
1

1

Outline
§ Introduction to SSA
§ Construction, Destruction
§ How to capture analysis results
§ Optimizations

§ Classic analyses and optimizations on SSA representations
§ Heap analyses and optimizations

1

2

Context-sensitive analysis revisited
§ Distinguish different call context of a method
§ In general: Distinguish different execution path ending at

and getting joined at a program point
§ Exponentially (in program size) many path in a sequential program
§ Exponentially many analysis values

§ (Let away the problem of context sensitive analysis) How to
capture the context-sensitive results efficiently?

2

3

Context-insensitive
Data flow analysis

x=1 x=2

y=x
b=3

y=2
b=4

if
2(x+y)>=(a+b)

a=x a=y

x+y = ?{2,3,4}

a+b = ?{4,5,6}

2(x+y) >= a+b ?

3

4

Context-sensitive
Data flow analysis

000 001 010 011 100 101 110 111
x 1 1 1 1 2 2 2 2
y 1 1 2 2 2 2 2 2
a 1 1 1 1 2 2 2 2
b 3 3 4 4 3 3 4 4

Representation of context in decision tables
Exponentially large! Too much redundancy!

x=1 x=2

y=x
b=3

y=2
b=4

if
2(x+y)>=(a+b)

a=x a=y

4

5

c3

c2

c1

c2

3 4

= c3

c2 c2

c1 c1

4 5 6

+

c3

c2 c2

{4,5} {5,6} 6

c3

c2 c2

c1 c1

4 5 6

⊑

1 2x=1 x=2

y=x
b=3

y=2
b=4

a+b

a=x a=y

a + b

5

6

Concept of c terms

c3

c2

c1

c2

3 4

= c3

c2 c2

c1 c1

4 5 6

+

c3

c2 c2

{4,5} {5,6} 6

c3

c2 c2

c1 c1

4 5 6

⊑

1 2x=1 x=2

y=x
b=3

y=2
b=4

a+b

a=x a=y

6

2

7

Advantages of c-Terms
§ Compact representation of context sensitive information
§ Delayed widening (recall abstract interpretation) of terms until no more memory:

no unnecessary loss of information
c3(c2(c1(4,5),c1(5,6)),c2(c1(4,5),6))⊑ c3(c2({4,5},{5,6}),c2({4,5},6)) ⊑
c3({4,5,6},{4,5,6}) = {4,5,6} ⊑ [4,6]⊑⊤

§ c-Terms are implementation of decision diagrams.
§ Adaptation of OBDD implementation techniques.
§ Symbolic computation with c-terms (simplification of terms),
§ Transition of the idea of SSA f-function to data-flow values
§ Particularly interesting for address values in order to distinguish memory

partitions as long as possible

7

8

Data-Flow Analyses (DFA) on SSA
§ Each SSA node type n has a concrete semantics [n],

§ On execution of n, map inputs i to outputs o and o= [n](i)
§ inputs i and outputs o are records of typed values (P1)
§ [n] :: type(i1) ´ … ´ type(ik) ® type(o1) ´ … ´ type(ol)

§ Each static data-flow analysis abstracts from concrete semantics and
values
§ Abstract semantics Tn is called transfer function of node type n
§ On analysis of n, map abstract analysis inputs a(i) to abstract analysis

outputs a(o) and a(o) = Tn(a(i))
§ Tn :: type(a(i1)) ´ … ´ type(a(ik)) ® type(a(o1)) ´ … ´ type(a(ol))

§ For each abstract analysis semantics value representation U = type(a(•))
– analysis universe – there is a partial order relation Í and a meet
operation È (supremum),
§ Í : U ´ U
§ È : U ´ U ® U with È = Tf
§ (U, Í) defines a complete partial order

8

9

DFA on SSA (cont.)
§ Provided that transfer functions are monotone: x £ y Þ Tn(x)
£ Tn(y) with x,y Î U1 ´ … ´ Uk and £ defined element-wise
with Í of the respective analysis values Ui

