Foundations of parallel algorithms

PRAM model

Time, work, cost

Self-simulation and Brent’s Theorem

Speedup and Amdahl’s Law

NC

Scalability and Gustafsson’s Law

Fundamental PRAM algorithms
 - reduction
 - parallel prefix
 - list ranking

PRAM variants, simulation results and separation theorems.

Survey of other models of parallel computation
 - Asynchronous PRAM, Delay model, BSP, LogP, LogGP

Literature

 Addison-Wesley, 1992.

[CLR] Cormen, Leiserson, Rivest: Introduction to Algorithms,

Survey article (see course homepage):
 PARS-Mitteilungen 24, Gesellschaft für Informatik, Dec. 2007, ISSN 0177-0454

Parallel computation models (1)

+ abstract from hardware and technology
+ specify basic operations, when applicable
+ specify how data can be stored

→ analyze algorithms before implementation
 independent of a particular parallel computer

→ focus on most characteristic (w.r.t. influence on time/space complexity)
 features of a broader class of parallel machines

Programming model

shared memory vs. message passing

degree of synchronous execution

Cost model

key parameters

cost functions for basic operations

constraints

Parallel computation models (2)

Cost model: should

+ explain available observations
+ predict future behaviour
+ abstract from unimportant details → generalization

Simplifications to reduce model complexity:

use idealized machine model
 ignore hardware details: memory hierarchies, network topology, ...

use asymptotic analysis
 drop insignificant effects

use empirical studies
 calibrate parameters, evaluate model
Flashback to DALG, Lecture 1: The RAM model

RAM (Random Access Machine) [PPP 2.1]
programming and cost model for the analysis of sequential algorithms

Algorithm analysis: Counting instructions
Example: Computing the global sum of N elements

$$s = d(0)$$
\[\text{do } i = 1, N-1 \text{ } \]
\[s = s + d(i) \]
\[\text{end do} \]

$$t = t_{load} + t_{store} + \sum_{i=2}^{N} (2t_{load} + t_{add} + t_{store} + t_{branch}) = 5N - 3 \in \Theta(N)$$

→ arithmetic circuit model, directed acyclic graph (DAG) model

PRAM model: Variants for memory access conflict resolution

Exclusive Read, Exclusive Write (EREW) PRAM
concurrent access only to different locations in the same cycle

Concurrent Read, Exclusive Write (CREW) PRAM
simultaneous reading from or single writing to same location is possible

Concurrent Read, Concurrent Write (CRCW) PRAM
simultaneous reading from or writing to same location is possible:

- Weak CRCW
- Common CRCW
- Arbitrary CRCW
- Priority CRCW
- Combining CRCW (global sum, max, etc.)

No need for ERCW ...
Global sum computation on EREW and Combining-CRCW PRAM (1)

Given \(n \) numbers \(x_0, x_1, \ldots, x_{n-1} \) stored in an array.

The global sum \(\sum_{i=0}^{n-1} x_i \) can be computed in \(\lceil \log_2 n \rceil \) time steps on an EREW PRAM with \(n \) processors.

Parallel algorithmic paradigm used: Parallel Divide-and-Conquer

Divide phase: trivial, time \(O(1) \)

Recursive calls: parallel time \(T(n/2) \)

with base case: load operation, time \(O(1) \)

Combine phase: addition, time \(O(1) \)

Use induction or the master theorem \([\text{CLR} \ 4] \rightarrow T(n) \in O(\log n)\)

Global sum computation on EREW and Combining-CRCW PRAM (2)

Recursive parallel sum program in the PRAM progr. language Fork [PPP]

```c
sync int parsum( sh int *d, sh int n)
{
    sh int s1, s2;
    sh int nd2 = n / 2;
    if (n==1) return d[0]; // base case
    $=rerank(); // re-rank processors within group
    if ($<nd2) // split processor group:
        s1 = parsum( d, nd2 );
    else s2 = parsum( &(d[nd2]), n-nd2 );
    return s1 + s2;
}
```

