
1

Software Life Cycles and

Processes
Lecture 2

KristianSandahl, slides by David Broman

Department of Computer and Information Science

Linköping University, Sweden

Kristian.Sandahl@ida.liu.se

Software Engineering

CUGS course

Spring 2011

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

2A Software Life-cycle Model

Which part will we talk about today?

Requirements

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,

Detailed Design)

Implementation
of Units (classes, procedures,

functions)

Unit testing

Module Testing
(Integration testing of units)

System Testing
(Integration testing of modules)

Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

Verify System Design

Verify Module Design

Verify Implementation

Project Management, Software Quality Assurance (SQA), Supporting Tools, Education

Maintenance

2

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

3
Agenda - What will you learn today?

Part I

Life Cycles and Process Models

Part II

Methodologies and Processes

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

4

Part I

Life Cycles and Process Models

3

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

5
Project vs. Process

Start and stop
Goal An orderer

A budget A single-time

occurrence

Activity 1 Activity 2 Activity 3

Process

Project

Ordered set of activities

Each activity has entry/exit

criteria and input/output.
Goal of each activity

Constraints

Processes are

reoccurring

May contain

subprocesses

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

6

Verify System Design

A familiar model?

Requirements Acceptance Test
(Release testing)

Validate Requirements, Verify Specification

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,

Detailed Design)

System Testing
(Integration testing of modules)

Implementation
of Units (classes, procedures,

functions)

Unit testing

Verify Implementation

Module Testing
(Integration testing of units)

Verify Module Design

Time

Maintenance

4

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

7

Requirements Acceptance Test
(Release testing)

System Design
(Architecture,

High-level Design)

Module Design
(Program Design,

Detailed Design)

System Testing
(Integration testing of modules)

Module Testing
(Integration testing of units)

Unit testing
Implementation

of Units (classes, procedures,

functions)

The V-model

Time

Implementation

Integration

Testing

System Testing

Acceptance Test

Program Design

System Design

Requirements

Feedback and iterations

are possible

Maintenance

Maintenance

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

8
Another model...

Time

Implementation

Integration

Testing

System Testing

Acceptance Test

Program Design

System Design

Requirements

Maintenance

5

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

9
The Waterfall model

Time

Implementation

Integration

Testing

System Testing

Acceptance Test

Program Design

System Design

Requirements

 One of the first life-cycle models (Royce, 1970)

 Very common, very criticized

Why is the waterfall model

so criticized?

Which are the problems?

Can it be useful sometimes?

Milestone and deliverable at

each step. (Artifacts such as Design

document, Req. Specification. etc.).
Maintenance

Finish each phase

before continue

to next.

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

10
The Waterfall model - some arguments

Pros

 Simple, manageable and easy to understand

 Fits to common project management practices

(milestones, deliverables etc.)

 Focus on requirements and design at

beginning, save money and time at the end

 Can be suitable for short projects (some

weeks)

 Can be suitable for "stable" projects, where

requirements do not change

 Focus on documents, saves knowledge which

can be reused by other people.

 Widely used, e.g. US Department of Defense

 Can be suitable for fixed-price contracts

6

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

11
The Waterfall model - some arguments

Cons

 Software requirements change,

hard to sign-off on a SRS.

 Early commitment. Changes at the end, large

impact.

 Feedback is needed to understand a phase.

E.g. implementation is needed to understand

some design.

 Difficult to estimate time and cost for the

phases.

 Handling risks are not part of the model.

Pushes the risks forward.

 Software "is not" developed in such a way. It

evolves when problems are more understood.

Little room for problem solving.

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

12
Can we improve the model?

Implementation

Integration

Testing

System Testing

Acceptance Test

Program Design

System Design

Requirements

Maintenance
Danger! E.g. a performance

problem can result in a

major requirements change.

Very expensive rollback...

