
Thread S
heduling for MultiprogrammedMultipro
essorsNimar S. Arora Robert D. Blumofe C. GregPlaxtonA summary.∗Mattias Erikssonmater�ida.liu.se19th Mar
h 20071 Introdu
tionWhen the paper by Arora et al. was published in 1998 traditional analysis ofthread s
heduling was not multiprogrammed. A set, P , pro
essors was
onsid-ered to be dedi
ated. And the task of the thread s
heduler was to map threadsto the pro
essors with the goal to a
hieve P -fold speedup.In addition to dedi
ated environments this paper studies multiprogrammedenvironments, i.e., the set of pro
essors is not �xed and may vary while the pro-gram is exe
uting. The number of pro
essors available to a
ertain appli
ationis not
ontrolled by the appli
ation itself, but by the kernel level s
heduler.The exe
ution of an appli
ation is
ontrolled by two levels of s
hedulers, auser level s
heduler and a kernel level s
heduler, see Figure 1.
Figure 1: The user level s
heduler maps threads to pro
esses while the kernellevel s
heduler maps pro
esses to a varying set pro
essors.In the analysis of program exe
ution we
onsider the pro
essors to exe
utesyn
hronously in dis
rete time steps1.

∗This was made during the CUGS APP
ourse 2007.1The assumption of syn
hronous exe
ution is not realisti
, but it makes the analysis of1

Listing 1: The work stealing algorithm./∗ On every pro
e s s ∗/Thread ∗ thread = NULL;i f (myRank == 0)thread = rootThread ;while (!
omputationDone){while (thread != NULL){/∗ a l l spawns are pushed on bottom ∗/d i spat
h (thread) ;thread = s e l f −>popBottom () ;}/∗ no more work , be
ome THIEF ∗/y i e l d () ; /∗ but f i r s t , g i v e up the
pu ∗/Pro
ess ∗ vi
t im = randomPro
ess () ;thread = vi
t im−>deque . popTop () ;} We de�ne pi to be the number of available pro
essors at time step i ∈ N,and the pro
essor average over T time steps to be
PA =

1

T

T∑

i=1

piMany of the proofs in the paper is based on bounding the exe
ution time, T ,by
onsidering
1

PA

T∑

i=1

pi2 The work stealing algorithmThe proposed user level s
heduler is based on work stealing. One pro
ess,
alledthe root pro
ess, begins the exe
ution on the initial thread. The rest of thepro
esses, whi
h do not have any work, are thiefs. A thief will try to stealwork from a random pro
ess, and when it su

eeds it will reform and be
ome aregular worker. A sket
h of the work stealing algorithm is shown in Listing 1.The work stealing algorithm relies on every pro
ess having a lo
al dequewith threads ready to be exe
uted. If a thread spawns a new thread during itsexe
ution this new thread (or the running thread) is pushed on the bottom ofthe lo
al deque. And when a pro
ess is blo
ked or �nished exe
uting a thread itpops another thread from the bottom of the lo
al deque and exe
utes that one.When a pro
ess steals itpops a thread of the top of another pro
ess' deque.Sin
e more than one pro
ess may a

ess a
ertain deque
on
urrently thereis a need for syn
hronization. All the dequeus are implemented with lo
k-freesyn
hronization by using a
ompare-and-swap operation supported by hardware.program exe
ution simpler. The assumption is not ne
essary for the proposed user levels
heduler to work. 2

See Figure 2 for a sket
h of the deque. The deque operations are lo
k-free, andthis is
leverly made possible by an additional tag-value used together with the
as-operation. The pri
e for having a lo
k-free implementation is in this
asethat the popTop-operation
an fail, that is, not returning a thread to the
allereven if there is one available.
Figure 2: There is a deque on every pro
ess. It supports the operations pop-Bottom(), popTop() and pushBottom() (but no pushTop()!).3 The adversaryThe fo
us in the paper is on the user-level s
heduler, and the kernel is viewedas an adversary. There are three kinds of adversaries

• Benign adversary
hooses pi for ea
h time step i and sele
ts pro
esses toexe
ute at random,
• Oblivious adversary
hooses (o�-line) both pi and whi
h pro
esses to ex-e
ute at ea
h time step,
• Adaptive adversary does the same as the oblivious adversary but on-line.To
reate good s
hedules when an adversary makes the kernel s
hedule re-quires us to use yield system
alls. When the adversary is benign we do not needa yield system
all to get good expe
ted exe
ution times. In the presen
e of anoblivious adversary we use a yieldTo(x)
all that restri
ts the kernel s
hedulesu
h that the pro
ess that
alled yieldTo(x) will not be exe
uted until pro
essx has exe
uted at least on
e. The more powerful adaptive adversary requires amore powerful yield, yieldToAll(). When a pro
ess
alls yieldToAll() it willnot be exe
uted untill all other pro
esses has been exe
uted at least on
e. Notethat the restri
tions imposed by the yield
alls does not put any restri
tions on

pi, only whi
h pro
esses are exe
uted on the available pro
essors.In the presen
e of adversaries and yield system
alls it is proven that whenthe work is T1, the
riti
al path length is T∞ and the number of pro
esses is P

E[T] = O(
T1

PA

+
T∞P

PA

)And for ǫ > 0:
T = O(

T1

PA

+ (T∞ + log(
1

ǫ
))

P

PA

)with probability at least 1− ǫ. With this result we see that if we assume that if
P << T1/T∞ the speedup is linear (asymptoti
aly) sin
e T∞P is insigni�
ant
ompared to T1. 3

