Data Distributions

Distribution Functions
Distributions with Redundancies
Redistribution as Configuration Problem

Mapping to distributed systems

= Two principle approaches:

1. Distribute the data
= Each array element 5[k] is assigned to a processor
= Computation follows:
All computations defining (writing) &[k]=.. , t=1.T are
executed on the processor 5[k] is assigned to
Owner computes rule
2. Schedule the computations
= Each computation is scheduled individually

= Consumed array elements &'[k-1] &'[k] &'[k+1] and
produced array elements &+1[k] become local
variables of the tasks

Blockwise:

d@[il)=1 divn/P
Cyclic:

d(@@[i])=1 mod P
Block-cyclic:

d(@[i])=(div c) mod P

Generalized to more dimensions

Example

1. for (t=1;t<T;t++) {
2. forall (k=1;i<D;k++) in parallel {
3. o*i[k]l= f(d[k -1]1,8[k],d [k +11)

Distribute the Data
Distribution d is a function: a - {1...F}

af0,1,2] al3,4,5] a[6,7,8] a[9,10,11] a[kK-3,K-2,K-1]
-1 -2 -3 -4 - P

SIS AT T MR ST X
SE ST MR T M3 MK
SKE ST MR T M3 2K

Good Data Distribution

= Compare execution costs in cost model

= In general: compute locally, avoid
communications synchronization

REKIHEKT XK o
RIKIHEXKE XK X
RIKIKEXKE XK X

Problem I: Alignment

Example Vector Product:

y=ae X
Yi=a X
1. forall (i=0;i<n;i++) in parallel{
2. ylil=a[i]*x[i]
3. }
4. }

Align distribution of arrays

Vector a Vector X Vector Y (aligned to a,X)
distributed distributed blockwise, then computed without
blockwise aligned to a any communication

]
R e
=

B8 —=3

Distribution function for arrays

Matrix A Vector X Vector y
distributed distributed however always required
blockwise aligned to A however communication

L]

Align distribution of arrays

Vector a Vector X Vector y
distributed distributed blockwise, then computed with
blockwise not aligned to a communication

Problem II: Redundancy

Example: Matrix—Vector Multiplication:
y=AX
Y= X+t X,

1. forall (i=0;i<n;i++) in parallel{

2. y[i1=0;

3. for (j=0;j<n;j++) {

a. yl[il=y[il + ali,j1*x[j]
5. }

6. }

Redundant Distribution

Matrix A Vector X Vector y
distributed redundantly distributed, required no
blockwise each copy aligned to A communication

Redundancy

= Cannot be expressed by a function
= Relation between array elements and processors
= If derived automatically, larger solution space

= Could save communication

= Costs local computation time, e.g. due to caching
effects on processors

= Could only be biased by a more elaborated cost
model including memory hierarchies

= Too expensive to optimize for

FFT Dependency Graph n=16

Cyclic distribution P=4

¥

Problem III: Changing Alignment

= Example: FFT (with w=n-th unity root)

forall (i=0;i<n;i++) in parallel
x[i1]=x[r(i)]1;
for (i=0;i<log(n);i++) {
forall (j=0;j<n;j++) in parallel{
if (3 mod pow(2,i) < pow(2,i-1))
x[31=x[3] + Wi * x[j+pow(2,i-1)1);
else
x[31=x[j-pow(2,1-1)] + iy * x[j]

© @ N o v A W N R

Block distribution P=4

= |
eletele
SEEES

=
2

V',

=0
S

Redistribution (4-relation)

Redistributions

= Cannot be expressed by relation between
array elements and processors

= Requires relation between array elements,
iteration vectors (time axis) and processors

= If derived automatically, larger solution space
= Could save communication
= Sometimes it only bundles communication

= Could only be biased by a more elaborated cost
model including communication parameters as
functions on the message size

FFT-1 Dependency Graph n=16

Implementation (B)

y O N M @@ @ @ @
1. a’= FFT(a,P); ‘ FET-L ‘

R

3. c’=+<(’,b",P);

4. C = FFT-1(c’,P) ‘ . ‘
\ F

r—\ﬁﬂﬁﬂ%ﬁﬁﬁﬁ

FT ‘
S/ SIS
FFT ‘

S S S S g S 23

Problem IV: Composition

= Example: Polynom Multiplication:
p(X)=agtaX +... a, XL,
g(¥)=bgtbx +... b x™?
p(X) Q(X): C0+C1X +.. Cn+ m-2Xn+ m—l,
GEZmpoK- -+ &bk KO[O,n+m-2]

= Computation by:
c=FFT {FFT(@’) FFT(b’))
a=Zjnjon-+- &P, KO[O,n+m-2]

20

Implementation A

1. pardo IR EREE®
. a’’= FFT@@,P/2)]| | FFTt |

L T

5. ¢ = FFT-1(c’,P)