§ The following iteration terminates in a unique fixed point
§ Initialize the input of each node the SSA graph with the smallest

(bottom) element of the Lattice/CPO corresponding its abstract
semantics type

§ Initialize the start nodes of the SSA graph with proper abstract values
of the corresponding its abstract types

§ Attach each node with its corresponding transfer function
§ Compute abstract output values of the nodes

• Any fair random selection of nodes terminates
• Fewer updates use SCC and interval analysis to determine a traversal

strategy, backward problems analyzed analogously)

9

10

Generalization to c-terms
§ Given such a context-insensitive analysis (lattices for

abstract values, set of transfer functions, initialization of start
node) we can systematically construct a context-sensitive
analysis

§ c-term algebras C over abstract semantic values a Î U
introduced
§ a Î U Þ a Î CU

§ t1 ,t2 Î C Þ ci(t1, t2) Î CU

§ Induces sensitive CPO for abstract values (CU , ⊑) and
for a1 ,a2 Î U and t1 ,t2 ,t3 ,t4 Î CU :
a1 Í a2 Þ a1 ⊑ a2
ci(a1, a2)⊑ a1 È a2
t1 ⊑ t3 , t2 ⊑ t4 Þ ci(t1, t2)⊑ ci(t3, t4)

§ New transfer functions on CU are induced

10

11

New transfer functions
§ f-node’s transfer functions:

§ Insensitive: Tf = È = a(i1) È … È a(ik)
§ Sensitive: Sf = cb (a'(i1), … a'(ik)) with b block number of the f-node

§ Ordinary operation’s (t node’s) transfer functions:
§ Insensitive (w.l.o.g. binary operation): Tt : Ua ´ Ub ® Uc

§ Sensitive: St : Ca ´ Cb ® Cc and for a1,a2 Î Ua , Ub and t1,t2Î Ca , Cb:
St (a1 , a2) = Tt (a1 , a2)
St (cx(t1, t2) , cy(t3, t4)) = ck(St(cof(cx(t1,t2),ck,1),cof(cy(t3,t4),ck,1)),

St(cof(cx(t1,t2),ck,2),cof(cy(t3,t4),ck,2)))
with k larger of x,y and cof the co-factorization

11

12

Sensitive Transfer Schema (case a)

ci ci

t

t t

ci

12

3

13

Sensitive Transfer Schema (case b)

ci

c<i

t

t t

ci

c<i c<i

13

14

Co-factorization
§ cof(cx(t1,t2),ck,i) selects the i-th branch of a c-term if cx=ck

and returns the whole c-term, otherwise

§ cof(cx(t1,t2),ck,1) = t1 iff k = x (case a)
§ cof(cx(t1,t2),ck,2) = t2 iff k = x (case a)
§ cof(cx(t1,t2),ck,i) = cx(t1,t2) iff k > x (case b)

14

15

Example revisited: insensitive
§ SSA node Å
§ Semantic

§ [Å] :: Int ´ Int ® Int
§ [Å](a,b) = a+b

§ Abstract Int values { ⊥, 1,2, …, maxint,⊤}
§ Context-insensitive transfer function:

§ TÅ(⊥, x) = TÅ(x, ⊥) = ⊥
§ TÅ(⊤, x) = TÅ(x, ⊤) = ⊤
§ TÅ(a,b) = [Å](a,b) = a+b for a,b Î Int

§ Context-insensitive meet function
§ Tf(⊥, x) = Tf(x, ⊥) = x
§ Tf(⊤, x) = Tf(x, ⊤) = ⊤
§ Tf(x, x) = x
§ Tf(x, y) = ⊤

