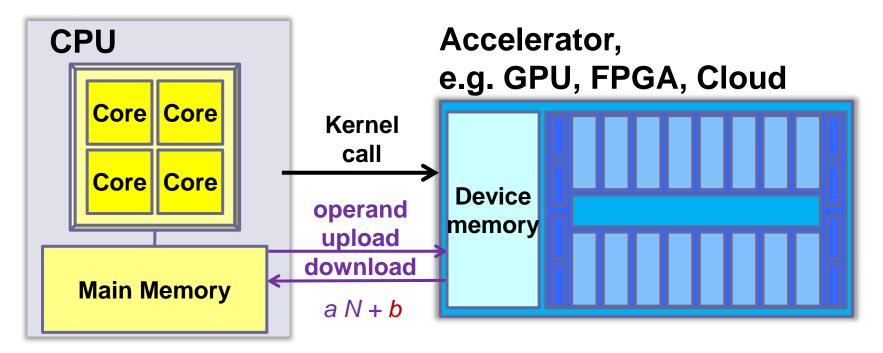
Global Optimization of Operand Transfer Fusion in Heterogeneous Computing

Christoph Kessler

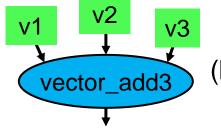
Linköping University Sweden



Presented at SCOPES-2019 St. Goar, Germany

Heterogeneous Systems with Distributed Memory

LINKÖPING


Distributed memory, explicit operand transfers

- □ High data transfer cost (esp. over PCIe / IP...): a N + b
 - High startup cost significant for small messages, e.g. b / a ~ 10⁴

□ Goal: Message fusion for operand transfers
→ reduce #startups 2

Example: 1 kernel call, 3 input operands

(a) Arbitrary operand order in memories:

_ _ _

3

(b) **Operands consecutive** in both memories:

float *v1 = malloc(N); ...float *v2 = malloc(N); ... -3 calls float *v3 = malloc(N);

cudaMalloc(&g_v1, N); ... cudaMalloc(&g_v2, N); ... cudaMalloc(&g_v3, N);

> **3 upload messages,** time 3(aN+**b**)

cudaMemcpy(v1, g_v1, N, ...); cudaMemcpy(v2, g_v2, N, ...); cudaMemcpy(v3, g_v3, N, ...);

_

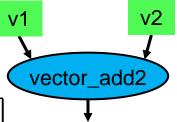
float *v1 = **malloc**(**3N**); float *v2 = v1+N; float *v3 = v1+2N;

cudaMalloc($\&g_v1$, 3N); g_v2 = g_v1 + N; g_v3 = g_v1 + 2N; Allocation fusion

> 1 upload message, time 3aN + b

cudaMemcpy(v1, g_v1, **3N**, ...);

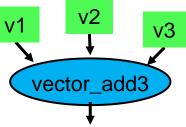
Transfer fusion


vector_add3(g_v1, g_v2, g_v3 ...);

Saving Potential on a Concrete GPU By Transfer Fusion

	Binary Vector-Add (1 Transfer Fusion)								
	Vector	Transfer Fusion Only							
	Length	Time/Call	Saving	Saving	1				
	[floats]	[µs]	[<i>µs</i>]	[%]					
	1K	36	6	18.9%	1				
	4K	44	8	19.7%					
	8K	54	4	8.5%					
	16K	82	2	2.6%					
	32K	132	15	12.0%					
	64K	210	17	8.2%					
	128K	368	13	3.8%					
	256K	676	70	10.4%					
	512K	1162	70	6.0%					
	1M	2313	89	3.9%					
	4M	9300	88	1.0%					

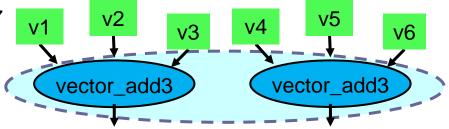
Nvidia Kepler K2100, CUDA 8, driver 390.87



- Memory allocation time not included
- Decent relative savings for up to 1M float elements (at low arithmetic intensity)

Saving Potential on a Concrete GPU By Transfer and Allocation Fusion

Nvidia Kepler K2100, CUDA 8, driver 390.87 **Ternary Vector-Add** (2 Transfer + Allocation Fusions) Vector Transfer Fusion Plus Fusing Length Three Vector Allocations • Saving Time/Call Saving [floats] [%] $[\mu s]$ $[\mu s]$ 1K 404 27 6.7% 4K 35 8.5% 418 8K 6.3% 423 35 16K 15 3.5% 448 32K 22 4.5% 496 64K 570 23 4.0% 128K 345 32.6% 1058 256K 737 43.4% 1699 512K 2242 756 33.7% 1M742 21.8% 3409 4M10317 799 7.8%

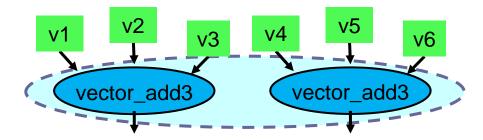

- Memory allocation time included (except a dummy first cudaMalloc)
- Decent relative savings for up to 4M elements (at low arithmetic intensity)
- Largest impact observed for medium-length operands
 - Anomaly observed for *binary*-add: slowdown for small operand sizes 1 x cudaMalloc(2N) can be slower than 2 x cudaMalloc(N)
 - cause is unclear (stateful specul. optimization in cudaMalloc?)

