
1

Data Flow Analysis and
Abstract Interpretation

Welf Löwe
Welf.Lowe@lnu.se

1

Welf Löwe

§ Professor in Computer Science at Linnaeus University (Sweden) +
Postdoc Berkeley (USA) + PhD Karlsruhe (Germany) + MSc Dresden
(Germany)

§ Co-founder Softwerk AB, DueDive AB, Aimo GmbH
§ Director of Research excellence center “Data Intensive Sciences &

Applications” with an industry grad school “Data Intensive Applications”
§ Current research interests: AI based software solutions
§ 20+ years in compiler construction

§ Grew up in Berlin + moved from Germany to
Sweden in 2002 with three (meanwhile
grown-up) children + married to a professor in
German language and literature + TKD blackbelt +
love to be out in the forests with my dog Maja

http://welf.se

2

3

Outline
Part 1: Data Flow Analysis and Abstract Interpretation
Part 2: Inter-procedural and Points-to analysis
Part 3: Static Single Assignment (SSA) form
Part 4: SSA based optimizations

3

4

Outline Part 1
§ Summary of Data Flow Analysis
§ Problems left open
§ Abstract Interpretation idea

4

5

Complete Partial Order (CPO)
§ Partially ordered sets (U,) over a universe U

§ Smallest element ^ ÎU
§ Partial order relation

§ Ascending chain C=[c1,c2,…] Í U
§ Smallest element c1
§ ci-1 ci

§ Maybe finite or countable: constructor for next element ci =next([c1,c2,…, ci-1])
§ Unique largest element s of the chain C=[c1,c2,…]

§ ci s (larger than all chain elements ci)
§ s called supremum s = (C)

§ Ascending chain property of a universe U: any (may be countable)
ascending chain C Í U has an element ci with
§ i is finite and
§ for all elements c<i ci and
§ for all elements c>i = ci , and hence ci = (C)

§ Example: (P N, Í) and C=[Æ,{1},{1,2},{1,2,3},…], ci= {max(ci-1)+1} È ci-1
s = È(C) = N but, the ascending chain property does not hold!

v

v

v

v
t

v
t

5

6

CPOs and Lattices
§ Lattice L = (U, ,)

§ any two elements a, b of U have
• an infimum (a, b) - unique largest smaller of a, b
• a supremum (a, b) - unique smallest bigger of a, b

§ unique smallest element ^ (bottom)
§ unique largest element (top)

§ A lattice L = (U, ,) defines two CPOs (U,)
§ “upwards”

• a b a b = b, smallest ,̂
• If L finite heights Þ ascending chain property holds (ci =)

§ “downwards”
• b a a b = b (a b = a), smallest ,
• If L finite heights Þ ascending chain property holds (ci =)̂

tu

u

tu
>

,v t
>

v , t , u

t

v

>

6

http://welf.se/

2

7

Special lattices of importance
§ Boolean Lattice over U={true, false}

§ ^= true, T= false, true false, (a,b)=a Ú b, (a,b)=a Ù b
§ Finite heights

§ Generalization: Bit Vector Lattice over U ={true, false}n

§ Finite heights if n is finite

§ Power Set Lattice P S over S (set of all subsets of a set S)
§ ^= Æ, T= S, = Í, (a,b)=a b, (a,b)=a b or the dual lattice
§ ^= S, T= Æ, = , (a,b)=a b, (a,b)=a b
§ Finite heights if S is finite

v t u

v t [u \
v ◆t \ u [

7

8

Functions on CPOs
§ Functions f: U ® U’ (if not indicated otherwise, we assume U = U’)
§ f monotone: x y Þ f(x) f(y) with x, y Î U
§ f continuous: f(C) = f(C) with f(C) = f([x1,x2,…]) = [f(x1),f(x2),…]

§ f continuous Þ f monotone,

§ f monotone Ù (U,) a CPO with ascending chain property Þ f continuous
§ f monotone Ù U is finite Þ f continuous
§ f monotone Ù (U, ,) a lattice with finite heights Þ f continuous

v v
t t

v

tu

8

9

Example
§ Power Set Lattice (PN, È, Ç), U=set of all subsets of Natural numbers N

