Introduction to SSA

Outline

Construction, Destruction
How to capture analysis results

Optimizations

= Classic analyses and optimizations on SSA representations

= Heap analyses and optimizations
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Context-insensitive
Data flow analysis
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Context-sensitive analysis revisited

= Distinguish different call context of a method
= |In general: Distinguish different execution path ending at

and getting joined at

a program point

= Exponentially (in program size) many path in a sequential program

= Exponentially many analysis values

= (Let away the problem of context sensitive analysis) How to
capture the context-sensitive results efficiently?

Context-sensitive
Data flow analysis
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/Representation of context in decision tables

Exponentially large! Too much redundancy!

Concept of y terms
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Advantages of y-Terms

= Compact representation of context sensitive information
= Delayed widening (recall abstract interpretation) of terms until no more memory:
no unnecessary loss of information

73(12(x1(4,5),01(5,8)),72(x1(4,5),6)) = 1(12({4,5},{5,6}),12({4,5},6)) &
1({4,5,6},{4,5,6)) = {456} E[4,6] E T

= y-Terms are implementation of decision diagrams.

= Adaptation of OBDD implementation techniques.

= Symbolic computation with x-terms (simplification of terms),

= Transition of the idea of SSA ¢-function to data-flow values

= Particularly interesting for address values in order to distinguish memory
partitions as long as possible

DFA on SSA (cont.)

= Provided that transfer functions are monotone: x <y = T,,(x)
< T,(y) withx,y € U, x ... x U, and < defined element-wise
with c of the respective analysis values U;

= The following iteration terminates in a unique fixed point
Initialize the input of each node the SSA graph with the smallest
(bottom) element of the Lattice/CPO corresponding its abstract
semantics type
Initialize the start nodes of the SSA graph with proper abstract values
of the corresponding its abstract types
Attach each node with its corresponding transfer function
Compute abstract output values of the nodes

« Any fair random selection of nodes terminates

« Fewer updates use SCC and interval analysis to determine a traversal
strategy, backward problems analyzed analogously)

New transfer functions

= ¢-node’ s transfer functions:
= Insensitive: Ty=u =a( i) U ... Ua( i)
= Sensitive: S, =y, (a'(i1), ... a'(ix)) with b block number of the ¢-node

= Ordinary operation’s (t node’s) transfer functions:
= Insensitive (w.l.o.g. binary operation): 7,: U,x U, — U,
= Sensitive: S;: X, x X, —> X.and for a,a, € U,, U, and t,t,e X,, X:
Sc(ar,ay)=Te(ar, ay)
S (et 12) 3 2830 13) ) = Al Se(COF(na(11,12), 20, 1), 608, (83,14) 11 1)),
Sa(Cof((t1,12)x4:2), €081, (13,14),%1:2)))
with & larger of x,y and cof the co-factorization
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Data-Flow Analyses (DFA) on SSA