Saving Potential on a Concrete GPU Parallel Kernel Fusion on-Par with Transfer Fusion

Nvidia Kepler K2100, CUDA 8, driver 390.87

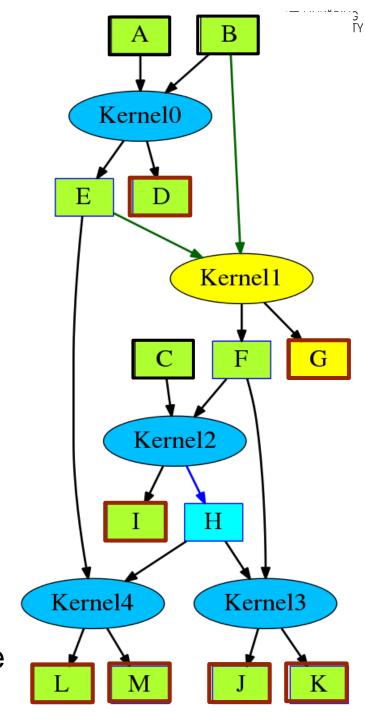
Ternary Vector-Add

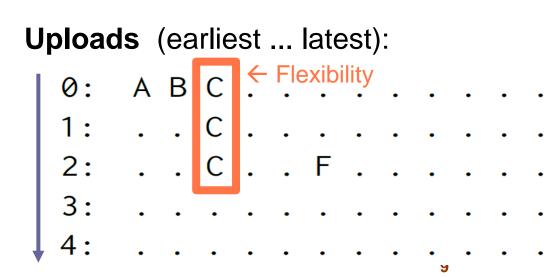
(2 Transfer Fusions + Parallel Kernel Fusion)

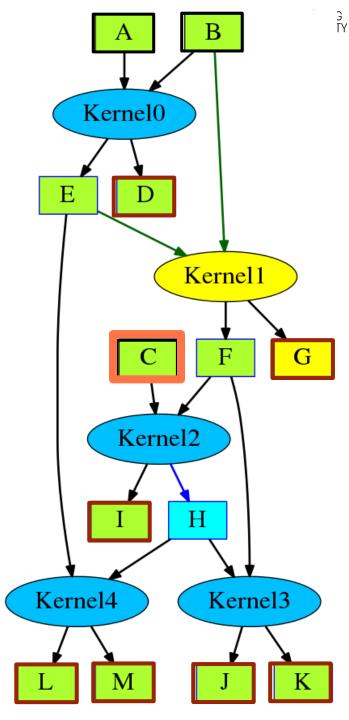


		· · · · · · · · · · · · · · · · · · ·	
Vector	No Kernel Fusion	Kernel	Fusion
Length	Time Per Call	Saving	Saving
[floats]	[µs]	[µs]	[%]
1K	35	5	16.4%
4K	43	6	15.7%
16K	80	8	10.0%
64K	204	9	4.6%
256K	664	22	3.7%
1M	2276	54	2.4%
4M	9236	140	1.5%

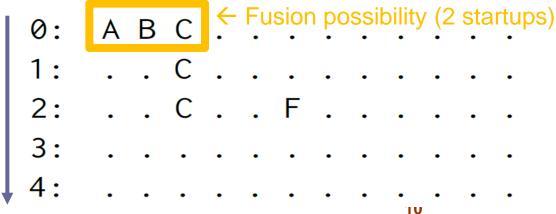
- Memory allocation time not included
- Operands (v1+v4, ...) consecutive in memory in both cases
 - Decent relative
 savings for up to
 1M float elements
 (at low arithmetic
 intensity)
- Speedups in the same order of magnitude as by transfer fusion