15

16

c1

c2

3 4

1 2x=1 x=2

y=x
b=3

y=2
b=4

a+b

a=x a=y

y=

c3

c2

c1

1 2c2

c1

1 2

x=

b=

a=

Context-sensitive f-node transfer
function

16

17

Context-sensitive a Å b
SÅ(c3(c1(1,2),c2(c1(1,2),2)) , c2(3,4))
= c3(SÅ(cof(c3(c1(1,2),c2(c1(1,2),2)), c3,1),cof(c2(3,4), c3,1)),

SÅ(cof(c3(c1(1,2),c2(c1(1,2),2)), c3,2),cof(c2(3,4), c3,2)))
= c3(SÅ(c1(1,2),c2(3,4)),

SÅ(c2(c1(1,2),2), c2(3,4)))
= c3(c2(SÅ(cof(c1(1,2), c2,1),cof(c2(3,4), c2,1)) ,

SÅ(cof(c1(1,2), c2,2),cof(c2(3,4), c2,2))),
c2(SÅ(cof(c2(c1(1,2),2), c2,1),cof(c2(3,4), c2,1)) ,

SÅ(cof(c2(c1(1,2),2), c2,2),cof(c2(3,4), c2,2))))
= c3(c2(SÅ(c1(1,2), 3) ,

SÅ(c1(1,2),4)),
c2(SÅ(c1(1,2),3),

SÅ(2,4)))

17

18

Context-sensitive a Å b (cont.)

SÅ(c3(c1(1,2),c2(c1(1,2),2)) , c2(3,4)) = …
= c3(c2(SÅ(c1(1,2), 3), SÅ(c1(1,2),4)), c2(SÅ(c1(1,2),3), SÅ(2,4)))
= c3(c2(SÅ(c1(1,2), 3), SÅ(c1(1,2),4)), c2(SÅ(c1(1,2),3), 6))
= ...
= c3(c2(c1(4,5), c1(5,6)), c2(c1(4,5), 6))

c2

3 4

= c3

c2 c2

c1 c1

4 5 6

+c3

c2

c1

1 2

18

4

19

Example
Given the SSA fragment on the left
§ Perform context-insensitive

data-flow analysis (using the
definitions on the previous
slides). What is the the value at
the entry of node x?

§ Perform context-sensitive data-
flow analysis (using the
definitions on the previous
slides). What is the the value at
the entry of node x?

§ Why is the former less precise
than the latter?

§ Construct a scenario where you
could take advantage of that
precision in an optimization!

f

1

Å

print

1

x=1
while true

x+=1
print(x)

19

20

Example (cont’d)
§ Context-insensitive, initial situation:

f

1

Å

1

⊥⊥

⊥

⊥⊥

print

20

21

Example (cont’d)
§ Context-insensitive, after first iteration:

f

1

Å

1
21

1

11

print

21

22

Example (cont’d)
§ Context-insensitive, after second iteration (stable):

f

1

Å

1

⊤1

⊤

1⊤

print

22

23

Example (cont’d)
§ Context-sensitive, initial situation:

f

1

Å

1

⊥⊥

⊥

⊥⊥

print

23

24

Example (cont’d)
§ Context-sensitive, after first iteration:

f

1

Å

1
1

c1(1, ⊥)

1

c1(1, ⊥)

SÅ(c1(1, ⊥), 1) =
c1(TÅ (1, 1), TÅ(⊥, 1)) =

c1(2, ⊥)

print

24

5

25

Example (cont’d)
§ Context-sensitive, after second iteration:

f

1

Å

1
1

1

c1(1, c1(2, ⊥)) =
c1(1, È(2, ⊥)) =

c1(1, 2)

SÅ(c1(1, 2), 1) =
c1(TÅ (1, 1), TÅ(2, 1)) =

c1(2, 3)

print

25

26

Example (cont’d)
§ Context-sensitive, after third iteration (stable):

f

1

Å

1
1

1

c1(1, c1(2, 3)) =
c1(1, È(2, 3)) =

c1(1, ⊤)