Global sum computation on EREW and Combining-CRCW PRAM (3)

Iterative parallel sum program in Fork

```c
int sum(sh int a[], sh int n) {
    int d, dd;
    int ID = rerank();
    d = 1;
    while (d<n) {
        dd = d; d = d*2;
        if (ID%d==0) a[ID] = a[ID] + a[ID+dd];
    }
}
```

On a Combining CRCW PRAM with addition as the combining operation, the global sum problem can be solved in a constant number of time steps using \(n \) processors.

```c
syncadd( &s, a[ID] ); //_procs ranked ID in 0...n-1
```

PRAM model: CRCW is stronger than CREW

Example:

Computing the logical OR of \(p \) bits

<table>
<thead>
<tr>
<th>CREW: time (O(\log p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 0 1 0 0 0 1</td>
</tr>
<tr>
<td>OR OR OR OR OR OR OR OR</td>
</tr>
<tr>
<td>1 1 0 1 1 1 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CRCW: time (O(1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>sh int a = 0;</td>
</tr>
<tr>
<td>if (mybit == 1) a = 1;</td>
</tr>
<tr>
<td>(else do nothing)</td>
</tr>
<tr>
<td>e.g. for termination detection</td>
</tr>
</tbody>
</table>
Analysis of parallel algorithms

(a) asymptotic analysis
 → estimation based on model and pseudocode operations
 → results for large problem sizes, large # processors

(b) empirical analysis
 → measurements based on implementation
 → for fixed (small) problem and machine sizes

Asymptotic analysis: Work and Time

parallel work \(w_A(n) \) of algorithm \(A \) on an input of size \(n \) is the max. number of instructions performed by all processors during execution of \(A \), where in each (parallel) time step as many processors are available as needed to execute the step in constant time.

parallel time \(t_A(n) \) of algorithm \(A \) on input of size \(n \) is the maximum number of parallel time steps required under the same circumstances. Work and time are thus worst-case measures.

\(t_A(n) \) is sometimes called the depth of \(A \) (cf. circuit model, DAG model of (parallel) computation)

\[
p_i(n) = \text{number of processors needed in time step } i, \quad 0 \leq i < t_A(n),
\]

to execute the step in constant time. Then,

\[
w_A(n) = \sum_{i=0}^{t_A(n)} p_i(n)
\]

Asymptotic analysis: Cost, cost optimality

Algorithm \(A \) needs \(p_A(n) = \max_{1 \leq i \leq t_A(n)} p_i(n) \) processors.

Cost \(c_A(n) \) of \(A \) on an input of size \(n \) is the processor-time product:

\[
c_A(n) = p_A(n) \cdot t_A(n)
\]

\(A \) is cost-optimal if \(c_A(n) = O(t_S(n)) \) with \(S \) = optimal or currently best known sequential algorithm for the same problem

Work \(\leq \) Cost: \(w_A(n) = O(c_A(n)) \)

\(A \) is cost-effective if \(w_A(n) = \Theta(c_A(n)) \).
Asymptotic analysis for global sum computation

- **Problem size** \(n \)
- **# processors** \(p \)
- **time** \(t(p,n) \)
- **work** \(w(p,n) \)
- **cost** \(c(p,n) = t \cdot p \)

Example: seq. sum algorithm

<table>
<thead>
<tr>
<th>Time</th>
<th>(p)</th>
<th>(s, a(1))</th>
<th>(s = s + a(i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(p)</td>
<td>(a(1))</td>
<td>(a(2))</td>
</tr>
<tr>
<td>2</td>
<td>(1)</td>
<td>(a(2))</td>
<td>(a(3))</td>
</tr>
<tr>
<td>3</td>
<td>(p)</td>
<td>(a(3))</td>
<td>(a(4))</td>
</tr>
<tr>
<td>4</td>
<td>(1)</td>
<td>(a(4))</td>
<td>(a(5))</td>
</tr>
<tr>
<td>5</td>
<td>(p)</td>
<td>(a(5))</td>
<td>(a(6))</td>
</tr>
<tr>
<td>6</td>
<td>(1)</td>
<td>(a(6))</td>
<td>(a(7))</td>
</tr>
<tr>
<td>7</td>
<td>(p)</td>
<td>(a(7))</td>
<td>(a(8))</td>
</tr>
</tbody>
</table>