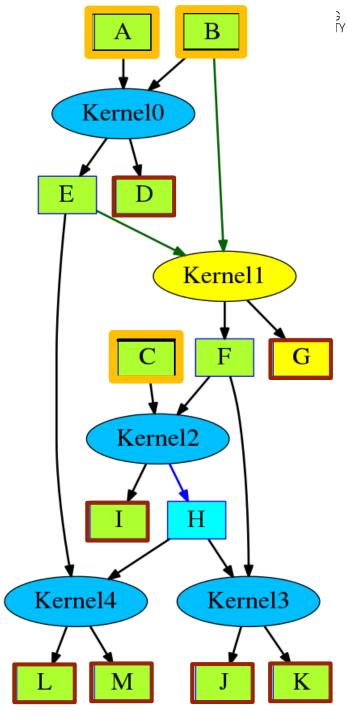

Motivation

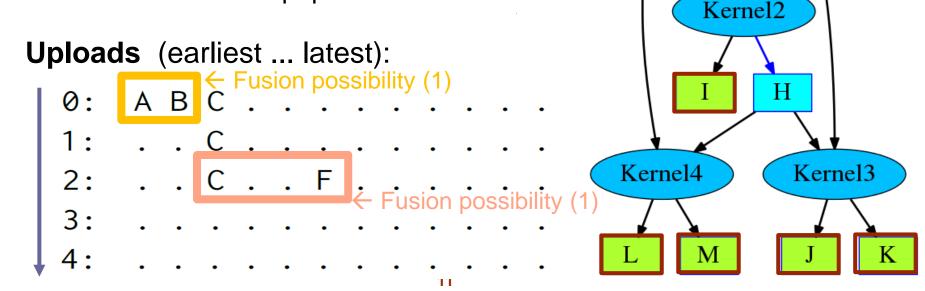

- Transfer fusion gain (kernel startup time) on our system almost as high as parallel kernel fusion gain (kernel launch time)
- Parallel kernel fusion is not always applicable/beneficial, but transfer fusion may still apply
- □ We will focus on **transfer fusion** in this work.
 - Objective: Maximize # transfer fusions in a program
 - Global scope \rightarrow more fusion options across multiple kernel calls
 - Allocation fusion as side effect may give further speedup (where not suffering from the single-fusion anomaly of our GPU)


Kernel-Vector Data Flow Graph

- □ Call nodes: Kernel0, Kernel1, ...
 - Synchronous calls
 - Mapping to device/host given
 - Fixed schedule given
 → trace of calls, relative time: 0, 1, ...
- □ Vector (data) nodes: A, B, C, ...
 - Static single assignment
 - Some live-on-entry, some live-on-exit
- Data flow edges
- No control flow
- Base-line code generation: Each vector transfered to/from device at most once, in a separate message


- Kernel-Vector Data Flow Graph (fixed schedule, fixed mapping)
- Calculating earliest and latest time points for uploads and downloads:
 - depend e.g. on relative time of the producing resp. earliest consuming kernel calls
 - Details in the paper



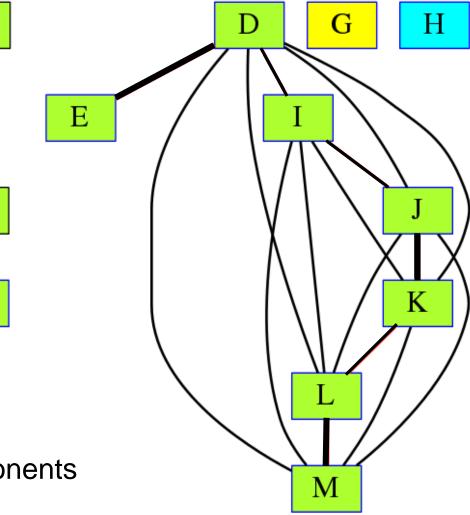

- Kernel-Vector Data Flow Graph (fixed schedule, fixed mapping)
- Calculating earliest and latest time points for uploads and downloads:
 - depend e.g. on relative time of the producing resp. earliest consuming kernel calls
 - Details in the paper

Uploads (earliest ... latest):

- Kernel-Vector Data Flow Graph (fixed schedule, fixed mapping)
- Calculating earliest and latest time points for uploads and downloads:
 - depend e.g. on relative time of the producing resp. earliest consuming kernel calls
 - Details in the paper

В

Kernel1


Kernel0

Е

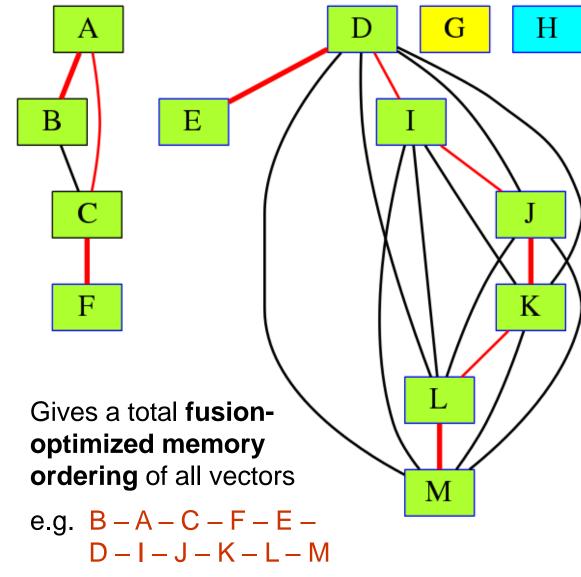
Affinity graph

- Nodes = vectors
- Undirected edges
 { u, v } with weight
 = affinity of u, v
 - expected fusion gain of allocating *u*, *v* consecutive in memory
- By finding overlapping earliest-latest intervals
 - +1.0 if uploads resp. downloads of *u* and *v* can be fused if *u* and *v* are consecutive in memory
 - Bonus for tight solutions possible
- Has at least 2 connected components
 - >1 for uploaded vectors,
 >1 for downloaded vectors