Iteration back to previous phase

7

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

13
Do it twice?

Implementation

Integration

Testing

System Testing

Acceptance Test

Program Design

System Design

Requirements

Maintenance

First round, a

prototype

Second round, do it right.

Input to the phases

in the second

round

The original paper is actually

misunderstood!

(Royce, 1970) includes

 Iteration of phases

 "Do it twice" prototype

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

14
Is overlapping phases a solution?

Time

requirements

design

implementation

test

When do we "sign-off",

e.g. when do we have all requirements?

What if a major design flaw is

discovered at the testing

phase?

Release!

8

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

15
What should be built?

Time

deployment

design

implementation

test

Release!

How? By delivering

several releases?

”The hardest single part of building a software

system is deciding precisely what to build”

(Frederick P. Brooks)

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

16
Iterative Development

Time

deployment

design

implementation

test

Final Release!R1
R2

Iteration 1 Iteration 2 Iteration 3

Customer Feedback Customer Feedback

When should the releases take

place?

Time-boxing - The time period is

fixed for each iteration.

What should be included in the

release?

Prioritized functionality - Do the

most important parts first.

9

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

17
Dependent project parameters

Project

Calendar Time
Resources

Features Quality

Calendar time and

resources are fixed

Select the most

important

functions
Select quality.

E.g. how general

should we be?

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

18
Iterative vs. Incremental Development

Time

deployment

design

implementation

test
Iteration 1 Iteration 2 Iteration 3

Incremental Development
Add a new "part" at each increment

Iterative Development
Improve a "working system" at each iteration

Working

System v0.1

Working

System v0.2

Working

System v0.3

Note. Both concepts are often

combined and sometimes

misleading called just

iterative development.

10

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

19
Iterative Development - Cons

Time

deployment

design

implementation

test

Final Release!R1
R2

Iteration 1 Iteration 2 Iteration 3

Customer Feedback

Is iterative development the

silver bullet?

 Problem with current business

contracts, especially fixed-price

contracts.

 With short iterations it can be hard to

map customer requirements to

iterations.

Customer Feedback

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

20
Iterative Development - Pros

Pros

 Misunderstandings and inconsistency are made

clear early (e.g. between requirement, design,

and implementation)

 Encourage to use feedback -> elicit the real

requirements

 Forced to focus on the most critical issues

 Continuous testing offers project assessment

 Workload is spread out over time (especially test)

 The team can get "lesson learned" and

continuously improve the process

 Stakeholders gets concrete evidence of progress

11

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

21

Part II

Methodologies and Processes

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

22
We are using an iterative process!

Time

Define a plan with 1..N iterations. We do not have to

care about plans...

Harry
the hacker

Is this a good iterative process?

Methodologies

and defined

Processes

Of course not. We need some structure!

Now, let's hack!

12

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

23
Processes, Models, Methodologies...

Methodologies,

frameworks and

Processes

Process Models

Waterfall

model

V- model Spiral model

Prototype model

"what" at a high level

of abstaction

"what" and to a certain

level "how"

Rational Unified

Process (RUP)

Extreme Programming (XP)

Scrum

agile

Which is the "best"

approach?

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

24
Processes, Models, Methodologies...

Methodologies

and defined

Processes

Process Models

Waterfall

model

V- model Spiral model

Prototype model

"what" at a high level

of abstaction

"what" and to a certain

level "how"

Rational Unified

Process (RUP)

Extreme Programming (XP)

Scrum

agile methods

Question:

What is the difference between a methodologist

and a terrorist?

Answer:

You can negotiate with a terrorist.

13

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

25
Goals with a software development process

 Guidance about order and content

of team activities.

 Specify when and which artifact

that should be produced.

 Direct individual developers' tasks

and the team as a whole

 Give criteria for monitoring and

measuring activities and generated

products.