Time:
- \(t(1,n) = t_{\text{seq}}(n) = O(n) \)
- \(t(n,n) = O(\log n) \)

Work:
- \(w(1,n) = O(n) \)
- \(w(n,n) = O(n) \)

Cost:
- \(c(1,n) = t(1,n) \cdot 1 = O(n) \)
- \(c(n,n) = O(n \log n) \)

Cost of parallel sum algorithm: not cost-effective!

Self-simulation and Brent’s Theorem

Self-simulation (aka work-time scheduling in [JaJa’92])

A model of parallel computation is self-simulating if a \(p \)-processor machine can simulate one time step of a \(q \)-processor machine in \(O([q/p]) \) time steps.

All PRAM variants are self-simulating.

Proof idea for (EREW) PRAM with \(p \leq q \) simulating processors:
- Divide the \(q \) simulated processors in \(p \) chunks of size \(\leq [q/p] \)
- assign a chunk to each of the \(p \) simulating processors
- map memory of simulated PRAM to memory of simulating PRAM
- step-by-step simulation, with \(O(q/p) \) steps per simulated step
- take care of pending memory accesses in current simulated step
- extra space \(O(q/p) \) for registers and status of the simulated machine

Trading concurrency for cost-effectiveness

Making the parallel sum algorithm cost-optimal:

Instead of \(n \) processors, use only \(n/\log n \) processors.

First, each processor computes sequentially the global sum of “its” \(\log n \) local elements. This takes time \(O(\log n) \).

Then, they compute the global sum of \(n/\log n \) partial sums using the previous parallel sum algorithm.

Time: \(O(\log n) \) for local summation, \(O(\log n) \) for global summation
Cost: \(n/\log n \cdot O(\log n) = O(n) \) linear!

This is an example of a more general technique based on Brent’s theorem.

Consequences of self-simulation

RAM = 1-processor PRAM simulates \(p \)-processor PRAM in \(O(p) \) time steps.

\[\Rightarrow \text{RAM simulates } A \text{ with cost } c_A(n) = p_A(n) t_A(n) \text{ in } O(c_A(n)) \text{ time.} \]

(Actually possible in \(O(w_A(n)) \) time.)

Even with arb. many processors \(A \) cannot be simulated any faster than \(t_A(n) \).

For cost-optimal \(A \), \(c_A(n) = \Theta(t_A(n)) \)

\[\Rightarrow \text{Exercise} \]

\(p \)-processor PRAM can simulate one step of \(A \) requiring \(p_A(n) \) processors in \(O(p_A(n)/p) \) time steps

Self-simulation emulates virtual processors with significant overhead.

In practice, other mechanisms for adapting the granularity are more suitable.

How to avoid simulation of inactive processors where \(c_A(n) = \omega(w_A(n)) \)?
Brent’s Theorem

Brent’s theorem: [Brent’74]
Any PRAM algorithm \(A \) which runs in \(t_A(n) \) time steps and performs \(w_A(n) \) work can be implemented to run on a \(p \)-processor PRAM in
\[O\left(\frac{t_A(n) + w_A(n)}{p}\right) \]
time steps.

Proof: see [PPP p.41]

Algorithm design issue: Balance the terms for cost-effectiveness:
\(\rightarrow \) design \(A \) with \(p_A(n) \) processors such that \(w_A(n)/p_A(n) = O(t_A(n)) \)

Note: Proof is non-constructive!
\(\rightarrow \) How to determine the active processors for each time step?
\(\rightarrow \) language constructs, dependence analysis, static/dynamic scheduling, ...