SÅ(c1(1, ⊤), 1) =
c1(TÅ (1, 1), TÅ(⊤, 1)) =

c1(2, ⊤)

print

26

27

Outline
§ Introduction to SSA
§ Construction, Destruction
§ How to capture analysis results
§ Optimizations

§ Classic analyses and optimizations on SSA representations
§ Heap analyses and optimizations

27

28

Analyses and Optimizations
§ Analyses in Compiler Construction allow to safely perform optimizations
§ Cost model: runtime of a program

§ Statically only conservative approximations
• Loop iterations
• Conditional code

§ Even for linear code not known in advance:
• Instruction scheduling
• Cache access is data dependent
• Instruction pipelining: execution time is not the sum of individual operations costs

§ Alternative cost models:
§ memory size, power consumptions
§ Same non-decidability problem as for execution time

§ Caution: cost of a program ¹ sum of costs of its elements

28

29

Optimization: Implementation
§ Legal transformations in SSA-Graphs:

§ Simplifying transformations reduce the costs of a program
§ Preparative transformations allow the application of simplifying

transformations
§ Using

§ Algebraic Identities (e.g., Associative / Distributive law for certain
operations)

§ Moving of operations
§ Reduction of dependencies

§ Optimization is a sequence of goal directed, legal simplifying
and legal preparative transformations

§ Legibility proven
§ Locally by checking preconditions
§ Due to static data-flow analyses

29

30

Algebraic Identity: Elimination of
Operations and its Inverse

t -1

t

No side effects in
t, t -1

x yxy

30

6

31

Graph Rewrite Schema

t -1

t

No side effects in
t, t -1

x yxy

SSA-subgraph before
Transformation

Precondition
established by local check

preparative analyses

SSA-subgraph after
Transformation

31

32

Elimination of Memory Operation and
its Inverse

Load

Store Store

[a] ¹ void

a vav

32

33

Elimination of Duplicated Memory
Operations

Load

Load

[a] ¹ void

a

Load

a

33

34

Op2 d2
u2

Op1 d1
u1 Op2 Op1

Sync
u2 Ç d1 = Æ
d1 Ç d2 = Æ
u1 Ç d2 = Æ

a

b

c

a

b

c

Elimination of non-essential
dependencies

Op1, Op2 memory operations (store, call)
u1, u2, d1, d2 designate may Use/Define sets

Computed in P2A

34

35

Algebraic Identity: Invariant
Compares

cmp

t
monotone

x y

t

x z

cmp

t

y

35

36

Associative Law

t

t
associative

x y

t

z

t

x y

t

z

36

7

37

Distributive Law

Å

Ä and Å
distributive

x y

Ä

z

Ä

x z

Å

Ä

y

37

38

Operator Simplification

shift

y=2k

x
Const

k

mult

x
Const

y

38

39

Constant Folding

t

Const
x

Const
y

Const
t x y

Evaluation using source algebra
or target algebra (if allowed by source language)

39

40

Constant folding over f-functions

t

f

Const
x

Const
y

Const
z

t

f

Const
t x z

Const
t y z

40

41

General: Moving arithmetic
operations over f-functions

t

f
No side
effects

in t
(no call, store)

x zy

t

z

f

t

yx

t t -1

41

42

Optimizations
§ Strength reduction:

§ Bauer & Samelson 1959
§ Replace expensive by cheep operations

• Loops contain multiplications with iteration variable,
• These operations could be replaced by add operations (Induction

analysis)
§ One of the oldest optimizations: already in Fortran I-compiler

(1954/55) and Algol 58/60- compiler
§ Partial redundancy elimination (PRE):

§ Morel & Renvoise 1978
§ Eliminate partially redundant computations

• SSA eliminates all static but not dynamic redundancies
• Problem on SSA: which is the best block to perform the computation
• Move loop invariant computations out of loops, into conditionals

