
1

Split-Ordered Lists: Lock-
Free Extensible Hash Tables

Gunnar Johansson
Paper by Ori Shalev, Nir Shavit

(Tel-Aviv University)

Presentation outline

�Motivation

�The lock-free idea (basics)

�Hash tables: Brief review

�Solution

�Results

�Conclusions

Motivation

�Previous work shows that lock-free 
approaches are optimal for high 
concurrency

�Many applications use hash tables

�Requirements
�Support for high concurrency – many 
parallel threads

�Extensibility – the table should be able to 
grow

Lock-free parallelism

�For high concurrency, locks become 
large bottlenecks!

�Example: shared counter

shared int counter;

shared Mutex lock;

…

acquire_lock(lock);

counter++;

release_lock(lock);

…

Lock-free parallelism

� Basic problem: cannot perform counter++ 
atomically

� Use compare-and-swap (CAS), supported in 
hardware!

bool CAS(int * p, int old, int new) {
atomic {
if (*p == old) {

*p = new;
return true;

}
return false;

}
}

[Datormagazin, no 7/2006]

Lock-free parallelism

�Now, counter++ can be implemented 
using a fetch-and-add (FAA) operation

void FAA(int * p, int value) {

int old;

do {

old = *p; 

} while (!CAS(p, old, old+value));

}



2

Hash tables: brief review

� Insert, delete, find in O(1)

�Assumed a good, balanced hash-function

1

2

3

4

5

6

1 12

23

31

42

3 301

0

Hash tables: brief review

�Rehashing, extensibility

�When load increases, O(1) cannot be 
maintained

�Solution

�Increase array size

�Rehash items (redistribute items among 
buckets)

1

2

3

4

1 12

2331 3 301 42

Solution

�Rehashing expensive, breaks 
concurrency

� Instead of “moving items among 
buckets”, let’s “move buckets among 
items”

Solution

� Keep single list, let buckets provide 
shortcuts into the list

� Extending bucket array should not require 
changing list

� Sort order: recursive split-order !

Solution

�Hash function: modulo 2i

�Array size: power of two (doubles at 
each extension)

Solution

�Hash function

�1310 = 000011012

� 910 = 000010012

2223



3

Solution

�Sorting: recursive split-order?

�Binary reversal

�1310 = 000011012 Regular nodeDummy node

Solution

�Lock-free

�Based on previously known CAS lock-free 
list

�Benefits

�No reordering of the list items

�Items can be reached at all “hashing 
recursion levels” (parallel threads could 
operate on different levels)

Results

�Compared with lock-based resizable 
hash table [Lea, 2003]

Conclusions

�Hash table that requires no 
redistribution of items when extended

�Offers significantly better performance 
than lock-based alternatives when 
concurrency is high

�Split-ordering can possibly also 
improve sequential implementations


