An Introduction to Computational Geometry. Page 1 C. Kessler, IDA, Linkspings Universitet, 2002

An Introduction to Computational Geometry

Contents:
1. General introduction, application areas, literature
2. Survey of typical problems in computational geometry

3. Problem solution technique Plane Sweep

3.1 Computing the tightest pair of n points in the plane
3.2 Intersection of n line segments in the plane
3.3 Intersection of two polygons

An Introduction to Computational Geometry. Page 3 C. Kessler, IDA, Linkdpings Universitet, 2002.

Applications

e Robotics
€.g. motion planning, orientation in unknown environment
e Computer aided geometric design
e.g. computing intersection / union of geometric objects
e Geographic information systems (GIS)
e.g. combining maps, queries with combinations of geometric properties
e Computer graphics
e.g. visibility of 3D objects, ray tracing, radiosity
e Others
e.g. molecular modeling, pattern/character recognition

An Introduction to Computational Geometry. Page 2

COMPUTATIONAL GEOMETRY

C. Kessler, IDA, Linkdpings Universitet, 2002.

(since ca. 1975)

e Development of efficient and practical algorithms
for the solution of geometric problems

e Determining the algorithmic complexity of geometric problems

An Introduction to Computational Geometry. Page 4 C. Kessler, IDA, Linkdpings Universitet, 2002.

Focus

e algorithmic core problems
e.g. convex hull of n points in the plane,
finding the closest of n points; ...

e data structures for efficient retrieval of geometric data
e.g. k-dimensional search trees

e algorithmic techniques

e.g. plane sweep, divide-and-conquer, randomized incremental construction,
geometric transformation, domain decomposition

e degeneracies and robustness
e.g. collinear points, roundoff-errors, ...

An Introduction to Computational Geometry. Page 5 C. Kessler, IDA, Linkdpings Universitet, 2002.

Literature (1)

e de Berg, van Kreveld, Overmars, Schwarzkopf:
Computational Geometry, Algorithms and Applications, Second Edition.
Springer, 2001.
http://ww. cs. uu. nl / geobook/

¢ J. Goodman and J. O'Rourke (eds.):
The Handbook of Discrete and Computational Geometry.
CRC Press, 1997

e J. Sack, J. Urrutia:
Handbook of Computational Geometry.
Elsevier, 1997

e M. Laszlo:
Computational Geometry and Computer Graphics in C++.
Prentice Hall, 1996

An Introduction to Computational Geometry. Page 7 C. Kessler, IDA, Linkapings Universitet, 2002

Literature (3)

Journals
Discrete Comp. Geometry, Comp. Geom. Theory Appl.,
J. Algorithms, Algorithmica, Acta Informatica, J.ACM, SIAM J. Comput.,

Conferences
ACM Symp. on Comput. Geom., ACM/SIAM Symp. on Discrete Algorithms,

Web resources

e LEDA library of efficient data structures and algorithms, Univ. Saarbricken
e CGAL computational geometry algorithms library, Univ. Saarbriicken

An Introduction to Computational Geometry. Page 6 C. Kessler, IDA, Linkdpings Universitet, 2002

Literature (2)

The classic textbooks on computational geometry:

e F. Preparata, M. Shamos: Computational Geometry. Springer, 1985

e K. Mehlhorn: Multi-dimensional Searching and Computational Geometry.
Springer, 1984

e R. Edelsbrunner: Algorithms in Combinatorial Geometry. Springer, 1987.

e K. Mulmuley: Computational Geometry: An Introduction through Randomized
Algorithms. Prentice Hall, 1993.

In german language:

e Rolf Klein: Algorithmische Geometrie. Addison Wesley, 1997

Survey papers:

¢ J. Matousek: Geometric Range Searching. ACM Computing Surveys 26(4),
1994.

An Introduction to Computational Geometry. Page 8 C. Kessler, IDA, Linkdpings Universitet, 2002.