А

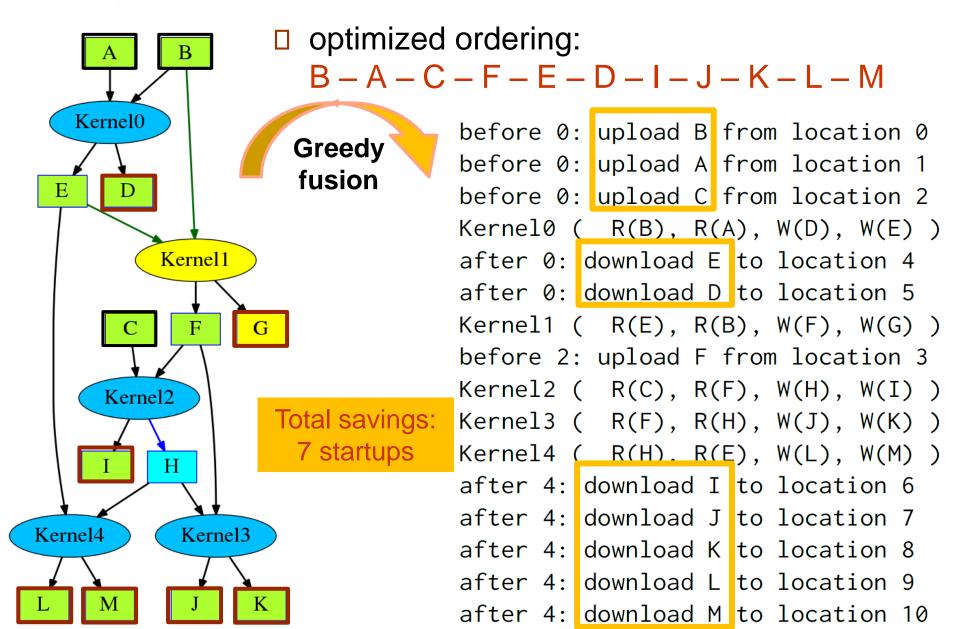
С

В

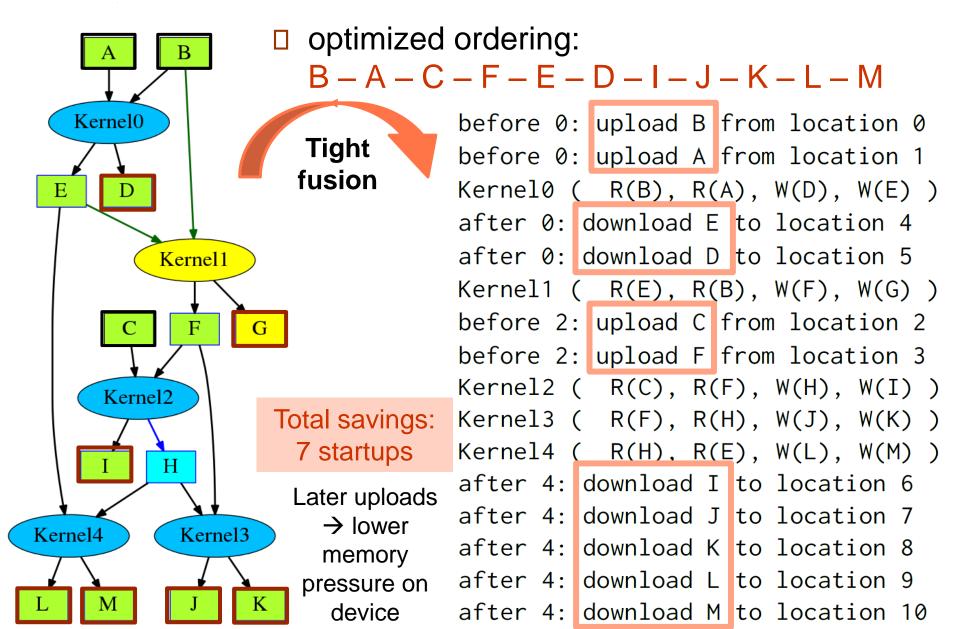


Affinity graph, Max-Weight Hamiltonian Paths

 Hamiltonian path of a graph = a path of *n*-1 edges visiting each of the *n* nodes exactly once
 Goal: Find a maximum-weight Hamiltonian path in each connected


component of the affinity graph

- NP-complete (related to TSP)
- Linear-time heuristic based on DFS (see paper)