= Each SSA node type n has a concrete semantics [r],
= On execution of n, map inputs i to outputs o and o= [r](i)
= inputs i and outputs o are records of typed values (P1)
= [n] :: type(in) x ... x type(ik) — type(o1) x ... x type(or)
= Each static data-flow analysis abstracts from concrete semantics and
values
= Abstract semantics 7 is called transfer function of node type n
= On analysis of n, map abstract analysis inputs a(i) to abstract analysis
outputs a(o) and a(o) = Tn( a(i) )
= T type(a( i) x ... x type(a( ix)) — type(a( 01)) x ... x type(a( o1))
= For each abstract analysis semantics value representation U = type(a(e))
— analysis universe — there is a partial order relation < and a meet
operation U (supremum),
= c:UxU
= U:UxU—>Uwithu=Ty
= (U, <) defines a complete partial order
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Generalization to y-terms
= Given such a context-insensitive analysis (lattices for
abstract values, set of transfer functions, initialization of start
node) we can systematically construct a context-sensitive
analysis
= y-term algebras X over abstract semantic values a € U
introduced
"aeU=aeXy
= ,h e X =y, b) e Xy
= Induces sensitive CPO for abstract values (X, £) and
fora,,a, e Uand ¢, ,t, ,t; 14 € Xy
aca;=a Ea
xi(ar, @) E a1V ay
HE b3, hE ty= xi(th, ) E xilts, ta)
= New transfer functions on X are induced
10
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Sensitive Transfer Schema (case a)
=
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Sensitive Transfer Schema (case b)
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Example revisited: insensitive
= SSA node ®
= Semantic
= [@]:: Int x Int — Int
= [@](a,b) = ath
= Abstract Int values { L, 1,2, ..., maxint, T}
= Context-insensitive transfer function:
= To(L,x)=Tex, L)=1
= To(T,x)=Tex, T)=T
= Te(a,b) = [®](a,b) = a+b for a,b € Int
= Context-insensitive meet function
= To(L,x)=To(x, L)=x
= To(T,x)=Ts(x, T)=T
= To(x,x)=x
= Tolx,y)=T
15
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Context-sensitive a ® b
So( 750:1(1,2),72(11(1,2),.2)) , 72(3,4) )
=23 Sa(COf(15(1(1,2),12(1(1,2),2)), 7:,1),60f(12(3.4), 1:,1)),
Se(Cof(((1,2),02(1:(1,2),2)), 1,2),€0f(12(3.4), 1:,2)))
=150 Se(11(1,2),72(3.4)),
So(r2(1(1,2),2), 12(3,4)))
=73 72(S@(COf( (1,2), 72,1),60f(12(3.4), 12,1)) ,
Se(cof((1,2), 12,2),c0f(12(3,4), 12,2)) ),
128 (Cof(r2(11(1,2),2), 72,1),60f(12(3.4), 12,1)) ,
Se(cof((1(1,2),2), 72,2),60f(12(3.4), 12,2)) ))
= 22(S@(1(1,2), 3)
Sa(1(1,2),4)),
72(Se((1,2),3),
Sa(2,4) )
17
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Co-factorization

= cof(y.(t,t),x.1) selects the i-th branch of a y-term if .=y,
and returns the whole y-term, otherwise

= cof(y{t,0) 1) =4
= cof(y.(t,62)2) =t
= cof(ulti2)ml) = xaltrst2)

iff k£ =x (case a)
iff k =x (case a)
iff k£ > x (case b)

14
14
Context-sensitive ¢-node transfer
function
a= 16
16
Context-sensitive a ® b (cont.)
S 1a(1(1,2)72(11(12)2)) , 72(3.4) ) = ...
= 7s( 72(Se(r1(1,2), 3), Se(11(1,2),4) )s 22(Se(11(1,2),3), Se(2,4) )
= 7s( 72(Se(r1(1,2), 3), Se(11(1,2),4) )s 22(Se(11(1,2),3), 6 )
= /( x2(11(4,5), 5.6 ) 22(71(4,5), 6 )
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Example Example (cont’'d)

Given the SSA fragment on the left x=1 = Context-insensitive, initial situation:

= Perform context-insensitive whlle_true
data-flow analysis (using the ,x+_1
definitions on the previous print(x)
slides). What is the the value at
the entry of node x?

= Perform context-sensitive data-
flow analysis (using the
definitions on the previous
slides). What is the the value at
the entry of node x?

= Why is the former less precise
than the latter?

= Construct a scenario where you
could take advantage of that
precision in an optimization!

19 20

Example (cont’d) Example (cont’d)

= Context-insensitive, after first iteration: = Context-insensitive, after second iteration (stable):

21 22

21 22

Example (cont’d) Example (cont’d)

= Context-sensitive, initial situation: = Context-sensitive, after first iteration:

So(xi(1, 1), 1) =
u(To (1, 1), Te(L,1) =
21(2, 1)

23 24

23 24



Example (cont'd)

= Context-sensitive, after second iteration:

Sow(1,2), 1) =
u(Te (1,1, Te, 1) =
%1(2, 3)

%L x1(2, L)) =
21(1, V(2 1)) =
x1(1, 2)