§ Define a (meaningless) function:
§ f(u) = Æ u Î U finite
§ f(u) = N u Î U infinite

§ f is monotone u Í u’Þ f(u) Í f(u’), e.g.,
§ Æ Í {0} Í {0,1} Í …Þ f(Æ) Í f({0}) Í f({0,1}) Í …= ÆÍÆÍÆÍ …

§ f is not continuous f(È C) ≠ È f(C), e.g.:
§ C= [Æ, {0}, {0,1}, …]
§ f(C) = [f(Æ), f({0}), f({0,1}), …] = [Æ, Æ, Æ, …]
§ È f(C) = È [f(Æ), f({0}), f({0,1}), …] = È [Æ, Æ, Æ, …] = Æ
§ È C = È [Æ, {0}, {0,1}, …] = N
§ f(È C) = f(È [Æ, {0}, {0,1}, …]) = f(N) = N

§ Note: Power Set Lattice (PN, È, Ç) is not of finite heights and ascending
chain property does not hold

,
,

9

10

Fixed Point Theorem (Knaster-Tarski)
Fixed point of a function: X with f(X) = X

For CPO (U,) and monotone functions f: U ® U
§ Minimum (or least or smallest) fixed point X exists
§ X is unique

For CPO (U,) with smallest element ^ and continuous functions f: U ® U
§ Minimum fixed point X = f n(^)
§ X iteratively computable

CPO (U,) fulfills ascending chain property Þ X is computable effectively
Special cases:
§ (U,) with U finite,
§ (U,) defined by a finite heights lattice.

v

v

v

v
v

t

10

11

Monotone DFA Framework
§ Solution of a set of DFA equations is a fix point computation
§ Contribution of a computation A of kind K (Alloc, Add, Load,

Store, Call …) is modeled by monotone transfer function
§ fK: U ® U,
§ Define a set F of transfer functions closed under composition
§ Any composed transfer function is monotone as well

§ Contribution of predecessor computations Pre of A is
modeled by supremum of predecessor analysis values
P(Pre(A)) (successor Succ, resp., for backward problems)

§ Existence of the smallest fix point X is guaranteed, if domain
U of analysis values P(A) completely partially ordered (U,)

§ It is efficiently computable if (U,) additionally fulfills the
ascending chain property

t

v
v

11

12

Monotone DFA Framework (cont’d)
§ Monotone DFA Framework: (U, , F, i)

§ (U,) a CPO of analysis values fulfilling the ascending chain
property

§ F = {fK: U ® U, fK’: U ® U, …} set of monotone transfer functions
(closed under composition, analysis problem specific)

§ i ÎU initial value (analysis problem-specific)
§ Analysis instance of a Monotone DFA Framework is given by a graph G

§ G = (N, E, n1) data flow graph of a specific program, with
§ the start node n1 ÎN

§ ((N ´ U ´ U)|N|, Vector) defines a CPO:
§ Let a=(i, xin, xout), b=(j, yin, yout), a, b Î (N ´ U ´ U)

a Triple b ⇔ i = j !"xin yin !"xout yout

§ Let m= [a1, a2, …,a|N|], n= [b1, b2, …,b|N|], m, n Î (N ´ U ´ U)|N|

m Vector n ⇔ a1
Triple b1 !"a2

Triple b2 !… !"a|N|
Triple b|N|

§ Smallest element is vector [(n1, i , ^), (n2, ^, ^), … ,(n|N|, ^, ^)]

v
v

v

v v v

v v v v

12

3

13

Monotone DFA Framework (cont’d)
§ Data flow equations define monotone functions in (N ´ U ´ U, Triple):

Pin (A) = X ∈ Pre(A) (Pout(X))
Pout(A) = fKind(A) (Pin(A)) with fKind(A) Î F transfer function of A

§ Smallest fix point of this system of equations is efficiently computable
since
§ (N ´ U ´ U) and hence (N ´ U ´ U)|N| completely partially ordered and

fulfill the ascending chain property
§ System of equations defines monotone function in (N ´ U ´ U)|N|

