 Tools?

AspectJ

 Xerox Palo Alto Research Center
 Gregor Kiczales, 1997
 Goal: Make AOP available to many developers

 Open Source
 Tool integration Eclipse

 Components in Java
 Java with extensions for describing aspects
 Current focus: industry acceptance

AspectJ Demo

Join Points

 Method call execution
 Constructor call execution
 Field get
 Field set
 Exception handler execution
 Class/object initialization

Patterns

 Match any type: *
 Match 0 or more characters: *
 Match 0 or more parameters: (..)
 call(private void Person.set*(*)
 call(* * *.*(*)
 call(* * *.*(..)

 All subclasses: Person+

Logical Operators

 call((Person+ && ! Person).new(..))

Example

pointcut balanceAccess() :

get(private int Account.balance);

before() : balanceAccess() {

System.out.println("balance is
accessed");

}

Exposing Context in Pointcuts

 Improves decision process
 AspectJ gives code access to some of the
context of the join point

 Two ways

Exposing Context in Pointcuts

 thisJoinPoint class and its methods
 Designators

 State-based: this, target, args

 Control Flow-based: cflow, cflowbelow

 Class-initialization: staticinitialization
 Program Text-based: withincode, within

 Dynamic Property-based: If, adviceexecution

Exposing Context in Pointcuts
thisJoinPoint Methods

 getThis()

 getTarget()

 getArgs()

 getSignature()

 getSourceLocation()

 getKind()

 toString()

 toShortString()

 toLongString()

Exposing Context in Pointcuts
thisJoinPoint Methods Example

public class DVD extends Product {

private String title;
...

}

SourceLocation sl = thisJoinPoint.getSourceLocation();

Class theClass = (Class) sl.getWithinType();

System.out.println(theClass.toString());

Output: class DVD

Exposing Context in Pointcuts
Designators (1)

 Execution
 Call
 Initialization
 Handler
 Get
 Set

- Matches execution of a method or constructor

- Matches calls to a method

- Matches execution of the first constructor

- Matches exceptions

- Matches the reference to a class attribute

- Matches the assignment to a class attribute

Exposing Context in Pointcuts
Designators (2)

 This

 Target

 Args

- Returns the target object of a join point or
limits the scope of join point

- Returns the object associated with a
particular join point or limits the scope of a
join point by using a class type

- Exposes the arguments to a join point or

limits the scope of the pointcut

Exposing Context in Pointcuts
Designators (3)

 Cflow

 Cflowbelow

 Staticinitialization

- Returns join points in the execution
flow of another join point

- Returns join points in the execution
flow of another join point but including
the current join point

- Matches the execution of a
class's static initialization

Exposing Context in Pointcuts
Designators (4)

 Withincode

 Within

 If

 Adviceexecution

 Preinitialization

- Matches points in a method or constructor

- Matches points within a specific type

- Allows a dynamic condition to be
part of pointcut

- Matches on advice join points

- Matches pre-initialization join points

Exposing Context Example

pointcut setXY(FigureElement fe, int x, int y):

call(void FigureElement.setXY(int, int))

&& target(fe)

&& args(x, y);

after(FigureElement fe, int x, int y) returning:
setXY(fe, x, y) {

System.out.println(fe +

" moved to (" + x + ", " + y + ").");

}

Exposing Context Comment

 Prefer designators over method calls
 Higher cost of reflection associated with get*

pointcut setXY():

call(void FigureElement.setXY(int, int));

after() returning: setXY() {

FigureElement fe = thisJoingPoint.getThis();

...

System.out.println(fe +

" moved to (" + x + ", " + y + ").");

}

Advice

 Before
 After

 Unqualified
 After returning
 After throwing

 Around

Example

pointcut withdrawal() :

call(public void Account.withdraw(int));

before() : withdrawal() {

// advice code here
}

Example

pointcut withdrawal() :

call(public void Account.withdraw(int));

after() : withdrawal() {

// advice code here
}

Example

pointcut withdrawal() :

call(public void Account.withdraw(int));

after() returning : withdrawal() {

// advice code here
}

Example

pointcut withdrawal() :

call(public void Account.withdraw(int));

after() throwing(Exception e) : withdrawal
() {

// advice code here
}

Example

pointcut withdrawal() :

call(public void Account.withdraw(int));

around() : withdrawal() {

// do something
proceed();

// do something
}

Inter-type Declarations

 So far we assumed dynamic join point model
 Static program structure modification
 Static joint point model, compile-time weaving

Inter-type Declarations

 Add members
 methods
 constructors
 fields

 Add concrete implementations to interfaces
 Declare that types extend new types
 Declare that types implement new interfaces

Inter-type Declarations Demo
Other AOP languages

 AspectWerkz
 JAC
 JBoss-AOP
 Aspect#
 LOOM.NET
 AspectR
 AspectS
 AspectC
 AspectC++
 Pythius

AOP Brainstorming Examples

 Resource pooling connections
 Caching
 Authentication
 Design by contract
 Wait cursor for slow operations
 Inversion of control
 Runtime evolution

Aspect-Oriented Programming
and AspectJ

Questions & Answers

Aspect Instantiation

 Aspects are converted to classes by AspectJ
compiler

 Types of instantiation:
 Singleton
 Per-object
 Per-control-flow

 Aspects can contain fields (and methods)

Inversion of Control

public class Fruit {}

public class Apple extends Fruit {

public String toString() {

return "I am an apple";

}

}

Inversion of Control

public class FruitUser {

public Fruit theFruit;

}

Inversion of Control

public aspect ConnectionAspect {

pointcut objectCreation() :
execution(FruitUser.new(..));

before() : objectCreation() {
FruitUser f = (FruitUser)

(thisJoinPoint.getTarget());
f.theFruit = new Apple();

}
}