Some Typical Problems in Computational Geometry (1)

Tightest pair of n points in the plane

y
o“w ,,,,, °p
of °p *n;
oUm o&
°R
OUo
® bpo
.U_ X

given n points py, ..., Py in the plane R?

determine minimum distance of two points p;, p;, 1<i< j<n,
and (maybe) pair (pi, pj)

An Introduction to Computational Geometry. Page 9

Some Typical Problems in Computational Geometry (2)

C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments in the plane

given: nline segments S= {s =[ir;,i = 1,...,n} (incl. endpoints) in the plane

compute: all k proper intersection points (no end point of a segment)

An Introduction to Computational Geometry. Page 11

Some Typical Problems in Computational Geometry (4)

C. Kessler, IDA, Linkdpings Universitet, 2002.

Multidimensional search structures
e.g. for interval queries, rectangular range queries

k-dimensional search tree / BSP tree
quadtree, octree

priority search tree

segment tree

static / dynamic

An Introduction to Computational Geometry. Page 10 C. Kessler, IDA, Linkdpings Universitet, 2002.

Some Typical Problems in Computational Geometry (3)

Intersection of two polygons

Intersection PN Q in general not contiguous
= set of polygons Dj, i = 1,...,r

An Introduction to Computational Geometry. Page 12 C. Kessler, IDA, Linkdpings Universitet, 2002.

Some Typical Problems in Computational Geometry (5)

Convex Hull of n points in R?
given: set Sof n points p; = (x,Y) €R?% i=1,...,n
compute the convex hull ch(S) of S

ch(9= () K

KDSK' convex

= the smallest convex set containing S.

Analogy: nails and rubberband

An Introduction to Computational Geometry. Page 13 C. Kessler, IDA, Linkdpings Universitet, 2002.

Some Typical Problems in Computational Geometry (6)

Lower bound for computing the convex hull of n points in R?

Computing ch(S) needs time Q(nlogn).

Reduction to sorting of n real numbers:

Let A be an arbitrary algorithm that
computes the convex hull.

Given n real numbers Xq, ..., X,
Set S={pi = (x,¥?): i=1,..,n}
With A construct ch(S): all p; appear as vertices!

Linear traversal of the vertices of ch(S), starting at the p; with least x-coordinate,
yields a sorted sequence of the x; in linear time.

If A were faster than O(nlogn) we could accordingly sort faster, contradiction!

An Introduction to Computational Geometry. Page 15 C. Kessler, IDA, Linkspings Universitet, 2002

Some Typical Problems in Computational Geometry (8)

Voronoi diagram

simplest case:
VD for a set S of n points py,..., pn in the
plane R?

\oronoi region of a point p; € S
subset of points in R? that are closer to p;
than to any other p; € S

Voronoi diagram VD(S) is a graph (Voronoi nodes, Voronoi edges)

Voronoi nodes: points in R? that have minimum distance to > 2 points of S
Voronoi edges: points in R? that have minimum dist. to exactly 2 points of S

For |§ = n has VD(S) O(n) Voronoi hodes and O(n) Voronoi edges.

An Introduction to Computational Geometry. Page 14 C. Kessler, IDA, Linkdpings Universitet, 2002.

Some Typical Problems in Computational Geometry (7)

Triangulation of a simple polygon

given: simple polygon P with n vertices

compute: decomposition of P into triangles
TriangulationT of P

= 0P U maximal set of non-intersecting diagonals in P
Existence proof by induction.

A triangulation of a convex polygon can be computed in time O(n).

A triangulation of a simple polygon can be computed in time O(nlogn), O(nlog*n),
O(n)

Delaunay-Triangulation: a special triangulation T where for each edge d =
(v1,V2) in T the smallest circle around d contains no further vertex of P.

