Which part will we talk about today?

A Software Life-cycle Model

- Requirements
 - Validate Requirements, Verify Specification
- System Design (Architecture, High-level Design)
 - Verify System Design
- Module Design (Program Design, Detailed Design)
 - Verify Module Design
- Implementation of Units (classes, procedures, functions)
 - Verify Implementation

- Acceptance Test (Release testing)
- System Testing (Integration testing of modules)
- Module Testing (Integration testing of units)
- Unit testing
- Project Management, Software Quality Assurance (SOA), Supporting Tools, Education

Part I
- Software Metrics

Part II
- Capability Maturity Model

Part III
- Quality Management
The Shewhart cycle

Plan

Decide goal (the right quality)

Select process (activities)

Determine present state

Run the process (project)

Check

Evaluate process

(Change the process)

Evaluate PDCA

Formulate facts about goal fulfilment

Do

Part I
Software Metrics

Part II
Capability Maturity Model

Part III
Quality Management

Inspections in quality assurance

Your default choice!

- Appraisal – defect detection
- Assurance – prediction of defects
- Control – adjust the process
- Improvement: reduce variation, increase precision

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Design</th>
<th>Coding</th>
<th>Test-cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection data</td>
<td>Inspection data</td>
<td>Inspection data</td>
<td>Inspection data</td>
</tr>
</tbody>
</table>

Part I
Software Metrics

Part II
Capability Maturity Model

Part III
Quality Management
Part I
Software Metrics
Quality factors

- Correctness
- Reliability
- Efficiency
- Usability
- Integrity
- Maintainability
- Flexibility
- Testability
- Security
- Portability
- Reusability
- Interoperability
- Survivability
- Safety
- Manageability
- Supportability
- Replaceability
- Functionality

Measuring these requires both research, experience and imagination.

Software metrics

- Usage-based metrics
- Verification & Validation metrics
- Volume metrics
- Structural metrics
- Effort metrics
- Direct measurement
- Indirect measurement

Note: Pedagogical model only!
Usage based metrics - example

- Description: Number of good and bad features recalled by users.
- How to obtain data: Set up a test scenario. Let test users run the scenario. Collect number of good and bad features in a questionnaire afterwards.
- How to calculate the metric: Take the average of number of good and bad features. Two values.
- Relevant quality factor: Relevance — many good and few bad features indicates a good match with the users’ mindset.

Verification and validation metrics - example

- Description: Rate of severe defects found in inspection of design description.
- How to obtain data: Perform an inspection according to your process. Make sure that severity is in the classification scheme.
- How to calculate the metric: Divide the number of defects classified with highest severity with total number of defects in the Inspection record.
- Relevant quality factor: Safety — a high proportion of severe defects in design indicates fundamental problems with the solution and or competence.
Volume metrics - example

- Description: Number on non-commented lines of code.
 - How to obtain data: Count non-commented lines of the code with a tool.
 - How to calculate the metric: See above.
 - Relevant quality factor: Reliability – it is often hard to understand a large portion of code, the fault density is often higher for large modules.

Structural metrics - example

- Description: Maximum depth of inheritance tree.
 - How to obtain data: Count the depth of the inheritance tree for all classes with a tool.
 - How to calculate the metric: Take the maximum value of the classes.
 - Relevant quality factor: Understandability – It is hard to determine how a change in a higher class will affect inherited/overridden methods.
Effort metrics - example

- Description: Time spent in testing.
- How to obtain data: Make sure that testing activities are distinguished in time reporting forms. Make sure that all project activities are reported.
- How to calculate the metric: Sum the number of hours for all activities in testing for all people involved.
- Relevant quality factor: Testability – a comparably long testing time indicates low testability.
Argument (originally Weinberg)

A mature organisation has:
- Inter-group communication and coordination
- Work accomplished according to plan
- Practices consistent with processes
- Processes updated as necessary
- Well defined roles/responsibilities
- Management formally commits

A mature organisation do things well, which does not necessarily mean doing something good.

CMMI, staged structure

CMMI = Capability Maturity Model Integration

1: Initial
2: Repeatable
3: Defined
4: Managed
5: Optimising

Each level has process areas.

Tutorial at: http://www.tutorialspoint.com/cmmi/
Life at level 1

Totally dependent on heroes
Over-committed, abandoned processes, no repetition of success.

