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Common data structures may be accessed in concurrent programming. If several concurrent entities (e.g., processes and threads) are interleaved, then the content of a common data structure depends on the interleaving of the machine instructions. Therefore, programmers use locks (e.g., semaphores and monitors) to ensure that the outcome of the computation is correct by enforcing a correct interleaving.
Now, locking can be coarse-grained or fine-grained. An example of a course-grained locking is given by 


[image: image1]
where we see that the entire data structure d is locked. This leads to poor concurrency and serialization on high-contention data structures, such as d. An example of fine-grained locking is given by 
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where two accesses to d may be issued concurrently, thus, decreasing serialization. This, however, leads to more complicated programs (more semaphores etc.) and a degradation in performance (since its costs to call wait and signal). The problem addressed in this paper deals with how to simplify the design of programs where shared data structures are used. The programmer should not have to bother with implementing synchronization. The programmer should rather specify places where the program must execute in isolation and this must be enforced by the programming language, compiler, run-time environment etc. This leads to the notion of transactional programming where the programmer specifies places in the code that must be executed atomically, similar to transactions in databases.
Atomic execution is given within an atomic statement. ATOMOS employs the strong atomicity, namely that statements within atomic appear to execute serially with respect to other transactions, as well as reads and writes outside transactions (non-transactional code). Non-transactions see writes to data at commit time and writes outside of a transaction can cause a roll-back. Further, there may be nested transactions, where a roll-back causes the parent and its children to restart. 
ATOMOS supports conditional critical regions, which are similar to critical sections but where a process may enter a critical region if the condition of the critical region evaluates to be true, as shown below:
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In contrast to previous approaches, the programmer can specify a set of condition variables for the scheduler to monitor via the watch statement. This way the scheduler can detect a change in a condition variable, resulting in a reevaluation of the guard. By issuing a retry statement the program yields and rolls back. This implies that changes to variables, which are accessible outside the transaction, are undone, i.e., the retry statement reverts the transaction to a clean state. This is a very nice property since it simplifies the programming and diminishes the risk of errors.
If the read set of a transaction is altered during the execution of the transaction, i.e., a write occurs outside the transaction, then the transaction needs to be restarted. Nested transactions containing large read/write sets may be prone to restart degrading the performance. The performance may be increased by reducing the isolation between the transactions. ATOMOS provides the notion of open-nested transactions, where the result of the child transaction is made globally visible at the commit time of the child rather than the parent. In contrast, closed-nested transactions do not make their results globally visible. Rather they make their results visible to their parents only. The notion of open-nested transactions seems counterintuitive, however, this results in performance improvements in cases where the write set of open-nested transactions are disjoint.   
ATOMOS also facilitates the transformation of a sequential loop to transactional parallelism. One or more loops are inserted into a transaction, which are then executed in parallel. The transactions may commit in sequential order or they may commit as soon as they have completed executing. 

The performance evaluation shows that linear speedup is achieved in many cases, in contrast to the locking based approach employed by Java. In the evaluation all synchronized identifiers were replaced with atomic statements. Further wait(), notify(), and notifyAll() were replaced by watch and retry statements. According to the authors, the transformation from Java to ATOMOS (as shown above) went rather smoothly, suggesting that a small effort is needed in rewriting the code. The evaluation further shows that ATOMOS does not incur additional overhead compared to Java. This is evaluated by measuring the execution time of an application with low contention between threads. The Java and the ATOMOS versions did not show significant differences in this particular setting.
Another experiment, where contention did exist between threads, showed that using ATOMOS yields in a significant speedup compared to Java. When coarse-grained synchronization is used in Java (with only one mutex) the performance does not increase significantly with more CPU:s. In fact the speedup decreases as more CPU:s are added, since contention increases. The situation looks a bit better for fine-grained synchronization in Java, however, the cost of handling locks increases with more CPU:s preventing linear speedup.  ATOMOS, which uses optimistic speculation, shows linear speedup up to 16 processors even when one atomic statement is used. 
In conclusion, using ATOMOS and transactional programming simplifies the design of programs. Rather than explicitly implementing synchronization, the programmer specifies sections in the code that must execute atomically. Further, ATOMOS supports an efficient variant of conditional critical regions. Open nesting increases the performance by reducing the isolation among the transactions, such that intermediate results become visible to other transactions. The evaluation show that using ATOMOS results in linear speedup in many cases, in contrast to the lock based method employed in Java. 

Process P3 {�  wait(s);�  ...�  d.a++;�  ...�  signal(s);�}





Process P2 {�  wait(s);�  ...�  d.b++;�  ...�  signal(s);�}





Process P1 {�  wait(s);�  ...�  d.a++;�  ...�  signal(s);�}





Process P2 {�  ...�  wait(s2);�  d.b++;�  signal(s2);�  ...�}





Process P1 {�  ...


  wait(s1);�  d.a++;�  signal(s1);�  ...�}





atomic {


  if ( !condition(condition_variables) ) {


    watch condition_variables;


    retry;}�  // critical region�}