§ Data flow analysis algorithm:
§ Start with the smallest element: [(n1, i , ^), (n2, ^, ^), . . .,(n|N|, ^, ^)]
§ Apply equations in any (fair) order
§ Until no Pin (A) nor Pout(A) changes

vt

13

14

4 DFA Equations Schemata

§ forward and must: Pin(A) = Pout(X)
Pout(A) = Pin(A) - kill (A) È gen(A)

§ backward and must: Pout(A) = Pin(X)
Pin(A) = Pout(A) - kill (A) È gen(A)

§ forward and may: Pin(A) = Pout(X)
Pout(A) = Pin(A) - kill (A) È gen(A)

§ backward and may: Pout(A) = Pin(X)
Pin(A) = Pout(A) - kill (A) È gen(A)

)(APreX Î

Succ(A)X Î

Succ(A)X Î

)(APreX Î
t

u

u

t

sup
fK (Pin(A))

14

15

Initialization
§ Assume a Power Set Lattice PS

§ General initialization with the smallest element ^ for all but
start node n1:
§ may: Initialization with [(n1, i , Æ), (n2, Æ , Æ), . . .,(n|N|, Æ , Æ)] as

empty set Æ is the smallest element for each position
§ must: Initialization with [(n1, i , S), (n2, S, S), . . .,(n|N|, S, S)] as universe

of values S is the smallest element for each position in the inverse
lattice

§ Special (problem specific) initializations i
§ forward: [(n1, i , ^), . . .], the general initialization (Æ or S) is not

defined before the start node
§ backward: [. . . , (ne, ^, i)], the general initialization (Æ or S) is not

defined after the end node

15

16

Example I
§ Property P: x = 1 guaranteed?
§ Universe Boolean, CPO Boolean Lattice
§ Transfer functions: true, false, id

§ Statement A: fA = true
§ Statement B: fB = false
§ Statement C: fC = id i.e., does not change

§ Let PA , PB , PC , PN be values of P after statements A,B,C, (Pout)
§ Let PA , PB , PC , PN be values of P before statements A,B,C, (Pin)
§ Assume a forward – must problem

§ It holds PN = PA Ù PB Ù PC

§ Begin with PA,B,C,N = true before statements (assumption x = 1)
§ Initialization PM = false before statement M is x ¹ 1
§ Iteration leads to fixed point PN = false

§ x := neg x more difficult:
§ Obviously, a naive transfer function for neg is not monotone
§ Conservative transfer function: f = false
§ Conservatively, x = 1 is not guaranteed any more by analysis in some cases where we

(as humans) could see it holds

M: x := 0

A: x := 1 B: x := 0 C: y := 0

N: y := 0

16

17

Example II
§ Property P: x = 1 possible?
§ Universe Boolean, CPO Boolean Lattice
§ Transfer functions identical
§ Forward – may problem

§ PN = PAÚ PB Ú PC

§ Begin with PA,B,C,N = false (assumption x ¹ 1)
§ Initialization PM = false
§ Iteration leads to fixed point PN = true

§ Generalization:
§ Compute properties of several (all) variables in each step
§ Property: are variables equal to a specific constant or are variables actually

compile time constants at a certain program point
§ Universe: Bit vector with a vector element for each variable
§ CPO induced by bit vector lattice

M: x := 0

A: x := 1 B: x := 0 C: y := 0

N: y := 0

17

18

What does Data Flow Analysis?

M: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

18

4

19

Path Graph
§ For nodes n Î N of G=(N, E) define path graph G’(n)=(N’, E’)

contains all paths P ending in n:
§ n' Î P Û n' Î N'
§ (n', n'') Î P Û (n', n'') Î E’

§ The path graph acyclic by definition
§ Since the set of paths to a node n in G is possibly countable

(iff G contains loops) the graph G’(n) is in general not finite

19

20

Example: Path Graph

M: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

M: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

M: x := 0 M: x := 0

N: y := 0 N: y := 0

M: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

M: x := 0 M: x := 0

N: y := 0 N: y := 0

M: x := 0

A: x := 1

N: y := 0

M: x := 0

A: x := 1

N: y := 0

M: x := 0

A: x := 1

N: y := 0

...