§ subsumes a number of simpler optimization

42

8

43

Example: Strength reduction
for (i=0;i<n;i++){

for (j=0;j<n;j++){

b[i,j]=a[i,j];

}

}

//Original loop body:

ao = i*n*d + j*d

aij = >a[0,0]<+ao

bo = i*n*d + j*d

bij = >b[0,0]<+bo

<bij> = <aij>

adda=>a[0,0]<

addb=>b[0,0]<

d=4

addend=adda+n*n*d;

LOOP: jump(addend==adda) END

<addb>=<adda>

adda=adda+d

addb=addb+d

jump LOOP

END: exit

43

44

Induction Analysis Idea
§ Find Induction variable i for a loop using DFA

§ i is induction variable if in loop only assignments of form
i := i+c with loop constant c or, recursively,
i := c' *i' + c'' with i' induction variable and loop constants c', c''

§ c is a loop constant iff c does not change value in loop, i.e.
• c is static constant,
• c defined in enclosing loop

§ Example (cont’d), consider the inner loop:
for (j=0;j<n;j++){…}

§ Direct induction variable: j, as j=j+1 (c= 1)
§ Indirect induction variable: ao=i*n*d+j*d (c' = d, c'' = i*n*d)
§ Note that i*n*d and d are loop constants for the inner loop

44

45

Induction Transformation Idea
§ Transformation goal: values of induction variables should

grow linearly with iteration; add operations replace mult
operations

§ Transformation:
§ Let i0 initialization of i and induction variables, i := i+c and

i' := c' *i + c''
§ New variable ia initialized ia := c' * i0 +c''
§ At loop end insert ia= ia + c' * c
§ Replace consistently operands i' by ia
§ Remove all assignments to i, i' and i, i' themselves if i is not used

elsewhere (DFA)
§ Example:

§ Before: loop ao = i*n*d+j*d … j++ end loop

§ After: aoa = i*n*d loop … aoa = aoa + d end loop

45

46

Induction Analysis: Implementation
§ Assume initially optimistically: all variables are induction

variables
§ Finding induction variable i for a loop follows definition
§ Iteratively until fix point: i is not induction variable if not:

§ i := i+c with loop constants c (direct induction variable)
§ i := c' *i' +c'' with i' induction variable and loop constants c', c''

(indirect induction variable)

§ On SSA, simplifications of that analysis are possible
§ Any direct loop variable corresponds to a cyclic subgraph over

i := f(i1…in)
§ Find Strongly Connected Component (SCC) and check those

subgraphs for the direct induction variable condition first
§ Then find the indirect induction variables

46

47

B1
Start

Consti 0

B2
f f

<

sum(array[int] a){
s = 0;
for(i=0;i<=100;i++){

s:=a[i] + s;
}
return s;};

Jmp

B4

Add
i

B4

return

Consti 100

Add
i

f f

B3

Jmp

Addi Muli

Consti 1 Consti 4

fAddi

f

fLoad

fAddi

47

48

B1
Start

Consti 0

B2
f f

<

sum(array[int] a){
s = 0;
for(i=0;i<=100;i++){

s:=a[i] + s;
}
return s;};

Jmp

B4

Add
i

B4

return

Consti 100

Add
i

f f

B3

Jmp

Addi Muli

Consti 1 Consti 4

fAddi

f

fLoad

fAddi

48

9

49

Induction Variables (Schematic)

f

*

+

LD

+

<

100

1

a0

4

0 i

a

Integrate sConditional jump

49

50

Move ´ over f-function

f

*

+

LD

+

<

100

1

a0

4

0

50

51

Invariant Comparison (´4) then constant folding and
removal of operation and its invariant (/4 ´4)