25

Outline

= Introduction to SSA

= Construction, Destruction

= How to capture analysis results

= Optimizations
= Classic analyses and optimizations on SSA representations
= Heap analyses and optimizations

27

Optimization: Implementation

= Legal transformations in SSA-Graphs:
= Simplifying transformations reduce the costs of a program

= Preparative transformations allow the application of simplifying
transformations

= Using

= Algebraic Identities (e.g., Associative / Distributive law for certain

operations)
= Moving of operations
= Reduction of dependencies

25

27

= Optimization is a sequence of goal directed, legal simplifying

and legal preparative transformations
= Legibility proven
= Locally by checking preconditions
= Due to static data-flow analyses

29
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Example (cont’'d)

= Context-sensitive, after third iteration (stable):

x1(1, %1(2, 3)) =
x1(1, V(2, 3)) =

26

28

30

Se@i(1, T), 1) =
u(Te (1, 1), Te(T, 1) =
112, T)

%11, T)

Analyses and Optimizations

Analyses in Compiler Construction allow to safely perform optimizations
Cost model: runtime of a program
= Statically only conservative approximations
 Loop iterations
+ Conditional code
= Even for linear code not known in advance:
« Instruction scheduling
« Cache access is data dependent
« Instruction pipelining: execution time is not the sum of individual operations costs
Alternative cost models:
= memory size, power consumptions
= Same non-decidability problem as for execution time
Caution: cost of a program = sum of costs of its elements

28
Algebraic ldentity: Elimination of
Operations and its Inverse
X y X gy
=
~211 No side effects in
2] Nosideeh
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Graph Rewrite Schema

31

33

SSA-subgraph before

SSA-subgraph after
Transformation

L)

Transformation

=

Precondition
established by local check
preparative analyses

Elimination of Duplicated Memory

Operations
o]
=> ]
[a] # void

35

Algebraic Identity: Invariant
Compares

31

33

Elimination of Memory Operation and

32

its Inverse

34

32

Elimination of non-essential
dependencies

=
u2ndl=g
d1nd2=9
ulnd2=9g

Op1, Op2 memory operations (store, call)
u1, u2, d1, d2 designate may Use/Define sets
Computed in P2A

Associative Law

associative




37

39

41

Distributive Law

distributive

Constant Folding

Evaluation using source algebra
or target algebra (if allowed by source language)

General: Moving arithmetic
operations over ¢-functions

No side
effects
int
(no call, store)

37

39

41

Operator Simplification

38
Constant folding over ¢-functions
Const || Const Const || Const
i el
=
40
Optimizations

= Strength reduction:
= Bauer & Samelson 1959
= Replace expensive by cheep operations
+ Loops contain multiplications with iteration variable,
« These operations could be replaced by add operations (Induction

analysis)

= One of the oldest optimizations: already in Fortran I-compiler
(1954/55) and Algol 58/60- compiler
= Partial redundancy elimination (PRE):

= Morel & Renvoise 1978

= Eliminate partially redundant computations
* SSA eliminates all static but not dynamic redundancies
» Problem on SSA: which is the best block to perform the computation
» Move loop invariant computations out of loops, into conditionals

= subsumes a number of simpler optimization

42



Example: Strength reduction

for (i=0;i<n;i++){
for (j=0;j<n;j++){ adda=>a[0,0]<
b[i,jl=ali,jl; addb=>b[0,0]<
} d=4
3 addend=adda+n*n*d;
LOOP: jump(addend==adda) END
//0riginal loop body: <addb>=<adda>
ao = i*n¥d + j*d adda=adda+d
aij = >a[0,0]<+ao addb=addb+d
bo = i*n*d + j*d jump LOOP
b1 j = >b[0,0]<+bo END: exit
<bij> = <aij>
43
43
Induction Transformation Idea
= Transformation goal: values of induction variables should
grow linearly with iteration; add operations replace muTt
operations
= Transformation:
= Let i, initialization of i and induction variables, i := i+c and
i"=c'*it "
= New variable ia initialized ia := ¢'* iy +c"
= Atloop end insertia=ia +c¢'* ¢
= Replace consistently operands i' by ia
= Remove all assignments to i, i'and j, i'"themselves if i is not used
elsewhere (DFA
= Example:
= Before: Toop ao = i d+j*d .. j++ end loop
= After: aoa = i*n*d loop..aoa = aoa + d end loop
45
45
\ Start | B )
sum(array[int] a){
o 4 =0;
\ for (i=0;1<=100;i++) {
= - - i=afi] + =5
n | vz : }
return s;};
Consti / | [Consti 4
B4
B3
- «