A: x := 1

M: x := 0

N: y := 0

M: x := 0

B: x := 0

N: y := 0

20

21

MFP and MOP
For a monotone DFA problem (set of equations) DFE = (U, , F, i) and G
§ Define: Minimum Fixed Point MFP is computed by iteratively applying F

beginning with the smallest element in U
Let DFE’(n) = (U, , F, i) and G’(n) (same equations as DFE, applied to path

graphs)
§ Define: Meet Over all Paths MOP of DFE in (any arbitrary) node n is the

supremum of minimum fix point MFP of DFE’(n) in node n.
§ MFP is equivalent with MOP, if f are distributive over in U (rarely).
§ MFP is a conservative approximation of the MOP (otherwise).
Attention:
§ It is not decidable if a path is actually executable
§ Hence, MOP is already conservative approximation of the envisaged

analysis result since, some paths may be not executable in any program
run

§ MOP ¹ MOEP (meet over all executable paths)

v

v

t
t

21

22

Example for MFP(G) ¹ MOP(G)

z := 0

x := 1
y := 0

z := x+y

x := 0
y :=1

z := 0

x := 1
y := 0

z := x+y

x := 0
y := 1

z := 0

G G'

Constant propagation: (x,y,z) Î {?, 0,1,variable}3

(?,?,?)
(?,?,0)

(?,?,0)
(1,0,0)

(?,?,0)
(0,1,0)

(v,v,0)
(v,v,v) z := x+y

(?,?,?)
(?,?,0)

(?,?,?)
(?,?,0)

(?,?,0)
(1,0,0)

(?,?,0)
(0,1,0)

(1,0,0) (0,1,0)

(1,0,1) (0,1,1)

tMOP: ((1,0,1), (0,1,1)) = (v,v,1)MFP: (v,v,v)

22

23

Errors due to our DFA Method
§ Call Graphs:

§ Nodes – Procedures, Edges – calls
§ Only a conservative approximation of actually possible calls, some

calls represented in the call graph might never occur in any program
run

§ Allows impossible paths like
call ® procedure ® another call

§ Data flow graph of a procedure:
§ Nodes – Statements (Expressions), Edges – (syntactic or essential)

dependencies between them
§ Application of a monotone DFA framework computes MFP not MOP

23

24

Outline
§ Summary of Data Flow Analysis
§ Problems left open
§ Abstract Interpretation idea

24

5

25

Problems left open
§ How to derive the transfer functions for a DFA
§ How to make sure they compute the intended result, i.e.,

§ MOP approximates the intended question, and
§ MOP MFP?v

25

26

Example: Reaching Definitions (Must)
§ Which set of definitions (assignments) reach (are valid in) a node A?
§ Data flow values:

§ Subset of all definition (assignment) nodes {A1... AN}
§ Implementation: bit-vector [{false, true}1 ... {false, true}N] where each position

indicates if a node is in the subset
§ We look at the forward - must version of the problem, hence:

RDin(A) = RDout(X)
RDout(A) = RDin(A) - killRD(A) È genRD(A)

§ Assume A contains assignment x:=expr, then
§ genRD (A) ={A} and
§ killRD (A) = {A’ | A’ contains assignment x:=expr’}
§ otherwise genRD (A) = killRD (A) = Æ
§ statically pre-calculated by checking the variables assigned in each node

§ Initialization:
§ No definition reaches the start node:, i.e., i = RDin(A1) = Æ, but
§ All definitions reach each program point RDin(Ai>1) = RDout(Ai) = {A1... AN}

