
TDDD56 Multicore and GPU Programming 2012

Theory Exercises

Exercise 1

Consider a simple uniprocessor system with no caches. How does register allocation (applied by
the compiler) affect memory consistency? Which language feature of C allows you to enforce
sequential consistency for a variable?

Exercise 2

Assume that shared variables x and y happen to be placed in the same memory block (cache line)
of a cache-based, bus-based shared memory system. Consider a program executed by 2 processors
P1 and P2, each executing a loop with n iterations where processor P1 reads variable x in each
iteration of its loop and processor P2 concurrently writes y in each iteration. There is no synchro-
nization between loop iterations or between reads and writes, i.e., the read and write accesses will
be somehow interleaved over time.

(a) Using the M(E)SI write-invalidate coherence protocol, how many invalidation requests are to
be sent if sequential consistency is to be enforced?

(b) Show how thrashing can be avoided by using a relaxed memory consistency model.

Exercise 3

Consider a superscalar RISC processor running at 2 GHz. Assume that the average CPI (clock
cycles per instruction) is 1. Assume that 15% of all instructions are stores, and that each store
writes 8 bytes of data. How many processors will a 4-GB/s bus be able to support without becoming
saturated?

Exercise 4

Give high-level CREW and EREW PRAM algorithms for copying the value of memory location
M[1] to memory locations M[2], ...,M[n+1]. Analyze their parallel time, work and cost with p≤ n
processors. What is the asymptotic speedup over a straightforward sequential implementation?

Exercise 5

On a RAM the maximum element in an array of n real numbers can be found in O(n) time. We
assume for simplicity that all n elements are pairwise different.

(a) Give an EREW PRAM algorithm that finds the maximum element in time Θ(logn). How
many processors do you need at least to achieve this time bound?



What is the work and the cost of this algorithm? Is this algorithm cost-effective with n
processors? With n/ logn processors?

(b) Give an algorithm for a Common CRCW PRAM with n2 processors that computes the max-
imum element in constant time.

(Hint: Arrange the processors conceptually as a n×n grid to compare all n2 comparisons of
pairs of elements simultaneously. An element that is smaller in such a comparison cannot be
the maximum. Use the concurrent write feature to update the entries in an auxiliary boolean
array m of size n appropriately, such that finally holds m[i] = 1 iff array element i is the
maximum element. Given m, the maximum location i can be determined in parallel using n
processors.)

What is the work and the cost of this algorithm? Is this algorithm cost-effective?

Further reading on the maximum problem:

Any CREW PRAM algorithm for the maximum of n elements takes Ω(logn) time.
See [Cook/Dwork/Reischuk SIAM J. Comput. 1986]

There exist CRCW PRAM algorithms for n processors that take O(log logn) time.
See [Valiant SIAM J. Comput. 1975, Shiloach/Vishkin J. Algorithms 1981]

Exercise 6

Show that the cost of a cost-optimal parallel algorithm A is of the same order of magnitude as the
work of the optimal sequential algorithm S: cA(n) = Θ(tS(n)).

Exercise 7

Give a O(logn) time algorithm for computing parallel prefix sums on a parallel list. (Hint: Use the
pointer doubling technique.)
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Algorithm FFT ( array x[0..n−1] )
returns array y[0..n−1]

{
if n = 2 then

y[0]← x[0]+ x[1]; y[1]← x[0]− x[1];
else

allocate temporary arrays u, v, r, s
of n/2 elements each;

for l in { 0.. n/2-1} do
u[l]← x[l]+ x[l +n/2];
v[l]← ωl ∗ (x[l]− x[l +n/2]);

od
r← FFT ( u[0..n/2−1] );
s← FFT ( v[0..n/2−1] );
for i in { 0.. n-1} do

if i is even then y[i]← r[i/2] fi
if i is odd then y[i]← s[(i−1)/2] fi

od
fi
return y[0..n−1]

}
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Figure 1: The sequential FFT algorithm.

Exercise 8 (from the main exam 2011)

The Fast-Fourier-Transform (FFT) is a (sequential) algorithm for computing the Discrete Fourier
Transform of an array x of n elements (usually, complex numbers) that might represent sampled
input signal values, and a special complex number ω that is a nth root of unit, i.e., wn = 1. The
result y is again an array of n elements, now representing amplitude coefficients in the frequency
domain for the input signal x. Assume for simplicity that n is a power of 2. A single complex
addition, subtraction, multiplication and copy operation each take constant time.

Figure 1 shows the pseudocode of a recursive formulation of the FFT algorithm and gives a graph-
ical illustration of the data flow in the algorithm.

1. Which fundamental algorithmic design pattern is used in the FFT algorithm?

2. Identify which calculations could be executed in parallel, and sketch a parallel FFT algorithm
for n processors in pseudocode (shared memory).

3. Analyze your parallel FFT algorithm for its parallel execution time, parallel work and paral-
lel cost (each as a function in n, using big-O notation) for a problem size n using n processors.
(A solid derivation of the formulas is expected.)

4. Is your parallel FFT algorithm work-optimal? Justify your answer (formal argument).

5. How would you adapt the algorithm for p < n processors cost-effectively?
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