
1

Anticipated Distributed Task
Scheduling for Grid

Environments
Thomas Rauber and

Gudula Rünger

Multiprocessor Tasks

• Decomposition of an application algorithm
into a set of modules realized as M-Tasks
– Well-defined independent parts
– No relation between internal computations of

different M-Tasks
• Input/output data form dependencies between

modules (Task Graph)
• Each M-Task is executed on an arbitrary

amount of processors

Example : DIIRK

SolveLinSys

NewtonIter

SolveLinSys

NewtonIter
…

InitStage

ComputeApprox
StepSizeCtrl

Diagonal-implicitly iterated Runge-Kutta

The Grid Environment

• Abstract/fuzzy concept
– "the technology that enables resource

virtualization, on-demand provisioning, and service
(resource) sharing between organizations.”
(Plaszczak/Wellner)

– "a service for sharing computer power and data
storage capacity over the Internet” (CERN)

– “a computer facility operating ‘like a power
company or water company’” (Corbató)

The Grid Environment (cont’d)

• Open standards

• Clients
• Servers
• Communication

“ … a service for sharing computer power …
over the Internet"

C

C

C

C

S
S

S

Server Node

Performance
Estimation

Scheduling of
Task Graphs

Data Distribution
Component

Communication Module

Local
Client

Neighboring
Servers

2

Scheduling

1. Partition Task Graph into a sequence
of layers, Li, i = 1,2,…,n

– The different layers are executed in
sequence.

– Minimize number of layers.
2. Schedule each layer

– Sequentially or concurrent
– Locally or remote

Example

Layer 3

Layer 1

Layer 2

Layer 5

Layer 4

Anticipated Task Placement

• The decision for the placement of layer Li+1 is
taken after layer Li is placed.

• When Li+1 is placed, the total cost, Ti(S) for
the servers S is known.

• A task M of layer Li+1 should only be migrated
if the migration cost C(M) can be hidden.
– Each server maintains sets of migratable and non-

migratable tasks.

Migration of Tasks

• A server S with neighboring servers Sj sends
tasks as long as there exist a server Sj, such
that
– Ti+1(Sj) < Ti+1(S)
– Ti+1(S) = Tnmig(Sj,Li+1) + Tmig(Sj,Li+1)

• A task M to be migrated is selected as
– After the migration, the above still holds
– The execution time of M is as large as possible

Sub-Optimality Bound

• We consider a ratio α, such that

• Where
– Mx is the task with the smallest execution

time
– T(Mx,pj) is the execution time of task M on

pj processors

!

T(Mx, p1) =" # (Ti+1(S1) $T(Mx, p1))

Sub-Optimality Bound (cont’d)

• Assuming 0 < α < 1 and
the accumulated execution
time Ti+1 of the scheduling algorithm has
the following sub-optimality bound

!

1"# $
p
1

pn
> 0

!

Ti+1 "
1+#

1$# %
p
1

pn

TOPT

3

Sub-Optimality Bound (cont’d)

• For a large numbers of tasks α → 0,
which in turns means that

!

1+"

1#" $
p
1

pn

%1

Anticipated Distributed Task
Scheduling for Grid

Environments
Thomas Rauber and

Gudula Rünger