Emitting the Fused Code

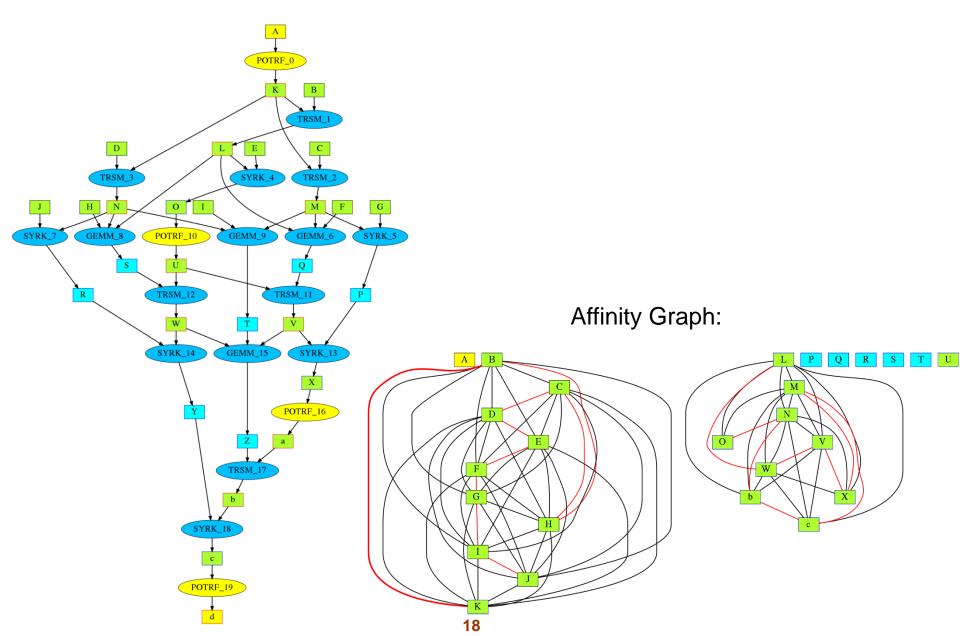
Emitting the Fused Code, Alternative

Evaluation of # Saved Transfer Startups and Optimization Time

Table 1: Synthetic Programs, Savings in Transfer Startups

	N	M_{init}	Indegree	Outdegree	Saving,	Saving,	Opt.
			min/max	min/max	Greedy	Tight	Time
AB	-5	3	22	22	7	7	0.1ms
E D	8	12	23	11	7 (9)	7 (8)	0.2ms
Kernell	10	5	24	12	11	11	0.2ms
C F G	16	12	14	12	14	14	0.3ms
Kernel2	16	16	23	12	19	17	0.3ms
Kernel4 Kernel3	18	8	12	12	12	12	0.2ms
	18	8	22	12	16	15	0.4ms
	20	8	11	11	11	11	0.2ms
Savings in	20	8	13	12	18	17	0.2ms
comparison to	24	10	23	22	28	26	0.6ms
single operand	48	10	22	12	41 (42)	38 (41)	0.9ms
vector uploads	60	10	12	12	40	37	2.0ms
/ downloads (no fusion)	98	12	22	12	75		5.7ms

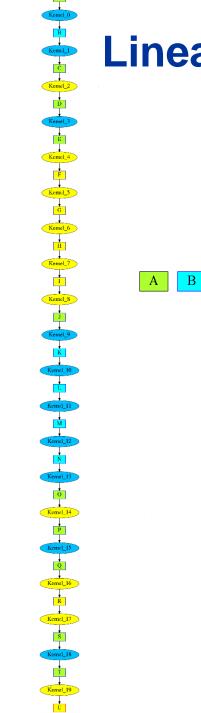
16 (in parentheses: savings with higher-effort Hamiltonian heuristic)

