v
DF00100 Advanced Compiler Construction
DF21500 Multicore Computing

Autotuning

A short introduction

Christoph Kessler, IDA,
Linkdping University

LINKOPING
II.“ UNIVERSITY

Motivation

= Modern (high-end) computer architectures are (too) complex

9

Some final machine parameters may not be statically (well-)known
Caches (multiple levels, capacity, associativity, replacement policy)
Memory latency

ILP and pipelining:
Dynamic dispatch, out-of-order execution, speculation, branching

Parallelism and contention for shared resources
OS scheduler
Paging

Performance not well predictable,
e.g. for manual or compiler optimization

= Some program parameters (problem sizes, data locality etc.)
may not be statically known

= Different algorithms / implementation variants may exist for a computation
= Hardcoded manual optimizations lead to non-performance-portable code

= Compiler optimizations are limited and may have unexpected side effects /
interferences

C. Kessler, IDA, Linkdping University 2

LINKOPING
II.“ UNIVERSITY

Motivation (cont.)

- Thousands of knobs that we could turn to tune performance!
= Which ones and how?
= Avoid hardcoding of performance tuning

C. Kessler, IDA, Linkdping University 2

C. Ke

LINKOPING

Performance Portability housics
for User-level code?

Avoid hard-coded adaptations / optimizations such as:

if (avail_num_threads() > 1)
in_parallel {
sort(a, n/2); // on first half of resources -
sort(&a[n/2], n-n/2); // on the other half

}

else ... (do it in serial)

if (available(GPUV))

gpusort(a,n); -

gsort(a,n);

else

if (n < CACHESIZE/4)
mergesort(a,h);
else
quicksort(a,n);

LINKOPING
II.“ UNIVERSITY

ldea: Autotuning — Automatic optimization for
unknown target system using Machine Learning

= Given: Training data and initial program version
- Observed performance on target
- Machine learning algorithm
- Optimization strategy (choice of some parameter(s))
- Automatic code generation / adaptation for target platform
and possibly repeat this process

= for libraries: autotuning library generators,
for compilers: iterative compilation
for dynamic composition: context-aware composition

= Typical examples:

= Find the best blocking factor(s) for loops or loop nests
to automatically adapt to target cache behavior

= Find the right sequence and settings of compiler optimizations
= Select among different algorithms for same operation
= How many cores/threads / which processors/accelerators to use?

C. Kessler, IDA, Linkdping University 5

II LINKOPING
[UNIVERSITY

Recall: Tiled Matrix-Matrix Multiplication (1)

= Matrix-Matrix multiplication C=AXxB

here for square (n x n) matrices C, A, B, with n large (~103):

+ Cij = Xy Aj By, foralli,j=1..n

]

= Standard algorithm for Matrix-Matrix multiplication

(here without the initialization of C-entries to 0):

for (1=0; I<n; I++)
for (j=0; j<n; j++)

for (k=0; k<n; k++)

CHJDT += AlIK] * BIK]L;

C. Kessler, IDA, Linkdping University

6

.(‘

|
A Kk B

|
Good spatial locality on A, C

Bad spatial locality on B
(many capacity misses)

[T RS
Recall: Tiled Matrix-Matrix Multiplication (2)

= Block each loop by block size S
(choose S so that a block of A, B, C fit in cache togetwe;).)

then interchange loops kK
= Code after tiling: B —
for (ii=0; ii<n; ii+=S) = ~
for (j=0; Ji<n; jji+=S) \/ \ /
for (kk=0; kk<n; kk+=S)
for (i=ii; i <ii+S; i++) Good spatial locality

for §=j;) <)+S; J++)
for (k=kk; k < kk+S; k++
CIID] += AD]IK] * BIK]

C. Kessler, IDA, Linkdping University 7

best choice for the
blocking factor

II LINKOPING
[UNIVERSITY

Recall: Loop Unroll-And-Jam

unroll the outer loop
and fuse the resulting inner loops:

for 7 from 1 to N step 2 do
for j from 1 to N do
alil « ali] + b[J]
ali+ 1] < ali+ 1] + b[J]
od
od

for /i from 1 to N do
for jfrom 1 to N do
ali] < ali] + b[j] unroll&am:
od
od

The same conditions as for loop interchange (for the two
iInnermost loops after the unrolling step) must hold

(for a formal treatment see [Allen/Kennedy’' 02, C

+ increases reuse in inner loop
+ less overhead

C. Kessler, IDA, Linkdping University Q

LINKOPING
II.“ UNIVERSITY

Auto-tuning linear algebra library ATLAS (1)

BLAS = Basic Linear Algebra Subroutines
= standard numerical library for Fortran, C
= frequently used in high-performance applications

Level-1 BLAS: Vector-vector operations e.g. dot product

Level-2 BLAS: Matrix-vector operations

Level-3 BLAS: Matrix-matrix operations, esp.,
generic versions of dense LU decomposition and Matrix mult.

