
Anticipated Distributed Task Scheduling for Grid
Environments

A Summary

Morgan Ericsson

Växjö universitet

Many scientific algorithms have an inherent structure than can expressed as a series
of interacting modules. This inherent structure can be represent using a (task) graph,
with modules (tasks) as nodes, and control and data-dependencies as edges in the graph.
The tasks of a task graph can either be single processor or multiprocessors (M-Tasks)
tasks. Each M-Task displays two levels of parallelism: a M-Task can be executed in
parallel on several processors and several M-Tasks that are not dependent on each other
can be executed concurrently. In order to execute a M-Task it has to be scheduled to a
set of processors.

In a Grid computing environment there are often large heterogeneous computing
resources connected via networks. These computing resources are shared between sev-
eral users. Compared to other parallel computing resources, this means that the optimal
scheduling can change due to "unexpected" load changes. So, in order for a schedul-
ing algorithm to counter these changes, it could be dynamic, i.e., moving tasks be-
tween computing elements in order to satisfy the application constraints, i.e., maximal
throughput etc.

The scheduling of an M-Task is done in two steps. First, the graph is partitioned into
a sequence of layers, Li, i = 1, 2, . . . , N , where each layer should contain as many
concurrent tasks as possible. These layers are then scheduled to be executed sequen-
tially. Once the partitioning into layers are done, the tasks of each layer is scheduled,
either to execute in parallel or in sequence, and whether to execute it locally or remotely.
The decision where to place layer Li+1 is taken once layer Li is placed. This is so that
the cost of migrating a task M , C(M) can be hidden by the execution of the previous
layer. When trying to place layer Li+1, all the tasks of the layer are divided into two
sets, those migratable and those not migratable. A task is considered non-migratable if
the cost of migrating it can’t be hidden by the execution of the previous layer of if it
depends on input data not yet available.

In order to migrate a task we need to find a remote server Sj such that the total
accumulated execution time of Li+1 is lower on Sj than it would be on the current
server. If such a server can be found, we select a migratable task M from layer Li+1

such that is has the longest execution time and we then check if the total execution time
of server Sj including task M is still lower than that of the local server. If this is the
case then the task is migrated.

In order to show the sub-optimality bounds of the algorithm, we first define a ration
α

T (Mx, p1) = α× (Ti+1(S1)− T (Mx, p1))



where Mx is the task with the smallest execution time, Ti+1(S1) is the total execu-
tion time of layer Li+1 on server S1, and T (Mx, p1) the execution time of task Mx on
processor p1.

If we assume that 0 ≤ α < 1 and 1 − α × p1
pn

> 0 we have the following sub-
optimality bound.

Ti+1 ≤
1 + α

1− α× p1
pn

TOPT

For a large number of tasks α is close to zero, which makes the algorithm close to
optimal.