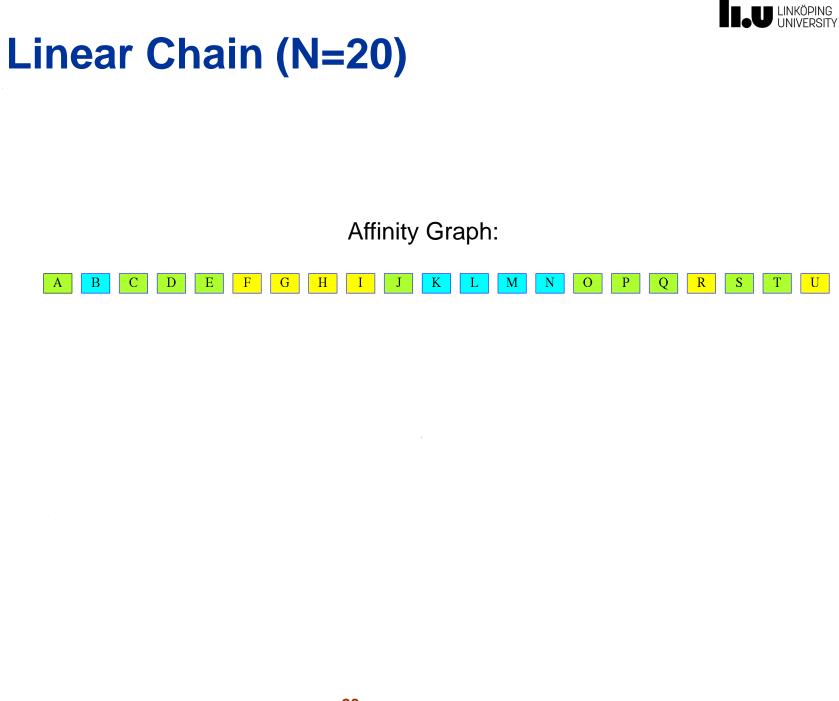

Evaluation of # Saved Transfer Startups

Special task graph topologies and application-derived task graphs

20	1	Linear chain	0	0	0.1ms
15	1	Out-bound bin. tree, all GPU	15	15	0.2ms
15	1	Dto., random device 50%	14	14	0.2ms
15	16	In-bound bin. tree, all GPU	15	8	0.2ms
15	16	Dto., random device 50%	14	11	0.2ms
31	32	In-bound bin. tree, all GPU	31	16	0.5ms
31	32	Dto., random device 50%	27	17	0.5ms
20	12	Horner's rule polynom. eval.	11	11	0.3ms
20	4	4x4 blocks Cholesky factoriz.	14	14	0.2ms
20	4	Dto., SYRK calls also on CPU	9	8	0.2ms
12	8	2x2 blocks Matrix multiply	11	11	0.1ms
7	2	Conj. Grad. loop, steady st.	2	2	0.1ms

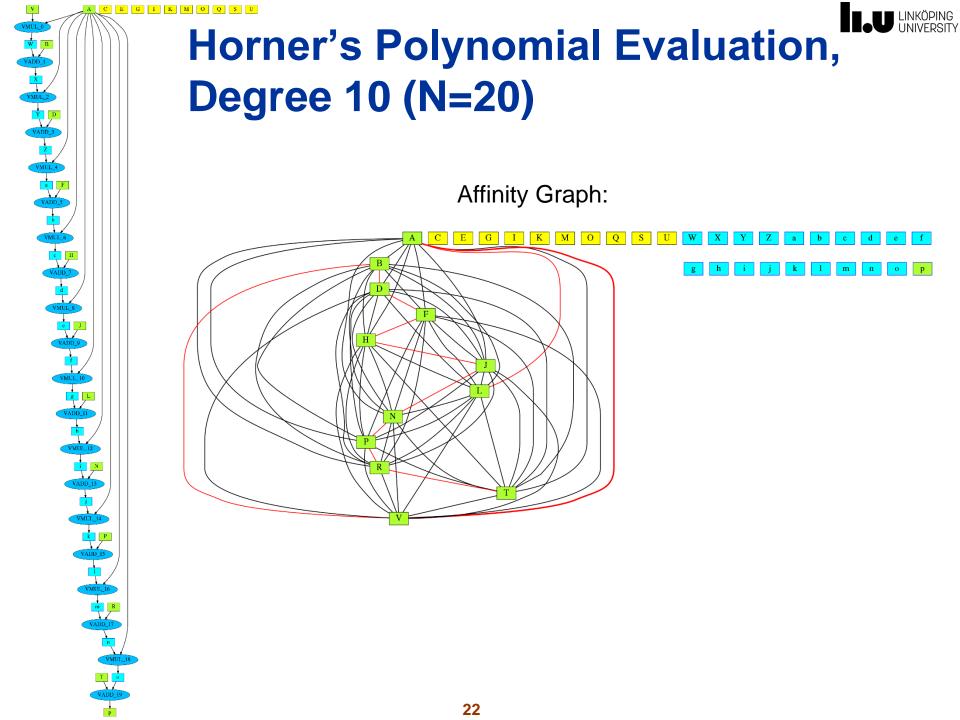
4 x 4 Block Cholesky Factorization



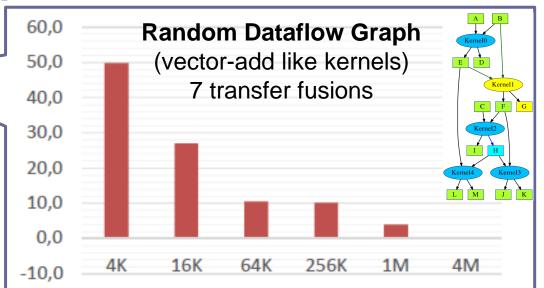

Evaluation of # Saved Transfer Startups

Special task graph topologies and application-derived task graphs

20	1 Linear chain		0	0	0.1ms
15	1 Out-bound bin. t	ree, all GPU	15	15	0.2ms
15	1 Dto., random dev	vice 50%	14	14	0.2ms
15	16 In-bound bin. tre	e, all GPU	15	8	0.2ms
15	16 Dto., random dev	vice 50%	14	11	0.2ms
31	32 In-bound bin. tre	e, all GPU	31	16	0.5ms
31	32 Dto., random dev	vice 50%	27	17	0.5ms
20	12 Horner's rule po	lynom. eval.	11	11	0.3ms
20	4 4x4 blocks Chole	sky factoriz.	14	14	0.2ms
20	4 Dto., SYRK calls	also on CPU	9	8	0.2ms
12	8 2x2 blocks Matri	x multiply	11	11	0.1ms
7	2 Conj. Grad. loop	steady st.	2	2	0.1ms