-« SGEMM: C:=a A*B+3C
for matrices A,B,C, scalars o,f3

» IS ordinary Matrix-Matrix multiplication for a=1, =0

C. Kessler, IDA, Linkdping University 0

LINKOPING
II.“ UNIVERSITY

Auto-tuning linear algebra library ATLAS (2)

= ATLAS is a generator for optimized BLAS libraries
= Tiling to address L1 cache
= Unroll-and-jam / scalar replacement to exploit registers
= Use multiply-accumulate and SIMD instructions where available
= Schedule computation and memory accesses
= Qutperforms vendor-specific BLAS implementations

#regs, factors, SGEMM
Dete.Ct latency ATLAS tile sizes, ATLAS source
maching |———— — cogrch | ——— >
parameters ~ engine code generator etc.
7

Feedback on Measure Q /
Empirical search performance time on]§
to determine target N
optimization i

arameter values
C. Kessler, IDA, Linkdping University

10

LINKOPING
II.“ UNIVERSITY

Remark

= Off-line sampling and tuning by greedy heuristic search

= Happens once for each new system at library deployment
(generation) time

= Can be expensive
= Not practical for less static scenarios or costly sampling

= Fast predictors needed — full execution or even simulation
IS not feasible

» Usually constructed by machine learning
» Shortens the feedback loop
» Could be adapted dynamically (on-line sampling/tuning)

C. Kessler, IDA, Linkdping University 11

v
Further auto-tuning library generators

= Linear Algebra
= ATLAS
= PhiPAC
= OSKI
= FFT and other signal processing
= FFTW [Frigo99]
- SPIRAL [Pischel et al. 2005]
= Sorting, searching etc.
= STAPL [Rauchwerger et al.]
= [Li, Padua, Garzaran CGO’94]
= [Brewer'93]
= [Olszewski, Voss PDPTA-2004]

C. Kessler, IDA, Linkdping University 12

II LINKOPING
[UNIVERSITY

Generalize this in a compiler!

= [terative compilation / autotuning compilers
= Optimization of compiler transformation sequences
= GCC MILEPOST project 2007-2008
= CAPStuner, www.caps-entreprise.com

= ActiveHarmony search engine + CHILL source-to-source loop
transformation framework

= And many more recent works

L1 size, Loop
Detect #regs, search unroll C iled
machine latency... engine / factors, Compiler ompiie
machine TomPIer™ | code generator code.
parameters -) switches,
learning /4
Feedback on Measure Q /
Empirical search performance time on hWEEg
or semi-intelligent target -
choice of optimi- =

zation parameters
C. Kessler, IDA, Linkdping University 12

One step further: Auto-tunable software sz
components and run-time compaosition

= Component programmer exposes the knobs for optimization
in a performance tuning interface

= Tunable function parameters e.g. problem sizes
= Equivalent implementation variants (different algorithms, ...) at calls
= Possible loop transformations, code specializations
= Resource allocation and scheduling for independent tasks

= At run time, automatically select
= expected best implementation variant for each call,
= expected best resource allocation and schedule for indep. subtasks,
given run-time information on actual parameters and available resources.
Look up model / dispatch tables prepared off-line (by machine learning)

= Examples
= Performance-aware parallel software components [K./Lowe 2007/2012]
= Autotuning SkePU (Dastgeer, Enmyren, K. 2011; Dastgeer, K. 2013)
= EU FP7 project PEPPHER (Benkner et al. IEEE Micro Sep/Oct. 2011)
- Related work: Merge, Elastic Functions, PetaBricks &

\
C. Kessler, IDA, Linkdping University 14 PEPPHER ';)I

II LINKOPING
[UNIVERSITY

Performance-aware components:
Interfaces, implementations, descriptors

One 3 p
peppher:interface ...>
PEPPHER <method name="foo”>
Component <};.:)-eppher:interface> Interfgce
of the — descriptor
application _ _
P Component source files Component descriptors
: < r
void foo(...) <peppher:companent
i void foaoocuda alolf 1 a — <pepnhpr'rnmnnnpn’r
A = void foo_cuda_alg? {...) <peppher:component
/ \/ } .. e name="foo_cuda_alg2">
1
Implemen- C2 -
tation \ c3 Y] XML
variants, e.g. A
different Composition: PEPPHER main
algorithms, Variant selection application
exec. units, (static or dynamic 7‘*?,

\' i J or bOth) foo(A,n);

»
C. Kessler, W. Lowe: Optimized composition of performance-aware parallel v
components. Concurrency & Comput. Practice and Experience, April 2012. PE PPH E R “)f
U. Dastgeer, L. Li, C. Kessler: The PEPPHER Composition Tool: v - &
Performance-aware composition for GPU-based systems. Computing, Programmability &

96(12):1195-1211 (2014), DOI 10.1007/s00607-013-0371-8. Springer Portability

1 <J

Summary: Auto-tuning

II LINKOPING
[UNIVERSITY

Code optimization is difficult and very
platform specific. Avoid hardcoding.