Relative Speedup and Efficiency

Compare \(A \) with \(p \) processors to itself running on 1 processor:

The asymptotic relative speedup of a parallel algorithm \(A \) is the ratio
\[SU_{\text{rel}}(p,n) = \frac{t_A(1,n)}{t_A(p,n)} \]

\[t_s(n) \leq t_A(1,n) \rightarrow SU_{\text{rel}}(p,n) \geq SU_{\text{abs}}(p,n). \]

[PPP p.44 typo!]

Preferably used in papers on parallelization to “nice” performance results.

The relative efficiency of parallel algorithm \(A \) is the ratio
\[\text{EF}(p,n) = \frac{t_A(1,n)}{p \cdot t_A(p,n)} \]

\[\text{EF}(p,n) = SU_{\text{rel}}(p,n)/p \in [0,1] \]

Absolute Speedup

A parallel algorithm for problem \(P \)
\(S \) asymptotically optimal or best known sequential algorithm for \(P \).
\(t_A(p,n) \) worst-case execution time of \(A \) with \(p \leq p_A(n) \) processors
\(t_S(n) \) worst-case execution time of \(S \)

The absolute speedup of a parallel algorithm \(A \) is the ratio
\[SU_{\text{abs}}(p,n) = \frac{t_S(n)}{t_A(p,n)} \]

If \(S \) is an optimal algorithm for \(P \), then
\[SU_{\text{abs}}(p,n) = \frac{t_S(n)}{t_A(p,n)} \leq p \frac{t_S(n)}{c_A(n)} \leq p \]
for any fixed input size \(n \), since \(t_S(n) \leq c_A(n) \).

A cost-optimal parallel algorithm \(A \) for a problem \(P \) has linear absolute speedup.
This holds for \(n \) sufficiently large.
“Superlinear” speedup \(> p \) may exist only for small \(n \).

Speedup curves

Speedup curves measure the utility of parallel computing, not speed.

(trivially parallel)
(e.g., matrix product, LU decomposition, ray tracing)
\(\rightarrow \) close to ideal \(S = p \)

work-bound algorithms
\(\rightarrow \) linear \(SU \in \Theta(p) \), work-optimal

tree-like task graphs
(e.g., global sum / max)
\(\rightarrow \) sublinear \(SU \in \Theta(p/log p) \)

communication-bound
\(\rightarrow \) sublinear \(SU = 1/f(n,p) \)

Most papers on parallelization show only relative speedup
(as \(SU_{\text{abs}} \leq SU_{\text{rel}} \), and best seq. algorithm needed for \(SU_{\text{abs}} \))
Speedup anomalies

Speedup anomaly:
An implementation on \(p \) processors may execute faster than expected.

Superlinear speedup
speedup function that grows faster than linear, i.e., in \(\omega(p) \)

Possible causes:
- cache effects
- search anomalies

Real-world example: move scaffolding

Speedup anomalies may occur only for fixed (small) range of \(p \).

Theorem:
There is no absolute superlinear speedup for arbitrarily large \(p \).

Visualization of Amdahl’s Law

![Amdahl's Law Visualization](image)

Proof of Amdahl’s Law

\[
SU_{rel} = \frac{T(1)}{T(p)} = \frac{T(1)}{T_{A'} + T_{A'}(p)}
\]

Assume perfect parallelizability of the parallel part \(A' \),
that is, \(T_{A'}(p) = (1 - \beta)T(p) = (1 - \beta)T(1)/p \):

\[
SU_{rel} = \frac{T(1)}{\beta T(1) + (1 - \beta)T(1)/p} = \frac{p}{\beta p + 1 - \beta} \leq 1/\beta
\]

Remark:
For most parallel algorithms the sequential part is not a fixed fraction.
Remarks on Amdahl’s Law

Not limited to speedup by parallelization only!
Can also be applied with other optimizations
 e.g. SIMDization, instruction scheduling, data locality improvements, ...