An Introduction to Computational Geometry. Page 16 C. Kessler, IDA, Linkdpings Universitet, 2002

Some Typical Problems in Computational Geometry (9)

X N Mittelsenkrechte(ac)

Parabel(c, ab)

Voronoi diagram of line segments in the plane Winkelhalbierende(cd ba)

Bisector point — point:
straight line (Mittelsenkrechte)

Bisector point — straight line:

parabel
Parabel(b, cd)

Bisector point set — straight line:

wave front of parabel arcs P !
i i i . . , S Winkelhalbierende(ab,cd)
Bisector straight line — straight line: L

straight line (Winkelhalbierende)) Parabel(d, ab)

Bisector of two line segments:
composed from these

T Mittelsenkrechte(a,d)

An Introduction to Computational Geometry. Page 17 C. Kessler, IDA, Linkdpings Universitet, 2002.

Some Typical Problems in Computational Geometry (10)

Point location

Given: amap = a planar subdivision of the plane into regions (e.g., polygons)
given also: a point q in the plane

compute the region that contains g (query)

preprocessing: partitioning (e.g. in slabs), build balanced search structures

An Introduction to Computational Geometry. Page 19

PLANE SWEEP

C. Kessler, IDA, Linkdpings Universitet, 2002.

Example problem: tightest pair of n points in the plane

y
o_w.w ,,,,, °p
L op, ® Ry
o_nwn~ om
°R
o_oo
® Do
.UA X

given n points py, ..., P in the plane R?
determine minimum distance of two points p;, p;, 1<i<j<n,
and (maybe) pair (pi, p;)

An Introduction to Computational Geometry. Page 18 C. Kessler, IDA, Linkdpings Universitet, 2002.

Some Typical Problems in Computational Geometry (11)

Robotics — Motion planning

Determine a collision-free path in the plane

(any, or the shortest path, or the most power-consuming path, ...)
for a robot (point, circle, polygon, ladder)

from point A to B in a scene of polygonal obstacles.

For circular robot: use point location and Voronoi diagram

An Introduction to Computational Geometry. Page 20 C. Kessler, IDA, Linkdpings Universitet, 2002.

Tightest pair of n points in the plane (1)

naive method: enumerate all pairs
currMinD < o
for each pointp,i=1,..,n—1
for each point p;, j=i+1,...,n
if |pi—p;| <currMinD
then currMinD <« |p; — pj|
output currMinD;

run time: ©(n?)

Improvement?

An Introduction to Computational Geometry. Page 21

Tightest pair of n points in the plane (2)

C. Kessler, IDA, Linkdpings Universitet, 2002.

Consider the one-dimensional case:

given: nreal numbers Xy, ..., X,

RTRRL R ol o7 83 2 o

X
determine: tightest pair (x;,X;) with |x — x;| minimal, i # |

Step 1: sort the x; in increasing order — X} <X, < ... <X,

X1 X5 X3 X X X5 X
— e —0o—0o—9o—0—0—
X

Step 2: scan the X in increasing order
keeping track of the position PosCurrDPof the current tightest pair
Avm_uoﬂwc_‘ﬂo_u\H“x‘UoRuc_._‘D_uV and its distance CurrMinD

An Introduction to Computational Geometry. Page 23 C. Kessler, IDA, Linkdpings Universitet, 2002,

Tightest pair of n points in the plane (4)

back to the 2D case:

Method: Sweep over the plane in the direction of the x-axis
y : =
: 1

[] Y

os

UG,
mOc_‘:,__:_u‘ .ﬁ

e
OQ////
\\Ak\.\vU‘

!
ge |
i
]
i

' =

sweep line

An Introduction to Computational Geometry. Page 22 C. Kessler, IDA, Linkdpings Universitet, 2002.

Tightest pair of n points in the plane (3)

Pseudocode:

Sort(x)
PosCurrMinD <+ 2;
CurrMinD <« |x; — X} ;
for i=3,...,n
if CurrMinD> [x] — X/j_4]
then CurrMinD <« |xj — X'j_4];
PosCurrMinD « j;
output CurrMinD, PosCurrMinD;

Run time: O(nlogn)

An Introduction to Computational Geometry. Page 24 C. Kessler, IDA, Linkdpings Universitet, 2002.