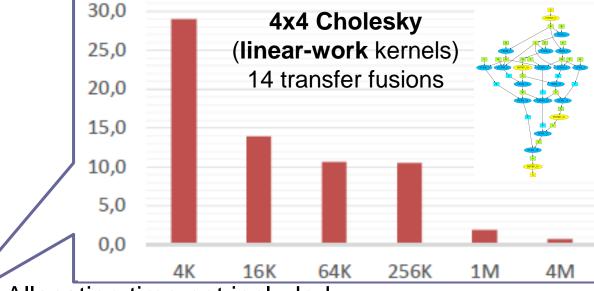


Evaluation of # Saved Transfer Startups


Special task graph topologies and application-derived task graphs

20	1	Linear chain	0	0	0.1ms
15	1	Out-bound bin. tree, all GPU	15	15	0.2ms
15	1	Dto., random device 50%	14	14	0.2ms
15	16	In-bound bin. tree, all GPU	15	8	0.2ms
15	16	Dto., random device 50%	14	11	0.2ms
31	32	In-bound bin. tree, all GPU	31	16	0.5ms
31	32	Dto., random device 50%	27	17	0.5ms
20	12	Horner's rule polynom. eval.	11	11	0.3ms
20	4	4x4 blocks Cholesky factoriz.	14	14	0.2ms
20	4	Dto., SYRK calls also on CPU	9	8	0.2ms
12	8	2x2 blocks Matrix multiply	11	11	0.1ms
7	2	Conj. Grad. loop, steady st.	2	2	0.1ms

Evaluation of Generated Transfer-Fusion Optimized CUDA Code


Length [floats]Fusion [μs]Fusion [μs][π]Random Dataflow Graph (N = 5, M_{init} = 3)4K21114I14149.6%16K41532726.9%64K1136102810.5%256K4010364110.1%1M14455139073.9%4M5542155464-0.1%Random Dataflow Graph (N = 24, M_{init} = 10)4K818302170.9%16K1550145127.5%64K5744508612.9%256K23188230000.8%1M95858946081.3%1M95858946081.3%4K5504K557227213.0%256K835576009.9%1M27836266K269893.1%4K4K47142211.6%16K253324983.4%256K911987484.2%1M3339130121.1%4M13060016K11693-0.8%4K51217510.6%64K163411634113040.3%256K8534144K300256K7185650510.5%<	Vector	No Transfer	Transfer	Speedup	
1 Random Dataflow Graph (N = 5, M_{init} = 3) 4K 211 141 49.6% 16K 415 327 26.9% 64K 1136 1028 10.5% 256K 4010 3641 10.1% 1M 14455 13907 3.9% 4M 55421 55464 -0.1% Random Dataflow Graph (N = 24, M_{init} = 10) 4K 818 302 170.9% 16K 1850 1451 27.5% 64K 5744 5086 12.9% 16K 952 873 9.0% 4K 550 492 11.8% 16K 952 873 9.0% 4K 550 492 1.1.8% 16K 900 847 6.3% 256K 8355 7600 9.9% 1M 27836 26989 3.1% 4K 513 90.7% 64K 256K 16K 900 847 6.3% 6.08%	Length	Fusion	Fusion		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	[floats]	$[\mu s]$	$[\mu s]$	[%]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	R	andom Dataflo	w Graph (N	$N = 5, M_{init} = 3$)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4K	211	141	49.6%	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16K	415	327	26.9%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	64K	1136	1028	10.5%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	256K	4010	3641	10.1%	
	1M	14455	13907	3.9%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ra	ndom Dataflov	v Graph (N	$= 24, M_{init} = 10)$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4K	818	302	170.9%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16K	1850	1451	27.5%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	64K	5744	5086	12.9%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	256K	23188	23000	0.8%	
	1M	95858	94608	1.3%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4M	368109	374662	-1.7%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Но	rner's Rule Pol	ynomial Ev	valuation ($N = 20$)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4K	550	492	11.8%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16K	952	873	9.0%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	64K	2567	2272	13.0%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	256K	8355	7600	9.9%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4M	105938	105644	0.3%	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ks Cholesky F		, Linear-Work Kernels	ΔΙ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					∣∙ Sr
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					- Sh
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				<i>,</i>	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					l bu
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					fa
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					(P
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					U) (U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					- JL
1M 25401 24930 1.9% 4M 100026 99363 0.7% Conjugate Gradient loop, steady state, SPMV on CPU 4K 148 141 5.0% 16K 271 271 0.0% 64K 769 753 2.1% 256K 2656 2581 2.9%					•
4M 100026 99363 0.7% Conjugate Gradient loop, steady state, SPMV on CPU AK 148 141 5.0% 16K 271 271 0.0% 64K 769 753 2.1% (e) 256K 2656 2581 2.9% (e) (e)					റ
$\begin{array}{ c c c c c c }\hline \hline Conjugate Gradient loop, steady state, SPMV on CPU \\ \hline 4K & 148 & 141 & 5.0\% \\ 16K & 271 & 271 & 0.0\% \\ 64K & 769 & 753 & 2.1\% \\ 256K & 2656 & 2581 & 2.9\% \end{array} \qquad $					
4K 148 141 5.0% 16K 271 271 0.0% 64K 769 753 2.1% 256K 2656 2581 2.9%					
$\begin{bmatrix} 16K & 271 & 271 & 0.0\% \\ 64K & 769 & 753 & 2.1\% \\ 256K & 2656 & 2581 & 2.9\% \end{bmatrix} $		-			as
64K 769 753 2.1% 256K 2656 2581 2.9%					
256K 2656 2581 2.9%					_ ا
					ן נכ

