
Split-Ordered Lists: Lock-Free Extensible

Hash Tables (a summary)

Gunnar Johansson

April 4, 2007

1 Introduction

The hash table is a common data structure for applications requiring constant
time insert, delete and find of certain items. The basic idea is to use an array
of buckets, where each bucket stores a list of items. A hash function is used to
determine which bucket a certain item belongs to. Finding or deleting a specific
item amounts to a linear search in a bucket list pointed to by the hash function,
which can be considered a constant time operation if the list is small. When the
number of items grows, constant time operations cannot be guaranteed, so the
hash table needs to be extended. A common way of doing this, is to increase
the size of the bucket array and redistribute the items among the new buckets.

In the context of concurrent programming, the operations find, delete and
resize requires special care since several parallel threads may be accessing the
data structure simultaneously. Previous work on concurrent hash tables have
used lock-based schemes to allow safe operation on individual buckets, or sets of
buckets. These implementations have shown reasonable performance, but they
do not scale well for increasing number of concurrent accesses. Also, in order to
maintain the average constant time complexity, the lock-based schemes tend to
be very complex, especially for the resize operation.

2 Lock-free extensible hash tables

Building on the success of many lock-free data structures, especially lock-free
linked lists, the authors in [Sha06] propose an elegant solution for dealing with
the resize problem. They first note that the main problem with lock-free resiz-
ing/extension lies in the process of moving, or re-locating, items to new buckets.
Current architectures support basic compare-and-swap (CAS) atomicity, which
does not support atomic movement of even a single item. To circumvent this,
the authors propose a solution based on the following idea; rather than moving
the items among the buckets, they move the buckets among the items.

In practice, this means that instead of storing separate lists in each bucket,
each bucket points to a sub-list in one common list as depicted in Figure 1.
The list itself can be made lock-free by using existing implementations, meaning
that the find, delete and insert operations should not introduce any concurrency
problems. Now, if we construct a resize scheme which does not move the list
items, but only direct additional bucket pointers into the list, we should be

1



Figure 1: Split-ordered hash table

able to build a lock-free hash table. Note that the pointer assignments from
bucket-to-list can be made atomic using CAS.

3 Recursive split-ordering

The key to success lies in the correct ordering of the list items. To simplify,
the authors assume a modulo 2i hash function and a hash table size of 2i. For
example, given a table of size 4, this means that key 13 will be in bucket 13
modulo 4 = 1. Note that this is equivalent to saying that the i:th least significant
bits (LSB) of the key determines the bucket. It turns out that the so called
recursive split-ordering is achieved by binary reversal of the keys. For example,
the split-order of key 13 is reverse(1310) = reverse(000011012) = 101100002,
as shown in Figure 1. For technical reasons, it is convenient to include a dummy
node at the start of each sub-list. One can distinguish between dummy nodes
and regular nodes by the LSB of the sort order.

Using this hash and sort strategy fulfills the requirements for our resize
scheme as outlined in the previous section. That is, it performs the resize only
by directing additional pointers into the list, and does not move any items. By
studying the process of increasing the hash table in Figure 1 from size 2 to 4
you note that the list of items is recursively split among the 2 new buckets.
This idea readily generalizes for new resize steps, each doubling the size of the
table. Note also, that even if you have increased the size and recursively split
parts of the list, you can still access items from higher levels of recursion. For
example, key 2 in Figure 1 can be accessed both from bucket 0 and bucket 2.
This means that parallel threads can operate on the hash table even if they
work on different logical sizes, meaning that you have a completely concurrent
resize.

4 Results

To validate the solution, the authors compared it to the currently most efficient
lock-based counterpart of an extensible hash table. The first benchmark showed
that the lock-based version reaches maximum throughput at 24 threads, there-
after it remains at a constant throughput level. At the same time the lock-free
version has two times the amount of throughput at 24 threads, and continues to
improve as the number of threads increase. This shows that the data structure

2



scales reasonably well up to 70 threads, albeit with higher deviation between
measurements. The remainder of the benchmarks point out the same trend -
under low levels of concurrency, the lock-based and lock-free data structures
performs equally well. You note generally, that the lock-free version wins when
you have more than 10 concurrent threads.

5 Conclusion

To summarize, the authors have presented a lock-free extensible hash table based
on the idea of recursive split-ordering. The implementation is simple, and can
be based on existing lock-free linked list data structures. The evaluation shows
that their solution outperforms the current best lock-based counterpart under
high levels of concurrency (more than 10 threads). Moreover, the recursive
split-ordering can possibly also benefit a sequential hash table implementation.

References

[Sha06] Ori Shalev, Nir Shavit, “Split-Ordered Lists: Lock-Free Extensible
Hash Tables”, J. of the ACM 53(3), May 2006, pp. 379-405

3