Tightest pair of n points in the plane (5)

We observe:

If the sweep line meets a new point (e.g. r),
all potential partners of r to form a pair with distance < CurrMinD

are located in the interior of a stripe of width CurrMinD behind the sweep
line.

This stripe “moves” with the sweep line to the right
(where its width may be adapted if necessary)

It is sufficient to consider, at any point of time, only the points located
in the interior of the stripe.

An Introduction to Computational Geometry. Page 25 C. Kessler, IDA, Linkspings Universitet, 2002

Tightest pair of n points in the plane (6)

Data structure for the “stripe behind the sweep line”:

Sweep-status-structure (SSS, also called Y-structure)

requires efficient support of the following operations:
e insert point into SSS

e remove point from SSS

e find point in SSS with minimum distance

An Introduction to Computational Geometry. Page 27 C. Kessler, IDA, Linkdpings Universitet, 2002.

Tightest pair of n points in the plane (7)

Data structure to determine the order of processing the points:
Event structure or X-structure

Observation:
Points enter and leave the SSS in order of increasing x-coordinates

— Preprocessing:
sort points in order of increasing x coordinates in an array P[1: n|:

During the sweep keep two indices:
index left points to leftmost point in the stripe
index right points to leftmost point to the right of the sweep line

An Introduction to Computational Geometry. Page 26 C. Kessler, IDA, Linkdpings Universitet, 2002.

Tightest pair of n points in the plane (7)

Events that require an update of the SSS:

1. left border of stripe moves across a point p
— remove p from SSS
2. sweep line meets a new point r
— insert r into SSS
check whether some point p in the SSS
has distance < CurrMinD from r
if yes:
update CurrMinD (= stripe width)
remove from the SSS all points p that now have a distance > CurrMinD

An Introduction to Computational Geometry. Page 28 C. Kessler, IDA, Linkdpings Universitet, 2002.

Tightest pair of n points in the plane (8)

Order of P[left] versus P[right]:

If P[left].x + CurrMinD < PJ[right].x
then P[left] is processed first (to be removed from SSS)
else P[right] is processed first (to be inserted in SSS)

An Introduction to Computational Geometry. Page 29

Tightest pair of n points in the plane (9)

C. Kessler, IDA, Linkdpings Universitet, 2002.

Putting things together: the sweep algorithm

/I Initialisation:
sort the n points by increasing x-coordinates
and insert them into array P

SSS.init()// initially SSS is empty
SSS.insert(P[1]);
SSS.insert(P[2]);

CurrMinD « |P[2] — P[1]};

left < 1;

right < 3;

P[PPI [PEIPAI| ..

& oo

An Introduction to Computational Geometry. Page 31 C. Kessler, IDA, Linkdpings Universitet, 2002.

Tightest pair of n points in the plane (11)

Correctness of the algorithm:

Lemma 1: At the program points denoted by I, und I,
the following invariants hold:
I1: The minimum distance among the points P[1]...P[right-1] is CurrMinD.
I,: The SSS contains exactly the points P[i], 1 <i < right-1
with P[i].x > P[right].x — CurrMinD

Proof: by induction (Exercise)

An Introduction to Computational Geometry. Page 30 C. Kessler, IDA, Linkdpings Universitet, 2002.

Tightest pair of n points in the plane (10)

/I Sweep:
while /* 11 holds */ (right < n) do
if P[left].x + CurrMinD < P[right].x
then // old point P[left] leaves stripe
SSSemawe(P[left]);
left + left+ 1;
else // new point P[right] enters stripe; I, holds
SSS.insert(P[right})
right « right + 1;
CurrMinD <« SSS.MinDist(P[right]CurrMinD);
output CurrMinD;

still to be specified: routine MinDist

An Introduction to Computational Geometry. Page 32 C. Kessler, IDA, Linkdpings Universitet, 2002.