47

Induction Analysis ldea

= Find Induction variable i for a loop using DFA

= jis induction variable if in loop only assignments of form

= Example (cont'd), consider the inner loop:

44

i

i+c with loop constant ¢ or, recursively,

i=c"*i'"+¢"with i" induction variable and loop constants ¢, ¢"

= cis a loop constant iff c does not change value in loop, i.e.

« ¢ is static constant,
« ¢ defined in enclosing loop

for (j=0;j<n;j++){..}

= Direct induction variable: j, as j=j+1 (c=1)

= Indirect induction variable: ao=1*n*d+j*d (c'=d, ¢"=1%n*d)

= Note that i*n*d and d are loop constants for the inner loop

Induction Analysis: Implementation

Assume initially optimistically: all variables are induction
variables
Finding induction variable i for a loop follows definition

Iteratively until fix point: i is not induction variable if not:

(indirect induction variable)

+c with loop constants ¢ (direct induction variable)
"*i"+¢" with i" induction variable and loop constants ¢’ ¢"

= On SSA, simplifications of that analysis are possible
Any direct loop variable corresponds to a cyclic subgraph over

46

i= GG .0,

Find Strongly Connected Component (SCC) and check those
subgraphs for the direct induction variable condition first

Then find the indirect induction variables

Start

|
\

Bl

sum(array[int] a) {

=0;

for (1i=0;i<=100;i++) {
t=ali] + =5

}

return s;};

:

:
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Induction Variables (Schematic)
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Conditional jump Integrate 49

Invariant Comparison (x4) then constant folding and
removal of operation and its invariant (/4 x4)

ﬁy@
(o)

/4

"
(<) @

51

Removal of operation and its inverse

Move x over ¢-function
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Distributive Law then constant folding
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Move + over ¢-function
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Associative Law

ﬁao
RO
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Invariant Comparison (+ag) then
removal of operation and its inverse
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Removal of operation and its inverse

56
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Rearranging the drawing
T\
+ doy
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‘/u\\ Strt u} ‘ ! sum(array[int] a) {
W Consti 400 fo;(jo.lzo;i<:100;i++) {

| F i=ali] + =5

}

/ return s;};
L /] = ||, e
B2 L /nn = |- [ Consti 4 |
s o
1
—

B3

B4|
o
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sum(array[int] a) {
= 0;
for (i=0;i<=100;i++) {
i=a[i] + =;

}

return s;};

61
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79

B3

ul
return

Observations

Order of optimizations matters in theory:
= Application of one optimization might destroy precondition of another
= Optimization can ruin the effects of the previous once

Optimal order unclear (in scientific papers usual statements
like: “Assume my optimization is the last ...”

Simultaneous optimization too complex

Usually, first optimization gives 15% sum of remaining 5%,
independent of the chosen optimizations

Might differ in certain application domains, e.g., in numerical

applications operator simplification gives factor >2, cache
optimization factor 2-5

7

Optimizations on Memory

Elimination of memory accesses.

Elimination of object creations.

Elimination nonessential dependencies.