Instead, expose what is tunable and let X
the system learn suitable configurations from tralnlng data.

Auto-tuning library generators

= Fixed domain,
Implicit or explicit human guidance of search space

Auto-tuning compilers
= General-purpose programs (HPC)

= Program structure (loop nests)
defines optimization search space

= Limited influence by programmer (e.g., some #pragmas)

Auto-tuning application-level software synthesis
(software component composition)

= Programmer-exposed performance tuning interfaces, install-time
learning, run-time composition

= Can mcorporate library andlgompiler based autotuning

C. Kessler, IDA, Linkoping Universit

LINKOPING
II.“ UNIVERSITY

References

= On ATLAS:
J. Demmel, J. Dongarra, V. Eikhout, E. Fuentes, A. Petitet, R. Vuduc, R. C. Whaley, K. Yelick:
Self-adapting linear algebra algorithms and software. Proceedings of the IEEE 93(2):293-312,

Feb. 2005
= On FFTW:

M. Frigo: A fast Fourier transform compiler. Proc. PLDI-1999, p.169-180, ACM.
= On SPIRAL.:

M. PUschel et al.: SPIRAL: Code generation for DSP transforms. Proceedings of the IEEE
93(2):232-275, Feb. 2005

= On iterative compilation:

= On ActiveHarmony + CHiLL.:
A. Tiwari, C. Chen, J. Chame, M. Hall, J. Hollingsworth: A scalable auto-tuning framework
for compiler optimization. Proc. IPDPS-2009, pp. 1-12, IEEE.

= On general software autotuning:

= C. Kessler, W. Lowe: A framework for performance-aware composition of explicitly
parallel components. Proc. ParCo-2007 conference, 10S press, pp. 227-234.

= C. Kessler, W. Loéwe: Optimized composition of performance-aware parallel components.
Concurrency & Computation Practice and Experience, April 2012.

= J. Ansel, C. Chan, Y. Wong, M. Olszewski, Q. Zhao, A. Edelman, S. Amarasinghe:
PetaBricks: A language and compiler for algorithmic choice. Proc. PLDI-2009. ACM.

= J. Wernsing, G. Stitt: Elastic computing: a framework for transparent, portable, and
adaptive multi-core heterogeneous computing. Proc. LCTES, 2010.

= U. Dastgeer, L. Li, C. Kessler: The PEPPHER Composition Tool: Performance-aware
composition for GPU-based systems. Computing, vol. 96 no. 12 (2014), pages 1195-1211
(DOI 10.1007/s00607-013-0371-8). Springer.

C. Kessler, IDA, Linkdping University 18

LINKOPING
II.“ UNIVERSITY

References (2)

Generic Autotuning Tools
= AutoTune

= R. Miceli et al.: AutoTune: A Plugin-Driven Approach to the Automatic
Tuning of Parallel Applications, 2013

= QOpenTuner

= J. Ansel et al.: OpenTuner: An extensible framework for program
autotuning. Proc. PACT 2014.

- (for CUDA)

= M. Khan et al.: A Script-Based Autotuning Compiler System to Generate
High-Performance CUDA Code. ACM TACO, 2013

= KTT Kernel Tuning Tool (for OpenCL)

= J. Filipovic et al.: Autotuning of OpenCL Kernels with Global Optimizations,
2017

= KernelTuner (for GPU)

= Ben van Werkhoven: Kernel Tuner: A search-optimizing GPU code auto-
tuner. FGCS, 2018

ATF Autotuning framework
= A. Rasch et al.: ATF: A Generic Auto-Tuning Framework. HPCC 2017

C. Kessler, IDA, Linkdping University 10

	Slide 1: Autotuning
	Slide 2: Motivation
	Slide 3: Motivation (cont.)
	Slide 4: Performance Portability for User-level code?
	Slide 5: Idea: Autotuning – Automatic optimization for unknown target system using Machine Learning
	Slide 6: Recall: Tiled Matrix-Matrix Multiplication (1)
	Slide 7: Recall: Tiled Matrix-Matrix Multiplication (2)
	Slide 8: Recall: Loop Unroll-And-Jam
	Slide 9: Auto-tuning linear algebra library ATLAS (1)
	Slide 10: Auto-tuning linear algebra library ATLAS (2)
	Slide 11: Remark
	Slide 12: Further auto-tuning library generators
	Slide 13: Generalize this in a compiler!
	Slide 14: One step further: Auto-tunable software components and run-time composition
	Slide 15: Performance-aware components: Interfaces, implementations, descriptors
	Slide 17: Summary: Auto-tuning
	Slide 18: References
	Slide 19: References (2)