!
)(APreX Î

26

27

MFPM: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

RDin(M) = Æ Ç RDout(N) = Æ
RDout(M) = RDin(M) -{M,A,B}È{M} = {M}
RDin(A) = RDout(M) = {M}
RDout(A) = RDin(A) -{M,A,B}È{A} = {A}
RDin(B) = RDout(M) = {M}
RDout(B) = RDin(B) -{M,A,B} È{B} = {B}
RDin(C) = RDout(M) = {M}
RDout(C) = RDin(C) -{C,N} È{C} = {M,C}
RDin(N) = RDout(A) Ç RDout(B) Ç RDout(C) = Æ
RDout(N) = RDin(N) -{N,C} È{N} = {N}

27

RDin(M) = Æ = Æ
RDout(M) = RDin(M) - {M,A,B}È{M} = {M}
RDin(A) = RDout(M) = {M}
RDout(A) = RDin(A) - {M,A,B} È {A} = {A}
RDin(N) = RDout(A) = {A}
RDout(N) = RDin(N) -{C} È{N} = {A,N}
RDin(M) = RDout(N) = {A,N}
RDout(M) = RDin(M) - {M,A,B}È{M} = {M,N}
RDin(C) = RDout(M) = {M,N}
RDout(C) = RDin(C) -{N} È{C} = {M,C}
RDin(N) = RDout(C) = {M,C}
RDout(N) = RDin(N) -{C} È{N} = {M,N}

Example RunM: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

28

29

Problem left open
§ How to make sure RD computes the correct result?

§ As intended by the problem
§ Exact result or a conservative approximation

§ Actually, in the example program and the specific run RD behaves
correctly:
§ Static analysis: RDout(N) = {N}
§ Example run: RDout(N) = {A,N}, RDout(N) = {M,N}
§ {A,N} {N} and {M,N} {N}

• Recall that RD was a must problem, ascending on the downwards CPO induced
by the lattice power set lattice

• Hence relation is the inverse set inclusion ⊇ on the label sets

§ How does this generalize?
§ For all runs, all programs, and for all dataflow problems
§ We cannot test all (countable) paths of all (countable) programs and all

(infinitely many) possible dataflow problems

v v

v

29

30

Outline
§ Summary of Data Flow Analysis
§ Problems left open
§ Abstract Interpretation idea

30

6

31

Abstract Interpretation Approach
§ Relates semantics of a programming language

§ to a non-standard semantics defining the analysis question and
§ further to an abstract static analysis semantics that efficiently

approximates a solution to this question
§ Allows to compute or prove correct data flow equations (transfer

functions)
§ Idea even generalizes to other than dataflow analyses, as well

(e.g., control flow analysis)
§ Steps given the semantics of a programming languages:

§ Analysis question definition: Define an abstract execution semantics that
correctly solves the analysis problem based on execution traces (in
general, non-terminating as the traces may grow infinitely)

§ Analysis question solved with static analysis: Define a terminating
abstraction of execution traces to (the finely many) program points (in
general, maps infinitely many traces to a program point)

§ Show that they are correct abstractions indeed
§ Show that the static analysis terminates using the DFA framework

31

32

Program Traces
§ Program traces are sequences of labels of statements
§ Each program run corresponds to such a trace tr Î Label*
§ Program runs and, hence, traces are defined by the programming

language semantics, e.g.,
§ tr[stats; stat] = tr[stats] Å tr[stat]
§ tr[assign] := label(assign)
§ tr[if expr then stats1 else stats2] :=

eval[expr] = true ? tr[stats1] : tr[stats2]
§ tr[while expr do stats od] :=

eval[expr] = true ? tr[stats] Å tr[while … od] : ε
§ The actual program analysis questions, can be defined as a

mapping Act: Tr ®U of a trace to an analysis result
§ E.g., the actual reaching definitions question RDact can be defined

as a mapping RDact: Tr ® P Labels i.e., for each trace (tr), what is
the subset of definitions (Í P Labels) that reaches the end of tr

32

Analysis Question Formalized
§ Given a so-called standard semantics: a program’s execution

semantics is defined by the semantics of each programming (or
intermediate) language computation statements and their
composition in the program
§ Computation statements of kind K (Alloc, Add, Load, Store, Call …)
§ There are only finitely many such kinds