Amdahl’s Law, general formulation:
If you speed up a fraction \((1 - \beta)\) of a computation by a factor \(p\),
the overall speedup is \(\frac{p}{\beta} + (1 - \beta)\), which is < \(\frac{1}{\beta}\).

Implications
- Optimize for the common case.
 If \(1 - \beta\) is small, optimization has little effect.
- Ignored optimization opportunities (also) limit the speedup.
 As \(p \to \infty\), speedup is bounded by \(\frac{1}{\beta}\).

NC - Some remarks

Are the problems in \(\mathcal{NC}\) just the well-parallelizable problems?
Counterexample: Searching for a given element in an ordered array
 sequentially solvable in logarithmic time (thus in \(\mathcal{NC}\))
 cannot be solved significantly faster in (EREW)-parallel [PPP 2.5.2]

Are \(\mathcal{NC}\)-algorithms always a good choice?
Time \(\log^3 n\) is faster than time \(n^{1/4}\) only for ca. \(n > 10^{12}\).

Is \(\mathcal{NC} = \mathcal{P}\)?
For some problems in \(\mathcal{P}\) no polylogarithmic PRAM algorithm is known
 \(\Rightarrow\) likely that \(\mathcal{NC} \neq \mathcal{P}\)
 \(\Rightarrow\) \(\mathcal{NC}\)-completeness [PPP p. 46]
For machine N with $p \leq p_A(n)$,
we have $t_s(p,n) = O(c_A(n)/p)$ and thus $SU_{\text{abs}}(p,n) = \frac{T_s^M(n)}{c_A(n)}$.

\rightarrow linear speedup for cost-optimal A

\rightarrow “well scalable” (in theory) in range $1 \leq p \leq p_A(n)$

\rightarrow For fixed n, no further speedup beyond $p_A(n)$

For realistic problem sizes (small n, small p): often sublinear!
- communication costs (non-PRAM) may increase more than linearly in p
- sequential part may increase with p – not enough work available

\rightarrow less scalable

What about scaling the problem size n with p to keep speedup?

Gustafsson’s Law

Revisit Amdahl’s law:
assumes that sequential work A^s is a constant fraction β of total work.
\rightarrow when scaling up n, $w_{A^s}(n)$ will scale linearly as well!

Gustafsson’s Law [Gustafsson’88]

Assuming that the sequential work is constant (independent of n),
given by seq. fraction α in an unscaled (e.g., size $n = 1$ (thus $p = 1$)) problem such that $T_k = \alpha T_1[1]$, $T_{A^p} = (1 - \alpha)T_1[1]$,
and that $w_{A^p}(n)$ scales linearly in n,
the scaled speedup for $n > 1$ is predicted by

$$SU_{\text{rel}}(n) = \frac{T_k(1)}{T_k(n)} = \frac{T_k + w_{A^p}(n)}{T_k + T_{A^p}}$$

assuming perfect parallelizability
of A^p up to $p = n$ processors

$$SU_{\text{rel}}(n) = \frac{\alpha(1 - \alpha)n}{(1 - \alpha)(1/n)} = n - (n - 1)\alpha.$$

The seq. part is assumed to be replicated over all processors.

Yields better speedup predictions for data-parallel algorithms.
Fundamental PRAM algorithms

- **reduction**: see parallel sum algorithm
- **prefix-sums**
- **list ranking**

Oblivious (PRAM) algorithm: [JaJa 4.4.1]
control flow (→ execution time) does not depend on input data.

Oblivious algorithms can be represented as arithmetic circuits whose shape only depends on the input size.