f

+

LD

+

<

100

1

a0

0*4 *4

/4

/4

51

52

Distributive Law then constant folding

f

+

LD

+

<

400

1

a0

0*4

/4

*4

52

53

Removal of operation and its inverse

f

+

LD

+

<

400

4

a0

0

*4 /4

53

54

Move + over f-function

f

+

LD

+

<

400

4

a0

0

54

10

55

Associative Law

f

LD

+

<

400

4

a0+ a0

- a0

- a0

55

56

Removal of operation and its inverse

f

LD

+

<

400

4

a0

- a0

- a0+a0

56

57

Invariant Comparison (+a0) then
removal of operation and its inverse

f

LD

+

<

400

4

a0

- a0

57

58

Rearranging the drawing

f

LD

+

<

400

4

a0

+ a0

58

59

Result

f

LD

+

<

400

4

a0

+

59

60

B1Start

Consti 0

B2
f f

<

sum(array[int] a){
s = 0;
for(i=0;i<=100;i++){

s:=a[i] + s;
}
return s;};

Jmp

B4

Add
i

B4

return

Consti 400

Add
i

f

B3

Jmp

Addi

Consti 4f

fLoad

fAddi

fAddi

60

11

61

B1Start

Consti 0

B2
f f

<

sum(array[int] a){
s = 0;
for(i=0;i<=100;i++){

s:=a[i] + s;
}
return s;};

Jmp

B4

Add
i

B4

return

Consti 100

Add
i

f f

B3

Jmp

Addi Muli

Consti 1 Consti 4

fAddi

f

fLoad

fAddi

61

76

Further Optimizations
§ Constant evaluation (simple transformation rule)
§ Constant propagation (iterative application of that rule)
§ Copy propagation (on SSA construction)
§ Dead code elimination (on SSA construction)
§ Common subexpression elimination (on SSA construction)

§ Specialization of basic blocks, procedures, i.e.cloning
§ Procedure inlining
§ Control flow simplifications
§ Loop transformations (Splitting/merging/unrolling)
§ Bound check eliminations
§ Cache optimizations (array access, object layout)
§ Parallelization
§ …

76

77

Observations
§ Order of optimizations matters in theory:

§ Application of one optimization might destroy precondition of another
§ Optimization can ruin the effects of the previous once

§ Optimal order unclear (in scientific papers usual statements
like: “Assume my optimization is the last …”

§ Simultaneous optimization too complex
§ Usually, first optimization gives 15% sum of remaining 5%,

independent of the chosen optimizations
§ Might differ in certain application domains, e.g., in numerical

applications operator simplification gives factor >2, cache
optimization factor 2-5

77

78

Outline
§ Introduction to SSA
§ Construction, Destruction
§ How to capture analysis results
§ Optimizations

§ Classic analyses and optimizations on SSA representations
§ Heap analyses and optimizations

78

79

Optimizations on Memory
§ Elimination of memory accesses.
§ Elimination of object creations.
§ Elimination nonessential dependencies.
§ Those are normalizing transformations for further analyses

§ Nothing new under the sun:
§ Define abstract values, addresses, memory
§ Define context-insensitive transfer functions for memory relevant

SSA nodes (Load, Store, Call) (discussed already)
§ Generalization to context-sensitive analyses (discussed already)
§ Optimizations as graph transformations (discussed already)

79

80

Memory Values
§ Differentiation by Name Schema
§ Distinguish e.g.:

§ local arrays with different name
§ disjoint index sets in an array (odd/even etc.)
§ different types of heap objects
§ objects with same type but statically different creation program point
§ objects with same creation program point but with statically different

path to that creation program point (execution context, context-
sensitive)

80

12

81

Abstract values, addresses, memory
§ References and values

§ allocation site lattice P O abstracts from objects O
§ arbitrary lattice X abstracts from values like Integer or Boolean
§ abstract heap memory M:

• O ´ F → P O (F set of fields with reference object semantics)
• O ´ V → X (V set of fields with value semantics)

§ Arrays
§ Treated as objects
§ Abstract heap memory M:

