Software Quality Management

Lecture 9

Software Engineering CUGS Spring 2011

YNGS UT

Kristian Sandahl Department of Computer and Information Science Linköping University, Sweden krisa@ida.liu.se

Inspections in quality assurance

Your default choice!

- Appraisal defect detection
- Assurance prediction of defects
- Control adjust the process
- Improvement: reduce variation, increase precision

Software Metrics

Part II Capability Maturity Model

Quality factors

Linköpings universitet

Correctness

- Reliability
- Efficiency
- Usability
- Integrity
- Maintainability
- Flexibility
- Testability
- Security

- Portability
- Reusability
- Interoperability
- Survivability
- Safety
- Manageability
- Supportability
- Replaceability
- Functionality

Measuring these requires both research, experience and imagination.

Usage-based metrics

- Verification & Validation metrics
- Volume metrics
- Structural metrics
- Effort metrics
- Direct measurement
- Indirect measurement

Note: Pedagogical model only!

Usage based metrics - example

- Description: Number of good and bad features recalled by users.
- How to obtain data: Set up a test scenario. Let test users run the scenario. Collect number of good and bad features in a questionnaire afterwards.
- How to calculate the metric: Take the average of number of good and bad features. Two values.
- Relevant quality factor: Relevance many good and few bad features indicates a good match with the users' mindset.

			SORTHOS ON TRACE
Part I Software Metrics	Part II Capability Maturity Model	Part III Quality Management	Linköpings universitet

Volume metrics - example

- How to obtain data: Count non-commented lines of the code with a tool.
- How to calculate the metric: See above.
- Relevant quality factor: Reliability it is often hard to understand a large portion of code, the fault density is often higher for large modules.

Part I Software Metrics	Part II Capability Maturity Model	Part III Quality Management	Linköpings universitet

Effort metrics - example

- Description: Time spent in testing.
- How to obtain data: Make sure that testing activities are distinguished in time reporting forms. Make sure that all project activities are reported.
- How to calculate the metric: Sum the number of hours for all activities in testing for all people involved.
- Relevant quality factor: Testability a comparably long testing time indicates low testability.

Part I Software Metrics	Part II Capability Maturity Model	Part III Quality Management	Linköpings universitet

Capability Maturity Model

Part II Capability Maturity Model

Life at level 1

Totally dependent on heroes

Over-committed, abandoned processes, no repetition of success.

- Manage contracts, progress control, quality assurance.
- Measurement and Analysis
 - Develop, initiate, analyse and complete measurements to support
 progress control
- Process and Product Quality Assurance
 - Develop, implement and follow up application of SQA tools for processes and software products
- Configuration Management
 - · Develop, implement and operate a CM system
 - · Assure integrity of work products, report changes, test configuration

Part I Software Metrics	Part II Capability Maturity Model	Part III Quality Management	Linköpings universitet
			cincopings universite

PA CMMI3

- Elicit, specify, analyze and validate requirements.
- Technical Solution
 - Develop, analyze and **select** solutions to components or the system as a whole
 - Implement solution
- Product Integration
 - · Integrate components from various sources
- Verification
 - Assure that the product and components comply with specifications
- Validation
 - · Assure that the product fulfils customers actual needs

Linköpings universitet

Part I	🍗 Part II	Part III	
Software Metrics	Capability Maturity Model	Quality Management	

PA CMMI3 (continued)

- Assure that all levels share: vision, project goals, planning and progress control process
- Stakeholder involvement
- Risk Management see lecture 3
- Decision Analysis and Resolution
 - Evaluate project alternatives according to criteria
 - Structured decisions selecting project implementation alternatives
- Integrated Teaming (old, but good)
 - Form teams with relevant members
 - Govern team operation and external communication
- Organizational Environment for Integration (old, but good)
 - · Approach and infrastructure for team collaboration

Part I Software Metrics	Part II Capability Maturity Model	Part III Quality Management	Linköpings universitet
			Linkopings universite

NEINGS UNIVER

Linköpings universitet

	Life at level 3		24 Kristian Sandal krisa@ida.liu.se
Privas 1	 More detailed description Tailoring processes from Baseline: Describe your Opens for development Works for a range of pro- Originally the minimum 	m your own definitio r current performanc t (and creativity) of a ojects	e
		Dest III	
	Part I Part II Software Metrics Capability Maturity Model	Part III Quality Management	

12

Life at level 4

- Quantitative analysis (statistics) of goals, products, processes
- Higher predictive capability
- Deviations are subject for Root Cause Analysis (RCA)

Part I Part II Part III Software Metrics Part II Capability Maturity Model Quality Management	gs universite
--	---------------

Life of level 5	26 Kristian Sandal krisa@ida.liu.se		
 Everyone is committed to the continuous 			
improvement of processes.			
 Innovation climate paired with an ability to evaluate new technology 			
 Empowered co-workers 			
 Low variation in processes 			
 Reacts quickly to change 			
 Challenge: Company culture, new markets 			
 Used by many sub-contractors in marketing 	~~~		
Part I Part II Part III Software Metrics Capability Maturity Model Quality Management Linköp	pings universitet		

ISO 9000-3

- Principle 1 Customer focus
- Principle 2 Leadership
- Principle 3 Involvement of people
- Principle 4 Process approach
- Principle 5 System approach to management
- Principle 6 Continual improvement
- Principle 7 Factual approach to decision making
- Principle 8 Mutually beneficial supplier relationships
- ISO = International Organization for Standardization
- The Swedish member: SIS = Swedish Standards Institute (sic!)

Part I Software Metrics	Part II Capability Maturity Model		Part III Quality Management	Linköpings universitet
Software Metrics	Capability Maturity Model	1	Quality Management	Linköpings universite

Linköpings universitet