Tightest pair of n points in the plane (11) — Run time of the algorithm

The preprocessing takes time O(nlogn) (sorting).

Sweep: Each point is inserted into the SSS exactly once and removed at
most once.

Inserting a point into the SSS and removing a point from the SSS
can be done in time O(logn)
if the SSS is implemented as a balanced search tree.

A call to MinDist(P[i],m) takes (—) time O(logn+ k)
where ki = number of potential partners of P[i] in the SSS at that time.

— total run time: O(nlogn+ S 5k)

remains to be done: upper bound for ki, i =1,...,n

(We shall see: k; < 10, i.e. constant)

An Introduction to Computational Geometry. Page 33 C. Kessler, IDA, Linkspings Universitet, 2002

Tightest pair of n points in the plane (12) — Routine MinDist()

For a given point r and minimum distance m,

SSS.MinDistf, m) determines the minimum BWLQ_
pe

Only a point located in the interior of the rectangle R . stipe

(more precisely: in the half-circle around r with radius m) m i

may have a distance < mfromr. H R
m

ep
— only the y-coordinates

of the points in SSS are of interest.
\. r
Implementation of the SSS

e.g. as AVL tree whose leaves (points) are linearly linked in
order of increasing y-coordinates

m

o

-

-_—m—

— Insert / Remove in time O(logn) -(CurMinD) i

— MinDist() in time O(logn+ k) ” sweep line
where ki = number of leaves within rectangle

An Introduction to Computational Geometry. Page 35 C. Kessler, IDA, Linkdpings Universitet, 2002.

Tightest pair of n points in the plane (13) — Summary

The minimum distance of n points in the plane
can be computed in time O(nlogn).
This is asymptotically optimal. [Hinrichs, Nievergelt, Schorn, IPL 26, 1988]

Problem solution method “plane sweep™:

e basic idea: exploit locality
e data structures: SSS (Y-structure), X-structure

e update rules for events
must preserve invariants — correctness

e transforms a static 2D problem into a dynamic 1D problem
e X-structure may also be dynamic

in R%: similar, with a sweep plane

Next example: Intersection of n line segments in the plane

An Introduction to Computational Geometry. Page 34 C. Kessler, IDA, Linkdpings Universitet, 2002.

Tightest pair of n points in the plane (13) — Upper bound for kj, i = 1,...,n

Lemma 2:

Given a set P of points in the plane

that have (pairwise) at least distance m > 0.

Then a rectangle R with edge lengths M und 2M contains < 10 points of P.

Proof: pairwise minimum distance m
— circles around the points with radius m/2 do not overlap.

For each point of R at least a quarter of its circle’s area is contained in R
— Rmay contain at most

Area(R) 2 wMA 1
Area(Quarter circle sector) W_:@N om
points of P
— ki < 10.
Remark: a sharper bound yields k; < 6.
An Introduction to Computational Geometry. Page 36 C. Kessler, IDA, Linkdpings Universitet, 2002.
Intersection of n line segments in the plane
5
I | I
r
Iy 271y l5 3
given: nline segments S= {s = lir;,i = 1,...,n} (incl. endpoints) in the plane

R?
compute: all k proper intersection points (no end point of a segment)

Lower bound for run time: O(nlogn+ k) see [Klein'97]

Naive method: Enumerating all pairs

for all pairs of segments s, sj i # |:
if there is a proper intersection point p=sNs;
then output p;

Run time: ©(n?) = only acceptable if k= O(n?)

An Introduction to Computational Geometry. Page 37 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (1)

[J. Bentley, T. Ottmann: Algorithms for reporting and counting geometric
intersections. IEEE Trans. Comp. C-28, 1979]

Preliminary assumptions:

1. x-coordinates of all segment endpoints are distinct

(— no segment is parallel to the y—axis, thus notation |; (left endpoint), r;
(right endpoint) is well-defined)

2. any 2 line segments s # s; intersect in at most one point
3. in each intersection point intersect at most 2 segments.