Examples: reduction, (parallel) prefix, pointer jumping;
-sorting networks, e.g. bitonic-sort [CLR'90 ch. 28], mergesort

Counterexamples: (parallel) quicksort

The Prefix-sums problem

Given: a set \(S \) (e.g., the integers)
a binary associative operator \(\oplus \) on \(S \),
a sequence of \(n \) items \(x_0, \ldots, x_{n-1} \in S \)
compute the sequence \(y \) of **prefix sums** defined by

\[
y_i = \bigoplus_{j=0}^{i} x_j \quad \text{for } 0 \leq i < n
\]

An important building block of many parallel algorithms! [Blelloch’89]

typical operations \(\oplus \):
integer addition, maximum, bitwise **AND**, bitwise **OR**

Example:
bank account: initially 0$, daily changes \(x_0, x_1, \ldots \) → daily balances: \((0, x_0, x_0 + x_1, x_0 + x_1 + x_2, \ldots)\)

Sequential prefix sums computation

```c
void seq_prefix( int x[], int n, int y[] )
{
    int i;
    int ps; // i'th prefix sum
    if (n>0) ps = y[0] = x[0];
    for (i=1; i<n; i++) {
        ps += x[i];
        y[i] = ps;
    }
}
```

if run in parallel on \(n \) processors:
time \(\Theta(n) \), work \(\Theta(n) \), cost \(\Theta(n^2) \)

Task dependence graph:
linear chain of dependences

→ seems to be inherently sequential — how to parallelize?

Parallel prefix sums (1)

Naive parallel implementation:
apply the definition,

\[
y_i = \bigoplus_{j=0}^{i} x_j \quad \text{for } 0 \leq i < n
\]

and assign one processor for computing each \(y_i \)

→ parallel time \(\Theta(n) \), work and cost \(\Theta(n^2) \)

But we observe:
a lot of redundant computation (common subexpressions)

Idea: Exploit associativity of \(\oplus \) ...
Algorithmic technique: **parallel divide & conquer**

We consider the simplest variant, called **Upper/lower parallel prefix**:

recursive formulation:

\[
\text{N-prefix is computed as}
\]

\[
\begin{array}{c}
\text{0} & \text{1} & \text{2} & \text{3} & \text{4} & \text{5} & \text{6} & \text{7} \\
\end{array}
\]

Parallel time: \(\log n \) steps, work: \(n/2 \log n \) additions, cost: \(\Theta(n \log n) \)

Not work-optimal! … and needs concurrent read

Rework lower-upper prefix sums algorithm for exclusive read:

iterative formulation

in data-parallel pseudocode:

\[
\begin{array}{l}
\text{real } a : \text{array}[0..N-1]; \\
\text{int stride;} \\
\text{stride } \leftarrow 1; \\
\text{while stride } < N \text{ do} \\
\hspace{1cm} \text{forall } i : [0..N-1] \text{ in parallel do} \\
\hspace{2cm} \text{if } i \ge \text{stride} \text{ then} \\
\hspace{3cm} a[i] \leftarrow a[i-\text{stride}] + a[i]; \\
\hspace{1cm} \text{stride } := \text{stride } \times 2; \\
\end{array}
\]

Work: \(\Theta(n \log n) \) :

Not cost-optimal! But may use Brent’s theorem...
Parallel prefix (3)

Ladner/Fischer parallel prefix

[Ladner/Fischer’80]
combines advantages of upper-lower and odd-even parallel prefix

EREW, time $\log n$ steps, work $4n - 4.96n^{0.69} + 1$, cost $\Theta(n \log n)$

can be made cost-optimal using Brent’s theorem, using $\Theta(n/\log n)$ processors only

The prefix-sums problem can be solved on a $n/\log n$-processor EREW PRAM in $\Theta(\log n)$ time steps and cost $\Theta(n)$.

List ranking

Extended problem: compute the $\text{rank} =$ distance to the end of the list

Pointer jumping

[Wyllie’79]

EREW

1 step:

to my own distance value, I add distance of my \to next that I splice out of the list

Every step
+ doubles #lists
+ halves lengths

$\Rightarrow [\log_2 n]$ steps

Not work-efficient!