Process area CMMI2

- Requirements Management
 - Analyzes requirements
 - Verify plans and products against requirements
- Project Planning
 - Plan: activities, resources, schedules
 - Use the plan to achieve commitment and approval at all levels
- Project Monitoring and Control
 - Progress control: Initiate changes to solve problems
 - Update plans
PA CMMI2 (continued)

- Supplier Agreement Management
 - Manage contracts, progress control, quality assurance.
- Measurement and Analysis
 - Develop, initiate, analyse and complete measurements to support progress control
- Process and Product Quality Assurance
 - Develop, implement and follow up application of SQA tools for processes and software products
- Configuration Management
 - Develop, implement and operate a CM system
 - Assure integrity of work products, report changes, test configuration

Life at level 2

- Fewer surprises
- Processes are established and followed even in crisis
- We know stakeholders’ needs
- We can control changes
- We can repeat a previous success
- Works well for individual projects
PA CMMI3

- Requirements Development
 - Elicit, specify, analyze and validate requirements.
- Technical Solution
 - Develop, analyze and **select** solutions to components or the system as a whole
 - Implement solution
- Product Integration
 - Integrate components from various sources
- Verification
 - Assure that the product and components comply with specifications
- Validation
 - Assure that the product fulfils customers actual needs

PA CMMI3 (continued)

- Organizational Process Focus
 - Understand the organizations process and need for process
 - Strengths and weaknesses
 - Improve the process where necessary
- Organizational Process Definition
 - Develop and maintain assets: Documents and tools for processes
- Organizational Training
 - Define needed competence
 - Make competence inventory
 - Make a gap analysis
 - Schedule training
PA CMMI3 (continued)

- Integrated Project Management
 - Assure that all levels share: vision, project goals, planning and progress control process
 - Stakeholder involvement
- Risk Management – see lecture 3
- Decision Analysis and Resolution
 - Evaluate project alternatives according to criteria
 - Structured decisions selecting project implementation alternatives
- Integrated Teaming (old, but good)
 - Form teams with relevant members
 - Govern team operation and external communication
- Organizational Environment for Integration (old, but good)
 - Approach and infrastructure for team collaboration

Life at level 3

- More detailed descriptions
- Tailoring processes from your own definitions
- Baseline: Describe your current performance
- Opens for development (and creativity) of alternatives
- Works for a range of projects
- Originally the minimum level
Life at level 4

- Frequent measures
- Quantitative analysis (statistics) of goals, products, processes
- Higher predictive capability
- Deviations are subject for Root Cause Analysis (RCA)

Life of level 5

- Everyone is committed to the continuous improvement of processes.
- Innovation climate paired with an ability to evaluate new technology
- Empowered co-workers
- Low variation in processes
- Reacts quickly to change
- Challenge: Company culture, new markets
- Used by many sub-contractors in marketing
Part III
Quality Management

Views on quality

- Transcendent – something we learn to recognize
- Product-based – measurable variable
- Usage-based – in the eyes of the beholder
- Manufacturing-based – conformance to requirements
- Value-based – market sets the value
ISO 9000-3

- ISO 9000-3 is guideline to apply ISO 9001 to software industry, which is built on the principles:
 - Principle 1 Customer focus
 - Principle 2 Leadership
 - Principle 3 Involvement of people
 - Principle 4 Process approach
 - Principle 5 System approach to management
 - Principle 6 Continual improvement
 - Principle 7 Factual approach to decision making
 - Principle 8 Mutually beneficial supplier relationships

- ISO = International Organization for Standardization
- The Swedish member: SIS = Swedish Standards Institute (sic!)

Total Quality Management

- What’s get measured gets done
- Importance of feed-back
- Non-personal software
- Creating a passion for quality
- Live as you learn
- Incentive system
- Involve customers
- Set prioritized goals
- Quality is everybody’s responsibility
- Document how you will work with quality
- Improve continuously

= Some Guidelines to TQM
An interpretation of ISO 9001 for software,
a standard set of requirements on the competence and behavior of certification auditors,
a standardized training course for certification auditors,
a registration scheme for approved certification auditors,
a system for accrediting certification bodies for conducting TickIT certifications,
a logotype to be used on certificates to show TickIT certification.

http://www.tickit.org/
Six sigma

Goal: Reduce waste
Origin and application in production industry. Applicability in software is debated.

My view:
Requires repetition
Requires sampling

http://www.itil-itsm-world.com/sigma.htm

QIP

1. Set quantifiable goals
2. Select processes
3. Run processes
4. Measure objectives
5. Analyse measurements
6. Package experience