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Trees: Basic terminology (1)

C. Kessler, IDA, Linkopings Universitet, 2001.

Examples for tree structures:
+ genealogic trees
(successors of a person)
+ hierarchical classification systems in science and engineering

+ hierarchical organization diagrams
(company: departments, divisions, groups, employees)

+ structured documents
(book: chapters, sections, subsections, paragraphs, ...)

+ expression trees
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Trees: Basic terminology (3)

Formal (inductive) definition of a tree:
All trees are characterized by the following construction rules:

e A single node, with no edges, is a tree.
e LetTy,..., Tk (k> 1) be trees with no nodes in common.
Let r; denote the root of Tj, for 1 <i <Kk.
Letr be a new node.
Then there is a tree T consisting of all nodes and edges of Ty, ..., Ty,
the new node r, and the edges (r,r1), ..., (k).

Remarks on the second rule:
r is the root of the new tree T.
ry,...,rx are children of r and siblings of each other.
Tq,..., T are the subtrees of T.
kis the degree of r.
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Trees: Basic terminology (2)

Tree = set of nodes and edges, T = (V,E).

Nodes v € V store data items in a parent-child relationship.

A parent-child relation between nodes u and v is shown as a directed edge
(uv) €E,fromutov. EcCVxV

Each node in a tree T has at most one parent node:
weV: {(uv)eE:ueV} <1

There is exactly one node that has no parent: the root of T.
The degree of a node veV is the number of its children: |{(v,w) eE: weV}

A node that has no children is called a leaf node.
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Trees: Basic terminology (4)

path t= (v1,Vy,...,\) in T = (V,E) from vy to v; with length | — 1
ifvieVVi, 1<i<l, and (v,Vi;1) €eEVi, 1<i<|

ancestorsofanodeveV: {ueV: JpathfromutovinT}
successorsofanodeveV: {weV: JpathfromvtowinT}

depth d(v) of anode veV
length of longest path from the root to v

height h(v) of a node veV
length of longest path from v to a successor of v
height h(T) of tree T = height of the root of T
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Special kinds of trees

C. Kessler, IDA, Linkopings Universitet, 2001.

Ordered tree: linear order among the children of each node

Binary tree: ordered tree with degree < 2 for each node
= left child, right child

Empty binary tree (A): binary tree with no nodes

Full binary tree: nonempty; degree is either 0 or 2 for each node
Fact: number of leaves = 1 + number of interior nodes (proof by induction)

Perfect binary tree: full, all leaves have the same depth
Fact: number of leaves = 2" for a perfect binary tree of height h
(proof by induction on h)

Complete binary tree: approximation to perfect for 2" < n < 211

Forest: finite set of trees, i.e., multiple roots possible
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ADT Tree (2)

C. Kessler, IDA, Linkopings Universitet, 2001,

Operations on an entire tree T:

SizéT) returns number of nodes of T
Roo(T) returns root node of T

IsRootv, T) returns true iff vis root of T
Depth(v,T) returns depth of vin T
Heightv,T) returns height of vin T
Depth(T) returns length of longest path in T
Height{T) returns height of the root of T
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ADT Tree (1)

C. Kessler, IDA, Linkdpings Universitet, 2001.

Domain: tree nodes, maybe associated with additional information

Operations on a single tree node v:

Paren{v) returns parent of v, or A if v root

Children(v) returns set of children of v, or A if v leaf

FirstChild(v) returns first child of v, or A if v leaf

LeftChild(v), RightChildv) returns left / right child of v, or A if not existing
RightSiblindv) returns right sibling of v, or A if vis a rightmost child
LeftSiblingv) returns left sibling of v, or A if vis a leftmost child

IsLeafv) returns true iff vis a leaf
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Tree representations (1): using pointers

Type Tnode denotes a pointer to a structure storing node information:

record node record

nchilds integer L RC]
child: table<Tnode> [1..nchildg LeftChild RightChild
info: infotype T K] DT T
. e N\ %
For binary trees: L1 1] LT 1]

2 pointers per node, LC and RC

Alternatively, the pointers to a node’s children can be stored in a linked list.
If required, a “backward” pointer to the parent node can be added.

Insertion and deletion take constant time.
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Tree representations (2): array indexing

C. Kessler, IDA, Linkopings Universitet, 2001.

For a complete binary tree holds:
There is exactly one complete binary tree with n nodes.

Implicit representation of edges: Numbering of nodes — index positions

LeftChild(i): 2i +1
(none if 2i+1>n)
RightChildi): 2i + 2
(none if 2i+1>n)
IsLeafi): 2i+1>n
LeftSiblindi): i — 1
(none if i =0 or i odd)
RightSiblindi): i+ 1
(noneifi=n—1orieven)
5063 6370 63 3 62 C 3 50 £ R L0 MO S

Height(i): [log,((n+1)/(i+1))]
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Tree traversals (2)

procedure preordervisit ( nodev)
output v { before any of the subtree nodes are output }
for all u e Children(v) do
preorder visit(u)

procedure postordervisit ( nodev )
for all ue Children(v) do
postordervisit(u)
output v { after all of the subtree nodes have been output }

procedure inorder visit (nodev)  { only for binary trees }
inorder.visit(LC(v))
output v
inorder visit(RC(v))
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Tree traversals (1)

Regard a tree T as a building:
nodes as rooms, edges as doors, root as entry

How to explore an unknown (acyclic) labyrinth and get out again?
Proceed by always keeping a wall to the right!

Generic tree traversal routine:

procedure visit ( nodev)
{ explore subtree rooted at v }
for all ue Children(v) do
visit(u)

Call visit( Roo(T) ): ¢
each node in T will be visited exactly once (proof by induction)
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Implementing Sets and Dictionaries as Binary Search Trees

A binary search tree (BST) is a binary tree such that:

e Information associated with a node includes a key,
— linear ordering of nodes determined by keys.
e The key of each node is:
greater than the keys of all left descendants, and
smaller than the keys of all right descendants.