Towards List Ranking

Parallel list: (unordered) array of list items (one per proc.), singly linked

Problem: for each element, find the end of its linked list.

Algorithmic technique:
recursive doubling, here:
“pointer jumping” [Wyllie’79]

The algorithm in pseudocode:

forall k in $[1..N]$ in parallel do
 $\text{chum}[k] \leftarrow \text{next}[k]$;
 while $\text{chum}[k] \neq \text{null}$ and $\text{chum}[\text{chum}[k]] \neq \text{null}$ do
 $\text{chum}[k] \leftarrow \text{chum}[\text{chum}[k]]$;
 od
od

lengths of chum lists halved in each step
$\Rightarrow [\log N]$ pointer jumping steps

List ranking (2): Pointer jumping

NULL-checks can be avoided by marking list end by a self-loop.

Implementation in Fork:

sync wyllie(sh LIST list[], sh int length)
{
 LIST *e; // private pointer
 int nn;

 e = list[$$]; // $$ is my processor index
 if (e->next != e) e->rank = 1; else e->rank = 0;
 nn = length;
 while (nn>1) {
 e->rank = e->rank + e->next->rank;
 e->next = e->next->next;
 nn = nn>>1; // division by 2
 }
}

Also for parallel prefix on a list!

→ Exercise
CREW is more powerful than EREW

Example problem:
Given a directed forest, compute for each node a pointer to the root of its tree.

CREW: with pointer-jumping technique in $\lceil \log_2 \text{max. depth} \rceil$ steps
- e.g. for balanced binary tree: $O(\log \log n)$; an $O(1)$ algorithm exists

EREW: Lower bound $\Omega(\log n)$ steps
- per step, one given value can be copied to at most 1 other location
- e.g. for a single binary tree:
 - after k steps, at most 2^k locations can contain the identity of the root
 - A $\Theta(\log n)$ EREW algorithm exists.

Simulation summary

EREW \prec CREW \prec CRCW

Common CRCW \prec Priority CRCW

Arbitrary CRCW \prec Priority CRCW

where \prec: “strictly weaker than” (transitive)

See [PPP p.68/69] for more separation results.

Simulating a CRCW algorithm with an EREW algorithm

A p-processor CRCW algorithm can be no more than $O(\log p)$ times faster than the best p-processor EREW algorithm for the same problem.

Step-by-step simulation [Vishkin’83]

For Weak/Common/Arbitrary CRCW PRAM:
- handle concurrent writes with auxiliary array A of pairs.
- CRCW processor i should write x_i into location l_i;
- EREW processor i writes (l_i, x_i) to $A[i]$
- Sort A on p EREW processors by first coordinates in time $O(\log p)$ [Ajtai/Komlos/Szemeredi’83], [Cole’88]
- Processor j inspects write requests $A[j] = (l_k, x_k)$ and $A[j - 1] = (l_q, x_q)$ and assigns x_k to l_k if $l_k \neq l_q$ or $j = 0$.

For Combining (Maximum) CRCW PRAM: see [PPP p.66/67]

PRAM Variants [PPP 2.6]
- Broadcasting with selective reduction (BSR) PRAM
- Distributed RAM (DRAM)
- Local memory PRAM (LPRAM)
- Asynchronous PRAM
- Queued PRAM (QRQW PRAM)
- Hierarchical PRAM (H-PRAM)

Message passing models:
- Delay model, BSP, LogP, LogGP → Lecture 4
Broadcasting with selective reduction (BSR)

BSR: generalization of a Combine CRCW PRAM

1 BSR write step:
- Each processor can write a value to all memory locations (broadcast)
- Each memory location computes a global reduction (max, sum, ...) over a specified subset of all incoming write contributions (selective reduction)

Asynchronous PRAM

Asynchronous PRAM

Delay model

Idealized multicomputer: point-to-point communication costs time \(t_{\text{msg}} \).