An Introduction to Computational Geometry. Page 39 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (3)

Events that change the order <, of the s; € R:

1. SL meets left endpoint |; of a segment s
2. SL meets right endpoint r; of a segment s;
3. SL meets (proper) intersection point p of two segments s, s;

Order of processing events of type (1.) and (2.) is clear:
sort all endpoints |; and r; in increasing x-coordinates Time O(nlogn)
for events of type (3.) ???

are computed only during the computation
= requires dynamic event data structure ES

An Introduction to Computational Geometry. Page 38 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (2)

Move Sweep-Line SL from left to right over plane.
Attime X, —oo <X < o, is SL the straight line x = X
Atanytime x let R ={s;€S: sjn{x=x} # 0}

v SL, timex :

On the segments in B, there
is a total order <y according
to increasing y-coordinates

S of intersection points with
T sL
= keep track of the order

\y\,\ of the s; € B in the Sweep

Status Structure SSS

i/

An Introduction to Computational Geometry. Page 40 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (4)

Events are represented as triplets:
(li,s,0) Item for left endpoint of 5
(rj,0,s;) Item for right endpoint of s;
(p,s,s;) Item for intersection point of s and s;

where the time of an event is the x-coordinate of the point.

An Introduction to Computational Geometry. Page 41 C. Kessler, IDA, Linkspings Universitet, 2002

Intersection of n line segments with Plane Sweep (5)

Operations on ES:

(p,s,sj) = ES.deleteMif); // dequeue next event from ES
ES.insertp,s,s;j); // insert event in ES at position p.x
ES.emwe(p, s, s;); // remove event from ES

= Priority Queue

implemented e.g. as balanced binary tree
— all operations perform in time O(log|ES) = O(log(2n+ k)) = O(logn)

An Introduction to Computational Geometry. Page 43

Intersection of n line segments with Plane Sweep (7)

C. Kessler, IDA, Linkdpings Universitet, 2002.

Actions for events
Type 1: left endpoint |; of a segment s:

leftEndpointl;,s) {
S« SSS.inserts, key =1..y);
Sy SSS.rdecessds);
S < SSS.succesgsy;
if s, exists:

compute p=-s,Ns;

if p ex.: ES.insertp,s,,S);
if s exists:

compute p=$NSs;

if pex.: ES.insertp,s,%);
}

An Introduction to Computational Geometry. Page 42 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (6)

Lemma 3: If two line segments s, s;, i # j, have a proper intersection point
p then they are direct neighbors (wrt. the order along the SL, i.e. in SSS))
immediately before the event (p,s,s;)

Proof:

Let € > 0, such that Ug(p) is intersected only
by s and s;.

= for all x with px—e<x < pxare s, s;
direct neighbors w.r.t. the order along the
SL.

Invariant: Intersections of segments directly neighbored in SSSare computed
and inserted in ES.

= no intersection point is missed when computing s Ns; as soon as s and s;
become direct neighbors in SSS.

An Introduction to Computational Geometry. Page 44 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (8)

Type 2: right endpoint rj of a segment s;:

rightEndpoinfrj,s;) {
S« SSS.findsj, key =rj.y);
s, ¢ SSS.mdecessds);
S < SSS.succesggy;
if 5, and s, exist:

compute p=s,NS;

if p ex.: ES.insertp, s, S);
SSSemoe (s);

}

An Introduction to Computational Geometry. Page 45

Intersection of n line segments with Plane Sweep (9)

C. Kessler, IDA, Linkdpings Universitet, 2002.

Type 3: intersection point p of two segments s, s;:

intersection®int(p,s,s;) {

output ("I ntersection point:", p,s,sj);
s« SSS.finds, key = p.y);

S + SSS.succesgsy;

S, ¢ SSS.mdecessds);