• O ´F[] ´ I→O (F[] set of fields with type array of reference object)
• O ´V[] ´ I→X (V[] set of fields with type array of value)
• I an arbitrary integer value lattice (e.g., constant or interval lattice)

§ Abstract address Addr Í P O ´ F ´ I (F set of field names)
§ object-field-(index) triples where index might be ignored

81

82

Updates of Memory
§ Given an abstract object-field of a store operation
§ In general, this abstract object points to more than one real memory cell
§ A store operation overwrites only one of these cells, all others contain

the same value
§ Hence, a store to an abstract object-field adds a new possible (abstract)

value - weak update
§ Only if guaranteed that abstract object-field-(index) matches one and

only one concrete address, a new (abstract) value overwrites the old
value - strong update

§ Auxiliary function:
update(mem, o, f, v) = v (if strong update possible)

= mem(o, f) È v (otherwise, weak update)

82

83

Transfer functions (insensitive, no arrays)

§ Tstore,f (mem, addr, v) :
(update(mem, o1, f, v)… update(mem, ok, f, v))
addr = {o1 … ok}

§ Tload,f (mem, addr) :
(mem, mem(o1) È … È mem(ok))
addr = {o1 … ok}

§ Talloc(type,id) (mem) :
(mem(oid , f1) ↦⊥]…mem(oid , fk) ↦⊥], {oid})
{f1 … fk} fields of Type

Store

m a v

m'

Load

m a

vm'

Alloc

m

om'

Type

f

f

id

83

84

Example:
Main Loop Inner Product Algorithm

Vector<T>
init(int size)
VecIter iter()
T times(Vector)

VectorArray<T>

VecIter iter()

VectorIter<T>

boolean hasNext()
T next()

VectorArrayIter<T>

boolean hasNext()
T next()

T times(Vector v){
i1 = iter();
i2 = v.iter();
for (s = 0; i1.hasNext();)
s = s+i1.next()*i2.next();

}

84

85

Example: SSA

Vector<T>
init(int size)
VecIter iter()
T times(Vector)

VectorArray<T>

VecIter iter()

VecIter<T>

boolean hasNext()
T next()

VectorArrayIter<T>

boolean hasNext()
T next()

i1 = iter();
i2 = v.iter();

Inc

Store

Load

Inc

Store

Load

f

Initialization

T times(Vector v){

for (s = 0; i1.hasNext();)
s = s+i1.next()*i2.next();

}

85

86

Actually, two Iterators

Inc

Store

Load

Inc

Store

Load

f

Initialization

Elimination
of nonessential
dependencies

86

13

87

Initialization: disjoint memory
guarantied

Inc

Store

Load

Inc

Store

Load

f

Inc

Store

Load

Inc

Store

Load

f f

Store Store

00

Alloc Alloc
Initialization

Elimination
of unnecessary heap
memory accesses

87

88

Memory objects replaced by values

Inc

Store

Load

f

Store

0

Alloc

Inc

Store

Load

Store

0

Alloc

f

Load

f f

Inc

Store

Store

0

Alloc

f

Load

Load

f

0

Inc

f

0

Inc

f

Store

Store

Alloc

88

89

Value numbering proofs equivalence

f

0

Inc

f

0

Inc

f

0

Inc

Inc

Store

Load

Inc

Store

Load

f f

Store Store

00

Alloc Alloc

89

90

Example revisited

f

0

Inc

Store

0

Alloc

Store

0

Alloc

Inc

Store

Load

Inc

Store

Load

f

Optimization only possible due to
joint application of single techniques:
§ Interprocedural analysis
§ Elimination of polymorphism
§ Elimination of nonessential dependencies
§ Elimination von memory operations
§ Traditional optimizations

90

91

Outline
§ Introduction to SSA
§ Construction, Destruction
§ How to capture analysis results
§ Optimizations

§ Classic analyses and optimizations on SSA representations
§ Heap analyses and optimizations

91

