TDDB56 DALGOPT-D — Lecture 12: Graphs, part I1l. Page 1 C. Kessler, IDA, Linkdpings Universitet, 2001.

DFS and Strongly Connected Components for Directed Graphs

Consider DFS, recursive formulation, for a directed graph G = (V, E).

procedure DepthFirstSearch (Graph G = (V, E))
for each v € V do visited[v] < false;
for each v € V do
if not visitedjv| then DFS(v);

procedure DFS (vertex v)
visited[v] + true
previsit(v) { some operation on v before visiting the neighbors }
for all w with (v,w) € E
if not visitedjw] then DFS(w)
postvisit(v) { some other operation on v after visiting the neighbors }

TDDB56 DALGOPT-D — Lecture 12: Graphs, part I1l. Page 3 C. Kessler, IDA, Linkdpings Universitet, 2001.

Extend DFS by conceptual computation of 7', F', B, C

Add 2 numbers to each vertex v:
dfsnum(v): order of recursive DFS calls (previsit order)
compnum(v): order of completion of DFS calls (postvisit order)

procedure DepthFirstSearch (Graph G = (V, E))
counti< 0
count2— 0
(T,F,B,C+« 0}
for each v € V do visited[v] < false;
for each v € V do
if not visited[v] then DFS(v);

TDDB56 DALGOPT-D — Lecture 12: Graphs, part 1l Page 2 C. Kessler, IDA, Linkdpings Universitet, 2001.

DFS for directed graphs

Call DFS(v) inspects all edges and vertices reachable from v
We can classify the edges in 4 classes, T', F, B, C

e Tree edges T'

= edges that DFS follows by its recursive calls
e Forward edges F

= edges (v, w) where w already visited and v —}. w

(there is a path from v to w consisting only of tree edges)

e Backward edges B

= edges (v, w) where w already visited and w —, v
e Cross edges C

= all other edges, i.e., w already visited and neither v —, w nor w —. v

TDDB56 DALGOPT-D — Lecture 12: Graphs, part Il Page 4 C. Kessler, IDA, Linképings Universitet, 2001.

Extend DFS by conceptual computation of 7', F, B, C (cont.)

procedure DFS (vertex v)
visited[v] +— true
countls—countl+1; dfsnum|v] < countl
for all w with (v,w) € E
if not visitedw]
then
{T«TUu{(lv,w)}}
DFS(w)
{ else { w visited earlier }
ifv —% w then F + F U {(v,w)}
elseif w — . v then B <+~ BU {(v,w)}
else B+ BU{(v,w)} }

count2—count2+1; compnum|v] < count?

TDDB56 DALGOPT-D — Lecture 12: Graphs, part I1l. Page 5

DFS Theorem

C. Kessler, IDA, Linkdpings Universitet, 2001.

Lemma 1: DFS needs time O(|V| + | E|).

Lemma 2: (Properties of the extended algorithm)

(&) T, F, B, C'is a partition of E.

(b) T corresponds to the call tree of DFS.

(©)v —rw & dfsnumfv] < dfsnum|w| and compnum|w| < compnum|v]

(d) For all (v,w) € E:
(v,w) € TUF & dfsnumfv] < dfsnum|w)
(e) For all (v,w) € E:

(v,w) € B & dfsnum|w| < dfsnum|v] and compnum|w| > compnum|v)

(f) For all (v, w) € E:
(v,w) € C & dfsnum|w] < dfsnum|v] and compnum|w| < compnum|v]

TDDB56 DALGOPT-D — Lecture 12: Graphs, part I1l. Page 7

Strongly Connected Components of a directed graph

C. Kessler, IDA, Linkdpings Universitet, 2001.

An application of DFS.
A directed graph G = (V, E) is strongly connected iff Vv, w € V: v —* w.

The strongly connected components (SCC) of G are
the maximal (wrt. set inclusion) strongly connected subgraphs of G.

QH = *QW

Cy={b,c,e, f, 9}

Cs = {d}

Cy = {h}
< .-°C L
Noo------ - 2 Application of SCCs:
HON Identifying loops in
G low-level code

TDDB56 DALGOPT-D — Lecture 12: Graphs, part 1l Page 6 C. Kessler, IDA, Linkdpings Universitet, 2001.

DFS Theorem (cont.)

(9) For v, w, z € V with v —7}, w, (w, z) € E, and not v —, z, holds:
(i) dfsnum[z] < dfsnum|v]
(i) (w,2) e BUC
(iii) compnum|z] > compnum|v] < (w,z) € B
(iv) compnum|z] < compnum|v] & (w,z) € C

Lemma 2 allows algorithmic classification from dfsnum and compnum.

For acyclic graphs, B = {:

for all (v, w) € E: compnum[v] > compnum|w].

Thus, num(v] = n+ 1 — compnum|v] forallv € V
yields a topological order — alternative to TOPSORT

TDDB56 DALGOPT-D — Lecture 12: Graphs, part Ill. Page 8 C. Kessler, IDA, Linkdpings Universitet, 2001.

Computing the strongly connected components of a directed graph

The SCCs can be computed in time ©(|V| + |E|) by an extension of DFS.
Use the transposed graph GT = (V, ET) with ET = {(v,u) : (u,v) € E}.
G (adjacency list repres.) can be computed from G in time O(|V| + | E|).
Note: G and G* have the same SCCs.

1. DepthFirstSearch(G) to compute compnum|v] for each v € V
2. compute GT from G
3. DepthFirstSearch(GT), but in the main loop consider
the vertices v in order of decreasing compnum[v]
4. output the vertices of each tree in the DFS forest of step 3
as a separate SCC

Proof: see [Cormen/Leiserson/Rivest, chapter 23.5]