Cost of communicating a larger block of \(n \) bytes:
- \(t_{\text{msg}}(n) = \text{sender overhead} + \text{latency} + \text{receiver overhead} + n/\text{bandwidth} \)
- \(t = t_{\text{startup}} + n \cdot t_{\text{transfer}} \)

Assumption: network not overloaded; no conflicts occur at routing
- \(t_{\text{startup}} = \text{startup time (time to send a 0-byte message)} \)
 - accounts for hardware and software overhead
- \(t_{\text{transfer}} = \text{transfer rate, send time per word sent} \)
 - depends on the network bandwidth.

BSP model

Bulk-synchronous parallel programming

BSP computer = abstract message passing architecture \((p, L, g, s)\)

MIMD

SPMD

\(h \)-relation models communication pattern / volume
- \(h \) [words] = comm. fan-in, fan-out of \(P \)
- \(h = \max_{1 \leq i \leq p} h_i \)
- \(t_{\text{step}} = w + hg + L \)

BSP program = sequence of supersteps, separated by (logical) barriers
BSP example: Global maximum computation (non-optimal algorithm)

Compute maximum of \(n \) numbers \(A[0,\ldots,n-1] \) on \(\text{BSP}(p,L,g,s) \):

\[
// A[0..n-1] \text{ distributed block-wise across } p \text{ processors}
\]

\[
\text{step}\]

\[
// \text{local computation phase:}
\]

\[
m \leftarrow -\infty;
\]

\[
\text{for all } A[i] \text{ in my } \text{local partition of } A \{\}
\]

\[
m \leftarrow \max (m, A[i]);
\]

\[
// \text{communication phase:}
\]

\[
\text{if myPID \neq 0}
\]

\[
\text{send} (m, 0);
\]

\[
\text{else} // \text{on } P_0
\]

\[
\text{for each } i \in \{1,\ldots,p-1\}
\]

\[
\text{recv} (m, i);
\]

\[
\text{step}\]

\[
\text{if myPID = 0}
\]

\[
\text{for each } i \in \{1,\ldots,p-1\}
\]

\[
m \leftarrow \max (m, m_i);
\]

\[
\text{Local work:}
\]

\[
\Theta(n/p)
\]

\[
\text{Communication:}
\]

\[
h = p - 1
\]

\[
(P_0 \text{ is bottleneck})
\]

\[
t_{\text{com}} = w + hg + L
\]

\[
= \Theta \left(\frac{n}{p} + pg + L \right)
\]

LogP model (1)

LogP model

for the cost of communicating small messages (a few bytes)

4 parameters:

- latency \(L \)
- overhead \(o \)
- gap \(g \) (models bandwidth)
- processor number \(p \)

abstracts from network topology

\(g = \text{inverse network bandwidth per processor:} \)

Network capacity is \(L/g \) messages to or from each processor.

\(L, o, g \) typically measured as multiples of the CPU cycle time.

transmission time for a small message:

\[2 \cdot o + L \] if the network capacity is not exceeded

LogP model (2)

Example: Broadcast on a 2-dimensional hypercube

With example parameters \(p = 4, \quad o = 2\mu s, \quad g = 3\mu s, \quad L = 5\mu s \)

Communication of an \(n \)-word-block:

\[
t_n = (n - 1)g + L + 2o
\]

\[
t_n = o + (n - 1)G + L + o
\]
Summary

Parallel computation models
- Shared memory: PRAM, PRAM variants
 - much simplified and idealized — study upper bounds of parallelism
- Message passing: Delay model, BSP, LogP, LogGP
- Analysis: parallel time, work, cost
- Use simpler models (PRAM, Delay, BSP) early in design

Parallel algorithmic paradigms (up to now)
- Parallel divide-and-conquer
 - (includes reduction and pointer jumping / recursive doubling)
- Data parallelism

Fundamental parallel algorithms
- Global sum
- Prefix sums
- List ranking
- Broadcast