Those are normalizing transformations for further analyses

Nothing new under the sun:
Define abstract values, addresses, memory

Define context-insensitive transfer functions for memory relevant
SSA nodes (Load, Store, Call) (discussed already)

Generalization to context-sensitive analyses (discussed already)

Optimizations as graph transformations (discussed already)

79

Further Optimizations

= Constant evaluation (simple transformation rule)

= Constant propagation (iterative application of that rule)

= Copy propagation (on SSA construction)

= Dead code elimination (on SSA construction)

= Common subexpression elimination (on SSA construction)

= Specialization of basic blocks, procedures, i.e.cloning
= Procedure inlining

= Control flow simplifications

= Loop transformations (Splitting/merging/unrolling)

= Bound check eliminations

= Cache optimizations (array access, object layout)

= Parallelization

76
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Outline

= |ntroduction to SSA

= Construction, Destruction

= How to capture analysis results

= Optimizations
= Classic analyses and optimizations on SSA representations
= Heap analyses and optimizations

78

78

Memory Values

= Differentiation by Name Schema

= Distinguish e.g.:

local arrays with different name

disjoint index sets in an array (odd/even etc.)
different types of heap objects

objects with same type but statically different creation program point
objects with same creation program point but with statically different
path to that creation program point (execution context, context-
sensitive)

80
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Abstract values, addresses, memory

= References and values
= allocation site lattice ® abstracts from objects 0
= arbitrary lattice X abstracts from values like Integer or Boolean
= abstract heap memory M:
« O0xF — ®? (F set of fields with reference object semantics)
¢« OxV —X (Vsetof fields with value semantics)
= Arrays
= Treated as objects
= Abstract heap memory M:
e 0xF[] x I—-0 (Fn set of fields with type array of reference object)
e 0xV[] x I—X (V1 set of fields with type array of value)
e I anarbitrary integer value lattice (e.g., constant or interval lattice)
= Abstract address Addr — ®° x F x I (F set of field names)
= object-field-(index) triples where index might be ignored

81
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Transfer functions (insensitive, no arrays)

= Tstores (mem, addr, v) :
(update(mem, oy, f, v)... update(mem, oy, f, v))
addr = {o, ... ox} ’
= Tioadt (mem, addr) : "
(mem, mem(o1) U ... U mem(ox)) oo
m'v

- Talluc(type,id) (mem) :
(mem(oyq4, fi) ¥ L)...mem(0ia, ) = L], {0i})
{fi ... fi} fields of Type

83

83

Example: SSA

Initialization Vector<T> Veclter<T>
init(int size) boolean hasNext()
Veclter iter() ——{ T next()
T times(Vector)
VectorArray<T> VectorArraylter<T>
Veclter iter() boolean hasNext()
T next()
il = iterQ;
i2 = v.iterQ;

for (s = 0; il.hasNext(Q); )
s = s+il.next()*i2.next();

82

84

Updates of Memory

Given an abstract object-field of a store operation

In general, this abstract object points to more than one real memory cell

A store operation overwrites only one of these cells, all others contain

the same value

Hence, a store to an abstract object-field adds a new possible (abstract)

value - weak update

Only if guaranteed that abstract object-field-(index) matches one and

only one concrete address, a new (abstract) value overwrites the old

value - strong update

Auxiliary function:

update(mem, o, f, v) =V (if strong update possible)
=mem(o, fyu v (otherwise, weak update)

Example:
Main Loop Inner Product Algorithm
Vector<T> Vectorlter<T>
init(int size) boolean hasNext()
Veclter iter(). T next()
T time§(Vector)

Vecto rArrayE«T['> VectorArraylter<T>

boolean hasNext()

Veclter iter(} ety
nexi

T times(vector v){
il = iterQ;
i2 = v.iter(Q;
for (s = 0; il.hasNext(Q; )
s = s+il.next()*i2.nextQ);

Actually, two lterators

Initialization

Elimination
of nonessential
dependencies

12



Initialization: disjoint memory
guarantied

Elimination
of unnecessary heap
memory accesses

87

Value numbering proofs equivalence

89

Outline

= Introduction to SSA

= Construction, Destruction

= How to capture analysis results

= Optimizations
= Classic analyses and optimizations on SSA representations
= Heap analyses and optimizations
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91
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Memory objects replaced by values

Example revisited

Optimization only possible due to

joint application of single techniques:
= Interprocedural analysis

= Elimination of polymorphism

= Elimination of nonessential dependencies
= Elimination von memory operations

= Traditional optimizations
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