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

26
Agile Approaches - Agile Alliance

Manifesto for Agile Software development

Favor

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

(http://agilemanifesto.org, 2001)

Lightweight approaches to satisfy the customers with

"early and continuous delivery of valuable software"

14

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

27

Extreme Programming (XP)

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

28
Extreme Programming - Values and Principles

A lightweight methodology for vague or rapidly changing requirements

Values

Communication

Simplicity

Feedback

Changes need

feedback

Courage

"If you know what the problem

is, do something"

Respect

Practices

Principles

Mutual benefit

"win-win", automated

testing

Reflection

"How" and "why"

are we

working

Redundancy

If it fails. E.g. pair

programming.

Baby steps

"What is the least that you can do

that can be shown to be in

the right direction?"

15

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

29
Extreme Programming - Some Practices

Pair Programming

 Focus on task

 Clarify ideas

 Rotate frequently

Stories

 "requirements", but not

mandatory

 Name + short story

 On index cards (paper)

Continuous Integration

 Integrate and test often

 Automated build system

 Automated regression tests

(e.g. JUnit)

Test-First Programming

 Create tests before code

 Focus on interface and

"what is needed"

 Gets tests for free

Refactoring

 Behavior preserving

transformation

 Tool support, e.g. Eclipse

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

30

Scrum

16

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

31

Roles

• Team

• Product Owner

• Scrum master

Scrum Overview

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

32
The Sprint (1)

• An iteration

• Time-boxed

• 30 days or less

• No time between sprints

• 40 hours week

• Open and visible

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

17

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

33
The Sprint (1)

• An iteration

• Time-boxed

• 30 days or less

• No time between sprints

• 40 hours week

• Open and visible

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

34
The Team

• Cross functional

• No titles

• Self-organized

• 7 (5) plus minus two

• Develops, tests, documents etc.

in intervals - sprints

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

18

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

35
Product Owner

• One and only one person

• Prioritize and manage

the product backlog

• Manage ROI

• The customer ”interface”

The product owner may not

• act as a project manager

• tell when and what something should

be done

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

36
Scrum Master

• Make sure the scrum team adheres

Scrum values, practices and rules

• Run meetings

• Protects the team from disturbance

• Collects and removes obstacles

(Impediment list)

The scrum master may not

• Mange the scrum team -

the scrum team is self-organized

Scrum master cannot be product owner

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

19

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

37
Pigs and Chickens

• Scrum team members are ”pigs”

• Everyone else is a ”chicken”

• Chickens cannot tell ”pigs” how to do

their work

”A chicken and a pig are together when the

chicken says ”Let’s start a restaurant!”. The pig

thinks it over and says ”What would we call this

restaurant?” The chicken says ”Ham n’ Eggs!” The

pig says ”No thanks, I’d be committed, but you’d

only be involved!”

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

38
Product Backlog (2)

• List of product backlog items (PBI)

(approx. List of potential requirements)

• Prioritized

• Available

• Never complete

• Features, bug fixes,

documentation, tests etc.

• Value (PO) and estimates (Team)

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

20

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

39
Release planning meeting (3)

• Create the product backlog

• Initial meeting – break down product

into deliverables

• Small version, end of each sprint

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

40
Sprint planning meeting

Part 1 – ”What” (4)

• Break down top items

• Estimate product backlog

• Select PBIs for a sprint

• Time-boxed 4h

Part 2 - ”How” (5)

• Design

• Identify tasks (less than 1-2 days)

• Estimate tasks

• Output: Sprint backlog

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

21

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

41
Sprint Backlog (6)

• Consist of tasks

• Only track hours remaining,

not hours worked

• Not ordered

Tools

• Task board (PBI, todo, In process,

To verify, done)

• Burn-down chart (velocity)

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

42
Done

• When are we done?

Tools to support done

• Version handling (SCM)

• Automated build

• Automated tests

(Continuous integration)

• Possible to ship after each sprint

• Everybody – understand what

done means

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

22

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

43
Daily Scrum

• Stand-up meeting

• Every morning

• Time-boxed 15min

• 1 minute each person

• What did you do yesterday?

• What will you do today?

