
1

Threads Cannot Be
Implemented As a Library

Paper by Hans-J. Boehm
Presented by Håkan Lundvall

Outline

• Memory models
• The library approach
• Three correctness issues
• Performance

• Some languages knows about threads
– Java, C#, Ada…

• Some do not…
– C/C++

• Libraries must be used to handle
concurrency
– Pthreads

• The context of this discussion
– C

– Pthreads

Widely used and reasonable well specified

2

Pthread’s approach and why it
appears to work

• To support concurrency a memory model
must be specified
– Sequential consistency

• x = 1; r1 = y; // thread 1
• y = 1; r2 = x; // thread 2
• Either r1 or r2 must be 1

– In practice
• Both can be 0

Why?

• Memory operations in one thread may be
reordered by the compiler

• Memory operations may be reordered by
the hardware

• Java as well as the Pthread standard both
allow r1 = r2 = 0 as a result

Pthread
“Formal definitions of the memory model were rejected
as unreadable by the vast majority of programmers. In addition,
most of the formal work in the literature has concentrated
on the memory as provided by the hardware as opposed
to the application programmer through the compiler
and runtime system. It was believed that a simple statement
intuitive to most programmers would be most effective”.

“Formal definitions of the memory model were rejected
as unreadable by the vast majority of programmers. In addition,
most of the formal work in the literature has concentrated
on the memory as provided by the hardware as opposed
to the application programmer through the compiler
and runtime system. It was believed that a simple statement
intuitive to most programmers would be most effective”.

..., pthread mutex lock(), ...,
..., pthread mutex unlock(), ...

Why it appears to work

Functions to synchronize memory
pthread_mutex_lock()
pthread_mutex_unlock()

The compiler knows nothing of the
functions.
Any global variable may be read or written
as far as the compiler can tell.
So all variables must be written to memory
before the call.

3

Three examples

• Concurrent modification
– A bit far fetched, no actual case reported

• Rewriting of adjacent data
– There are anecdotes about failures due to this

• Register promotion
– Personal experience of the author

Concurrent modification

if (x == 1) ++y; // thread 1

++y; if (x != 1); --y; // thread 1

if (y == 1) ++x; // thread 2

++x; if (y != 1); --x; // thread 2

Rewriting of adjacent data

struct {
int a:17;
int b:15;

} x;

…

x.a = 42;

{
tmp = x;
tmp &= ~0x1ffff;
tmp |= 42;
x = tmp;

}

Rewriting of adjacent data
struct {

char a; char b; char c; char d;
char e; char f; char g; char h;

} x;

…

x.b = ´b´; x.c = ´c´; x.d = ´d´;
x.e = ´e´; x.f = ´f´; x.g = ´g´; x.h = ´h´;

x = *(long*)(”hgfedcb”) | x.a;

Assuming 64 bit architecture

4

Register promotion
for (…) {

…
if (mt) pthread_mutex_lock(…);
x = … x …
if (mt) pthread_mutex_unlock(…);

}

r = x;
for (…) {

…
if (mt) {

x = r; pthread_mutex_lock(…); r = x;
}
r = … r …
if (mt) {

x = r; pthread_mutex_unlock(…) r = x;
}

}
x =r;

Performance

• Pthread standard says concurrent
modifications of shared variables shall be
protected by mutual exclusion primitives
– Atomic hardware memory update instruction

• Prevents hardware reordering of memory
references or separate memory barrier instruction

– Library calling overhead

Example of expensive
synchronization

• Sieve of Eratosthenes
– Calculate primes between 10,000 and

100,000,000

• Garbage collection
– Mark-sweep on a heap containing 200MB of

24-byte objects

Sieve of Eratosthenes

for (my_prime = start; my_prime < 10000; ++my_prime)
if (!get(my_prime)) {

for (multiple = my_prime;
multiple < 100000000;
multiple += my_prime)

if (!get(multiple)) set(multiple);
}

5

Sieve using bytearray Sieve using bitarray

Garbage collection