S ¢ SSS.succesgdh);

if s exists:

compute q=sNs; if gex.: ES.inserfq,s,);
if g, exists:

compute r =s,Ns;; ifr ex.: ES.insertr, s, s;);
SSSxhane (s,S);

/l'if s, and s, exist:
/I computet=g,Ns,; iftex.: ES.emwet);

}

An Introduction to Computational Geometry. Page 47 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (11) — the entire algorithm

#include <LEDA/sortseq.h>
#include <LEDA/pqueue.h>

typedef struct { point p, segment s, segment s;;} triplet;
sortseq <float, segment> SSS; // init.: empty
pqueue <float,triplet> ES // init.: empty

for all segments s, i =1,...,n:
ES.insert(l;,s,0); ES.insert(r;,0,s;);
while ES.nonempty(}
(p;s,;sj) < ES.deleteMin()
if s;=0 /I left endpoint —type 1
leftEndpointp, s);
if § =0 // right endpoint — type 2
rightEndpointp,s;);
otherwise: intersection®int(p,s,s;); // — type 3

An Introduction to Computational Geometry. Page 46 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (10)

Space requirements: dominated by max |ES| < 2n+k

may be limited to 3n if ESstores only the intersection points of segments that
are directly neighbored in SSS (commented lines)

An Introduction to Computational Geometry. Page 48 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (12)

Run time: |ES| < 2n+k = time: O((n+ k) logn)

Remark 1: a rough bound. See [Pach/Sharir SIAM J. Comput. 20, 1991]:
|[ES = ©(nlogn)

(Exercise: Lower bound Q(nlogn))
Remark 2: Run time O((n+ k)logn) not optimal:

[Chazelle/Edelsbrunner J ACM 1992]: time O(k+ nlogn), space O(n+ k)
[Balaban '95]: time O(k+ nlogn) optimal, space O(n) optimal

An Introduction to Computational Geometry. Page 49 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (13)

Removing the simplifying assumptions

1. Distinct x-coordinates of the endpoints

at insertion into ES (ES.insert()
use lexikographic order on pairs (x,y)
corresponds to a minimal counterclockwise rotation of the coordinate system

at sweep: (ES.deleteMin})

with multiple events of equal x-coordinate, process
first all left endpoints,

then alle intersection points,

then all right endpoints,

in each category in increasing order of y-coordinates

An Introduction to Computational Geometry. Page 51 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (15)

3. Numerical problems (Accuracy of number representation / calculation)

Schorn '91
Burnikel/Mehlhorn/Schirra '94

An Introduction to Computational Geometry. Page 50 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of n line segments with Plane Sweep (14)

2. Multiple intersection points

keep (see above) in ESonly intersection points of segments directly neighbored
on the SL

multiple intersection point p: immediately before SL reaches p,
EScontains a subsequence
(P:S1:%2), (PS2:S3), (P, S3,%4)

such that p can be identified as multiple intersection point and the subsequence
processed as a whole.

An Introduction to Computational Geometry. Page 52 C. Kessler, IDA, Linkdpings Universitet, 2002

Intersection of two polygons

Intersection PN Q in general not contiguous
= set of polygons Dy, i = 1,...,r

An Introduction to Computational Geometry. Page 53 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of two polygons (2)

Intersection PN Q is nonempty, if

(1) there ex. edges e of P and € of Q with enée # 0, or

(2) there ex. vertex v of P with v inside Q, or
there ex. vertex w of Q with winside P

Test (1) with Plane-Sweep algorithm see above
Test (2) with ray test

= Test for intersection of two polygons with n vertices altogether can be done
in time O(nlogn).