• What obstacles are in your way?

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

44
Impediment List

• List of obstacles

• Scrum Master’s backlog

• Daily update

• Open, visible and honest

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

23

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

45
Sprint review (8)

• Time-boxed 4h

• End of sprint

• Informal meeting – what has been done

• Demonstrate – no power points

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

46
Sprint retrospective (8)

• 3h, time-boxed

• Inspect the last sprint, regarding

• People

• Relationships

• Processes

• Tools

• How to make things better

– process improvements

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

24

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

47
SCRUM

Roles

• Team

• Product Owner

• Scrum master

Sprint, Task board, Burn-down chart, Done, Velocity

Lists

• Product backlog

• Sprint backlog

• Impediment list

Meetings

• Release planning

• Sprint planning

• Daily Scrum

• Sprint review

• Sprint retrospective

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

48

Rational Unified Process (RUP)

and OpenUP

25

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

49
Forerunner – the spiral model

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

50
Disciplines

Business Modeling

Requirements

Analysis and Design

Implementation

Test

Deployment

Change & Config. Mgm.

Project Mgm.

Environment.

Core

Technical

Disciplines

Core

Supporting

Disciplines

26

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

51
RUP- Phases and Milestones

Time

Inception

(10%) Transition

Inception

 Formulate scope

 Capture most important requirements

 Plan, risk, staffing, project plan

 Synthesize a candidate architecture

 The project may be cancelled after this phase

similar to a "Pre-study"

Life-cycle objective milestone

Phase

Milestone

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

52
RUP- Phases and Milestones

Time

Inception

(10%) Transition
Elaboration

(30%)

Elaboration

 Define architecture

 Specify requirements more precisely

 Executable architecture prototype

 Define project plan

Life-cycle architecture milestone

27

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

53
RUP- Phases and Milestones

Time

Inception

(10%) Transition
Elaboration

(30%)

Construction

(50%)

Construction

 Resource management and control

 Design, Implementation, and Testing

 Output (software + documentation) ready

for users.

Initial Operational Capability

milestone (beta-release)

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

54
RUP- Phases and Milestones

Time

Inception

(10%) Transition
Elaboration

(30%)

Construction

(50%)

Transition

(10%)

Transition

 Transition of the product to users

 Beta-testing

 Training of users and maintainers

 Rollout of the product to operational environment

Product release

milestone

28

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

55
RUP- Phases and Milestones

Time

Inception

(10%) Transition
Elaboration

(30%)

Construction

(50%)

Transition

(10%)

Was not RUP iterative???

I5 I6 I7I3 I4I2I1 I8 I9 I10 I11

Iterations within phasesInternal milestones and

releases

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

56
Disciplines and Phases

Business Modeling

Requirements

Analysis and Design

Implementation

Test

Deployment

Change & Config. Mgm.

Project Mgm.

Environment.

Core

Technical

Disciplines

Core

Supporting

Disciplines

Inception Elaboration Construction Transition

29

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

57
OpenUP vs. RUP

Differences to RUP

 Minimal – smaller than RUP

 Free and available

 Do not include some diciplinces,

e.g. Configuration management

Similarities to RUP

 The 4 faces (inception, elaboration,

construction, transition)

 Several defined artifacts: Arcitecture,

project plan, requirements etc.

Part I

Life Cycles and

Process Models

Kristian.Sandahl@

liu.se

Part II

Methodologies and Processes

58
OpenUP vs. Scrum

Differences to Scrum

 Use cases used to elicit

requirements

 Stabilized artifacts, e.g. Architecture

in construction phase

 Defined milestones after phases

 Include practices (e.g. test driven

development (TDD), continuous

integration etc.)

 More roles: Analyst, architect,

developer, project manager,

stageholder, tester, any role

Similarities to Scrum

 Self-organized teams

 Time-boxed iterations

 Daily stand-up meetings

 Work Item list (similar to PB)

 Testing within iterations