Composition

= Composition

= Sequential P, P’ output distribution of P must
conform to input distribution of P’

= Parallel P| P’ : distribution of P uses p
processors, distribution of P’ uses p’ processors
where p+p’=P

= Optimal local solutions could be suboptimal
globally

= Solutions:
= Perform redistribution
= Find globally good distribution

24

Conclusion of Problems

= Find right alignments
= Introduce redundancy if applicable
= Redistribute within loops

= Compose according to constrains —
redistribute/find globally good distributions

1. Propose distribution functions

= Refers to distribution of computed array d,,
= Induces a distribution and alignment of the
input array(s) d,, (eventually redundant)
= Arbitrary basis for proposals
= Analyze dependencies
= Analyze task graph
= Propose usual suspects (e.g. block, cyclic, ...)
= Proposals of programmer (e.g. HPF directives)

out

HRESE A RE XK A TR R E
HRESE A RE XK A TR R E
I SE AR X B TR RE

Approach

1. Propose distribution functions d for each
individual parallel assignment

2. For each pair of distribution functions (d,d’)
for consecutive parallel assignments S,S’

= Extend d such that (d,d’) does not require
communication (introduce redundancy)

= Calculate redistribution costs for (d,d’)
3. Find the global optimum configuration

26

Example

1. for (t=1;t<T;t++) {

2 forall (k=1;i<D;k++) 1in parallel {
3 d*i[k]= f(&'[k -1],8[k],s [k +1])
4. }

s}

= Assign: &1[k]= f(&[k-1],8[k],&[k+1])
= Proposal block distribution:

s d,(5[k1)=k div n/P

» d(3Ik1)=k div n/P,
d,(8[k-11)=k div n/P
d,(8[k-11)=k div n/P

» d,is redundant
28

Sl S S S B S SN
Sl S S S DB S SN
Sl SR S SRS B S S

VAV VAYVAY

2. Consecutive assignments

= Not uniquely defined at compile time
= Treat loops and branches conservatively

= No redundancy/redistribution costs for
(dout' d,in) iff d,in < dout
= Note that d,, d";, are relations, i.e. sets of pairs
= < defined to be partial subset order relation O

= Several iterations possible

LogP Communication Step

time

L(uv)=20+ L

processors

33

3. Global optimum configuration

= Idea for not iteratively composed programs:
= Compute the basic block graph of the program
= Assign computation costs for each C(d,,) to
nodes (this may be different since redundant
distributions require redundant computations)
= Assign Redistribution costs L(d,, di,) to the
edges
= Find minimum path in graph
= NP hard problem in general (polynomial for
goto free languages, ok in practice)

Example

for (t=1;t<T;t++) {

forall (k=1;i<D;k++) 1in parallel {

o*i[k]l= f(&'[k -1]1,8[k],dk +1]1)

}
}
= New redundant distribution d’ ;= d;,because of

loop, compute d’;,, accordingly

= Communication cost L(d’,d;,)=0 by definition
= Redistribution costs L(dg,dn) L(gy,d'in) LA 500"
depend on cost model

[S

Example with LogP as cost model

L) = L(d ') =2(20 + L) (2 elements overlap)
L(douwd'in) = 4(20 + 1) (4 elements overlap)

RERE IR
KX XK
KX XK

X
4
Ax

X

X,
X
v
-
X,

X,
X
v
-
X,

Example (unrolled assignments)

1. forall (k=1;i<D;k++) in parallel
2. i[k]= f(d'[k -11,8Tk],d[k +11)

3. forall (k=1;i<D;k++) in parallel

4 2[k]= f(a*[k -17,8%[k],d"* [k +1]1)

t+1

Cldow) C(d' o) ‘

L(doutv dln) L(dyumv dym)

(o 0)

Cldoy) C(d' o) ‘

t ‘

3. Iterations

= Brute force (exact)
= Unroll loop
= Treat as them before
= Unavoidable, if costs depend on the iteration
= Approximation
= Let S,S’be last and first loop statement, resp.
= Assume an artificial redistribution d,(S), di,(S)
also for the last iteration
= Let S” be the first statement after loop

= Connect d, (S, d:,(S™)

Conclusion

= Only approximations of the optimum
= Compilers can give good results
= Sometimes not good enough
= Therefore programmers must be able to find
better solutions for specific problems “by hand”
(preferably “by head”)
= Alternative to data distribution:
task scheduling

Example

1
2
3.
4
5

for (t=1;t<T;t++) {
forall (k=1;i<D;k++) in parallel {
o*ifk]l= f(a'[k -1],3[k],a' [k +11)

}
}
o Ol
L(doul’ dln) L(d’ouv d’in)
(o A1)
S
‘ C(dys) C(d'o)