An Introduction to Computational Geometry. Page 55 C. Kessler, IDA, Linkspings Universitet, 2002

Intersection of two polygons with Plane Sweep (2)

Implementation of SSSas balanced binary tree
= find(), insert() remae()in time O(logn)

Events:
- vertices of Por Q
- intersection points of edges of P and Q

= similar to “Intersection of line segments in the plane” with Priority Queue
(or precompute if space doesn’t matter)

An Introduction to Computational Geometry. Page 54 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of two polygons with Plane Sweep (1)

Sweep-Line SL runs from left to right over scene
SLNP, SLNQ define intervals of type PNQ, PNQ, PNQ, PNQon SL

Invariant: To the left of S, partial intersection polygons D; of PN Q have been
constructed.

Sweep Status Structure SSS. List of edges of P and Q that are currently
intersected by SL (= intervals)

For each of these edges e keep
- type of the interval (e, SSS.successorje)
- reference e.edgeSequence to sequence F of edges (doubly linked list),

representing the edges of the corresponding intersection polygon D;
to the left of SL

= SSSitems are triplets (Edge e, EdgeSequence F, Type t)

An Introduction to Computational Geometry. Page 56 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of two polygons with Plane Sweep (3)

Updating the SSS
1. Vertex v (e.g. of P): 3 cases:

E—

PNQ
e

@) (b)
(1a) one edge e von v to the left, one € to the right:
item i < SSS.findkey=e);

i.edgeSequence.append(e)
i.edge < €; //i.type remains the same

An Introduction to Computational Geometry. Page 57

Intersection of two polygons with Plane Sweep (1)

C. Kessler, IDA, Linkdpings Universitet, 2002.

(1b) both edges €, € to the left:

item iy «+ SSS.findkey=e);

item i, «+ SSS.findkey=e");
i1.edgeSequence.concatenat@,.edgeSequence, €, €); // make a loop
SSSemoe(i1); SSSemwve(iz); // remove interval

(1c) both edges €, € to the right:

EdgeSequence F(v), Fx(v); // initialize empty chains from v
item i;(e,F1,PNQ); // new item

item ix(€,F, PN Q); // new item

Di < Solution.appen@d, F,);// new partial inters.-pol.
SSS.inseri(, key=e); SSS.insert, dir=before);

An Introduction to Computational Geometry. Page 59

Intersection of two polygons with Plane Sweep (5)

C. Kessler, IDA, Linkdpings Universitet, 2002.

3 cases:

(22)

item iy < SSS.findkey=e);

item i, «— SSS.findkey=¢e’);

Edge e, + (u,v), & < (v,w); // split edge e
Edge € + (U,V), & «+ (v,Ww); // split edge €
i1.edgeSequence.appende;);
io.edgeSequence.appende,);

i1.Edge < (€,); i1.type+ PNQ;

io.Edge < (&); /I ip.type remains PNQ;

(2b), (2c): Exercise!

An Introduction to Computational Geometry. Page 58 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of two polygons with Plane Sweep (4)

2. Intersection point v of two edges e of P, € of Q:
w

¢ —FIQ

PQ

(2a)

Number of intervals
remains the same
in (2a), (2b), (2c)

An Introduction to Computational Geometry. Page 60 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of two polygons with Plane Sweep (6)

The entire algorithm:

1. given: polygons P, Q with n vertices together
SSS.init() ES.init(} // initially empty
solution.init(} // initially empty
2. sweep over scene as extension of the algorithm for line segment intersection
by (1a), (1b),...,(2c)
Time: O((n+ k) logn)

' When chaining edge sequences F;, F,, that previously belonged to different
partial intersection polygons D;, D, we must union D; and Dj:

F..polygon «+ F.polygon;
Fi.appendF,);
solution.emare (Fz.polygon);
3. For all remaining partial intersection polygons D; €solution
solution.outputD;);

An Introduction to Computational Geometry. Page 61 C. Kessler, IDA, Linkdpings Universitet, 2002.

Intersection of two polygons with Plane Sweep (7)

Theorem: The intersection of two simple polygons with n vertices and k edge
intersection points can be computed in time O((n+k)logn) and space O(n).

Special case: P, Q convex = k= O(n) (Exercise)