§ The analysis question is formalized as a non-standard semantics
§ Non-standard semantics: expected analysis results are defined

for traces as an abstraction of the program’s standard semantics
wrt. the analysis problem
§ By giving each computation statements of kind K (Alloc, Add, Load,

Store, Call …) a non-standard semantics answering that specific
analysis question

§ Composed to an analysis execution semantics by/for each program

33

33

34

RDact Execution Semantics
§ Given a program G = (N, E, n1)
§ RDact : Tr ® P Labels

§ Basis for recursive definitions: empty trace
§ no definition reaches the end of the empty trace
§ RDact(ε) := Æ

§ Analysis execution semantics of tr Å label (trace tr expanded by the
next execution step label) is recursively defined on analysis execution
semantics of trace tr and analysis execution semantics of the
abstraction of the semantic of the computation (kind) at step label

if (S = “x:=expr”) // computation kind is assignment to x
RDact(tr Å label : S) := RDact(tr) -{l |(l : x:=expr’) ÎN} È {label}

else // any other computation kind
RDact(tr Å label : S) := RDact(tr)

34

35

Observation
§ Traces and semantics analysis values define a CPO (U,)

§ For RDact , the universe U of analysis values can be defined by pairs
of Tr ® P Labels

§ A partial order can be defined as follows: elements are ordered iff
• same program G, hence, Labels, and same traces
• subset of P Labels

§ Smallest element ε® Æ
§ Universe U is not finite, since Tr(G) is not

§ Even if the non-standard semantics (e.g., analysis function RDact)
was monotone, it is in general not continuous as universe not finite

§ Then a solution to the analysis problem may exist, but
cannot computed iteratively by applying the analysis
function on the smallest element to fix point
§ Non-terminating program runs due to loops
§ Infinitely many possible different inputs that, in general, control the

generation of traces and contribute to the analysis result

v

v

35

36

Solution
§ Define an abstraction a of traces and analysis results to

guarantee termination, e.g., by making universe U of analysis
values finite

§ Perform an abstract analysis on the abstraction of traces/values
§ Define an inverse concretization function g to map results back to

the universe (traces and analysis results) of the analysis
execution semantics

§ a and g should form a so-called adjunction, or Galois connection:
a(X) £ Y Û X Í g(Y)
§ Mind the different domains (universes) of a and g
§ Consequently, there are different partial order relations
§ Í on non-standard analysis execution semantics domain, and
§ £ on abstract static analysis domain,

§ Showing that abstraction and concretization form a Galois
connection is one of our proof obligations to prove a static
analysis correct

36

7

Galois Connections

Countable Executions CPO (U, Í) Finite Abstraction CPO (U’, £)

a

g

a(X)

g(Y) Y

X

a(X) £ Y Û X Í g(Y)

£Í

37

38

How to define the static analysis?
§ Choose an abstract analysis function F abstracting, i.e.,

giving larger or equal results than, a • Act • g : U’ ® U’
where Act is the actual analysis execution semantics
function
§ a • Act • g : U’ ® U’ might be that function F
§ In general, function F requires a “widening”, an explicit further

abstraction of the results
§ Analysis terminates if (U’, £) a finite CPO and F monotone
§ Analysis is conservative if Act is monotone and

(a, g) a Galois connection
§ Then conservative approximation is computable by fixed

point iteration, and it holds for the minimum fix points MFP:
a(MFP(Act)) £ MFP(a • Act • g) £ MFP(F)

38

39

Reaching Definitions (a)
§ Let Trlabel be the set of all traces ending with program point label:

