
Linköpings universitet
IDA Institutionen för datavetenskap
Christoph Kessler

TENTAMEN

FDA001 Advanced Compiler Construction

7 april 2004, kl 9-13

Name: Personnummer:

Please mark solved problems with X:

Question 1 2 3 4 5 6 7
answered
score

Total score: Grade (U/3/4/5):

Sign. Examinator:

Lokal:

John von Neumann at IDA, and TBA, V¨axjö

Last time to start the exam and earliest time to leave the room is 09:30.

Examinator, presence and jour:

Christoph Kessler (070-3666687), presence (Link¨oping) 09:00–13:00

Welf Löwe, guest examinator (073-0322959); presence (V¨axjö) Joakim Nivre (0470-708992)

Visning:

on request

Admitted material:

dictionary from English to your native language

General instructions

on the back cover (page 2)

1

General instructions

� Enter your name and personnummer on the cover page and use this as cover for your exam
when you hand it in.

� Read all assignments carefully and completely before you begin.

� Use a separate sheet for each assignment.

� Use only one side of each sheet of paper.

� Mark each sheet on top with your name, personnummer, and the course code (FDA001).
Number all your pages consecutively.

This is important because different assignments may be corrected by different examinators
and sent via mail or fax.

� Mark each question that you answered in the table on the cover page.

� Do not use a red pencil.

� You may answer in either English or Swedish.

� Write clearly. Unreadable text will be ignored.

� Be precise in your statements. Unprecise formulations may lead to a reduction of points.

� Motivate clearly all statements and reasoning.

� Explain calculations and solution procedures.

� The assignments arenot ordered according to difficulty.

� You do not need to answerall the questions. About 30 of the maximum possible 80 points
will be sufficient to pass.

Preliminary grading scheme:

passed (3) at 30p, well passed (4) at 40p, excellent (5) at 50p.

2

1. Intermediate representations (10 p)

(a) Modern optimizing compilers use more than one intermediate representation of the source
program. Give a general motivation for this (1p).

(b) Muchnick proposes three levels of intermediate representations. Characterize them (6p).

(c) For each of these three, give an example of a compiler analysis / optimization where that
representation is most appropriate, and explain why (3p).

2. Register allocation (10 p)

(a) Describe the principle of register allocation via graph coloring (5p).

(b) What is register coalescing? How does it fit into a graph-coloring based framework for
register allocation? What are the preconditions for coalescing? What are the advantages and
(potential) disadvantages? (5p)

3. Loop transformations (10 p)

Given the following loop nest:

for i from 1 to Ndo

for j from 1 to Ndo

S : A[i + 1; j] A[i; j] + A[i; j + 1]

(a) Draw the data dependence graph and, for each dependence arc, identify dependence type
(flow/anti/output), distance, and direction, and, where applicable, the carrying loop(s). (4p)

(b) Is it legal to interchange thei and thej loop? If yes, why? If not, why not? (3p)

(c) Describe (in general) how loop interchange can be used to improve data cache utilization.
(3p)

4. Energy and space optimizations (4p)

Alternatively, one of the following questions:

(a) Give two examples of how code generation can optimize code to reduce energy consump-
tion. (4p)

or:

(b) Give an example for an algorithm for instruction scheduling (with a short description)
that aims at minimizing the number of registers used. (4p)

3

5. Instruction scheduling and software pipelining (16p)

Assume you have a VLIW processor with three functional units, a memory access unit for
loads (latency 4cc) and stores (latency 1cc), a multiplier for multiplications (latency 2cc),
and an ALU for all other operations (latency 1cc). All units have occupation time 1 cc.
Hence, load has 3 delay slots, multiplication and branch has 1 delay slot, and the other
operations have no delay slot. All multiplications must be done on the multiplier. You can
issue one long instruction word per clock cycle, each containing (at most) one subinstruction
per functional unit.

Given the following target level program representation (i.e., after instruction selection) of
the main loop of an integer dot product program, shown here as naively scheduled pseudo-
targetcode for the architecture described above:

Loop: // invariant: loop counter in symb. reg.v1
S1 v2 mult #4; v1 // integer multiplication

(nop) // multiplication delay slot
S2 v3 load 0x18f0(v2) // integer loadA[i]
S3 v4 load 0x1a20(v2) // integer loadB[i]

(nop) // load delay slot
(nop) // load delay slot
(nop) // load delay slot

S4 v5 mult v3; v4 // integer multiplication
(nop) // multiplication delay slot

S5 v6 add v6; v5 // integer addition
S6 v1 add v1; #1 // integer addition
S7 v7 comparev1, #100 // integer compare to loop counter inv1
S8 branch to Loop if v7! = 0 // differ! do next of 100 iterations

(nop) // branch delay slot – even if branch is taken
Exit: // now the dot product result is inv6

(a) Draw the data dependence graph for the loop. (3p) (Hint: Do not forget anti-dependences,
loop-carried dependences and control dependences.)

(b) Suggest (any) better (in terms of execution time) schedule for a single loop iteration than
the naive schedule given above. (1p)

(c) Give the largest lower bound for the minimum initiation interval based on resource con-
straints. (2p)

(d) Give the largest lower bound for the minimum initiation interval based on recurrence
constraints. (2p)

(e) Construct a modulo reservation table for the initiation intervalII = 5 and construct
a modulo schedule. (8p) (Hint: Note thatv1 can be overwritten byS6 as soon asS1 has
executed for 1 cycle (early operand read phase). Begin placing instructions with the longest
dependencecycle.)

4