Trlabel={ tr | tr ÎTr Ù tr = tr’ Å label}
§ We abstract a set Trlabel ÎP Tr with that program point label Î Label

a: P Tr ® Label
a(Trlabel) = label

§ Concrete and abstract analysis value domains P Label are the same:
§ Let RDact(tr’ Å label) Î P Label be the set of definitions reaching the end label

of trace tr’ Å label
§ Let RD(label) Î P Label be the set of reaching definitions analyzed for the

program point label
§ We abstract the analysis execution semantics RD(tr) of a trace tr Î Trlabel

with the abstract analysis results RD(label) of the program point label
a: P Label ® P Label

a(RDact (tr)) = RD(label) iff tr ÎTrlabel

39

40

Reaching Definitions (g)
§ Conversely, we concretize each program point label with the

set of all traces ending in label
§ The concretization function on labels is

g: Label ® P Tr

g(label) = Trlabel

§ Consequently, we concretize the abstract analysis results
RD(label) of a program point label by assuming it is a
conservative abstraction for any of the traces tr Î Trlabel :
g: P Label ® P Label

g(RD(label)) = (tr ® RD(label)), ∀ trÎTrlabel

40

41

RD Static Analysis Semantics
§ Given a program G = (N, E, n1)
§ RD: Label ® P Labels

§ Basis for recursive definitions:
§ Empty trace abstraction: starting point of the program n1

§ no definition reaches n1

§ RDin (n1) := Æ
§ Static analysis semantics at label is a conservative

abstraction of a • RDact • g
§ It is recursively defined

§ on the static analysis result at the predecessors of label (using the
supremum) and

§ on and abstraction of the analysis execution semantics at the
computation (kind) at label (defining the transfer function)

41

RD Static Analysis Semantics
a • RDact • g

RDout(label : S) :=
if (S = “x:=expr”)

Ç (…Å p Å label)ÎTr : RDout(p) -{l |(l : x:=expr’) Î N} È {label}
else

Ç (… Å p Å label) ÎTr : RDout(p)
£ (more concrete than, abstracted by)

RDin(label : S) := Çp ÎPre(label) RDout(p)
RDout(label : S) :=

if (S = “x:=expr”)
RDin (label) -{l |(l : x:=expr’) Î N} È {label}

else
RDin (label)

42

42

8

44

Correctness of Analysis Abstraction
§ By structural induction over all programs
§ Compare analysis execution semantics and static analysis

semantics (transfer functions) of program constructs
§ Basis:

§ Claim holds for the empty trace: each program’s starting point is
abstracted correctly: RDin (n1) = Æ, RDact(ε) = Æ

§ Step:
§ Given a trace tr Å label and its abstraction label
§ Provided RDin(label : S) is a correct abstraction of RDact(tr)
§ Then RDout(label : S) is a correct abstraction of RDact(tr Å label):
∀ tr Î g(label): a(RDact(g(RDin(label)))) ≤ RDout(label)

§ Distinguish cases of each program construct and the corresponding
transfer function

§ Here trivial as RDact and RD are identical (and monotone)

44

45

RD Proof of Correctness
§ To show (i): (a, g) is a Galois connection

§ To show (ii): a • RDact• g is abstracted with RD i.e.,
a • RDact • g ≤ RD

§ Proof (sketch): for each node n of G
§ By our definition of g, g(label)=Trlabel corresponds to path

graph of G in n = (label:S)
§ By our definition of RDact, RDact • g in a node n is MFP of

RD in the path graph of G in n
§ By our definition of a, a • RDact• g is the supremum of

MFP of RD of the path graph of G in n
§ Hence, it is the MOP of RD in G in n
§ MOP of RD ≤ MFP of RD

45

46

General Proof Obligations
§ To show (i): (a, g) is a Galois connection

§ To show (ii): a • Act • g is abstracted with F i.e.,
a • Act • g ≤ F

§ Proof (sketch): for each node n of G
§ By our definition of g, g(label)= Trlabel of corresponds to

path graph of G in n = (label:S)
§ By our definition of Act and F, a • Act • g (n) ≤ F(n) in

every node n (sufficient to show this for every fK(n))
§ Then a • Act • g in a node n is MFP of F of path graph of

G in n
§ MFP of F of path graph of G in n is MOP of G in n
§ MOP ≤ MFP of F

46

47

Outline
Part 1: Data Flow Analysis and Abstract Interpretation
Part 2: Inter-procedural and Points-to analysis
Part 3: Static Single Assignment (SSA) form
Part 4: SSA based optimizations

47