- Allocation time not included
- Speedups between 5% and 170% at 4K float vectors
 - Speedup decreases with operand size, but remains significant until 1M floats for kernels with low arithmetic intensity
 - (e.g. vector-add, saxpy)
 - Speedup quickly drops off for \geq 64K floats for computation-heavy kernels,
 - as transfer time gets insignificant
 - (e.g. sgemm in Cholesky and MatMul)

Evaluation of Generated Transfer-Fusion Optimized CUDA Code

Vector	No Transfer	Transfer	Speedup
Length	Fusion	Fusion	
[floats]	$[\mu s]$	$[\mu s]$	[%]
R	andom Dataflo	w Graph (N	$N = 5, M_{init} = 3$)
4K	211	141	49.6%
16K	415	327	26.9%
64K	1136	1028	10.5%
256K	4010	3641	10.1%
1M	14455	13907	3.9%
4M	55421	55464	-0.1%
Ra	ndom Dataflov	v Graph (N	$= 24, M_{init} = 10$)
4K	818	302	170.9%
16K	1850	1451	27.5%
64K	5744	5086	12.9%
256K	23188	23000	0.8%
1M	95858	94608	1.3%
4M	368109	374662	-1.7%
Ho	rner's Rule Pol	vnomial Ev	valuation ($N = 20$)
4K	550	492	11.8%
16K	952	873	9.0%
64K	2567	2272	13.0%
256K	8355	7600	9.9%
1M	27836	26989	3.1%
4M	105938	105644	0.3%
4v4 Bloc	ks Cholesky F	ectorization	ı, Linear-Work Kernels
4K	471	422	11.6%
16K	900	847	6.3%
64K	2583	2498	3.4%
256K	9119	8748	4.2%
1M	33391	33012	1.1%
4M	130660	131693	-0.8%
4	x4 Blocks Den	se Cholesk	y Factorization
4K	543	421	29.0%
16K	1757	1586	10.8%
64K	11634	11304	0.3%
256K	85341	84500	0.0%
1M	681376	680848	0.0%
4M	6748217	6752271	-0.0%
2x2 F	Blocks Matrix N	Aultiply, Li	near-Work Kernels
4K	330	256	28.9%
16K	651	572	13.8%
64K	1952	1765	10.6%
256K	7185	6505	10.5%
1M	25401	24930	1.9%
4M	100026	99363	0.7%
			state, SPMV on CPU
4K	148	141	5.0%
4K 16K	271	271	5.0% 0.0%
64K	769	753	2.1%
256K	2656	2581	2.1%
2001	2030	2301	

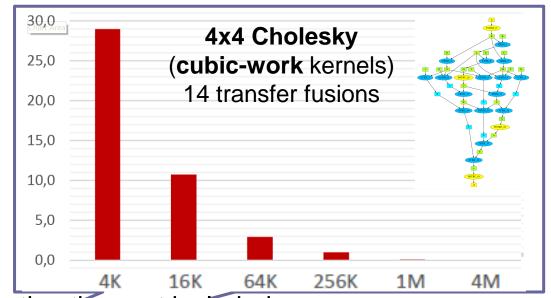
Allocation time not included

- Speedups between 5% and 170% at 4K float vectors
 - Speedup decreases with operand size,

but remains significant until 1M floats

for kernels with low arithmetic intensity

(e.g. vector-add, saxpy)


Speedup quickly drops off for <u>>64K</u> floats for computation-heavy kernels,

as transfer time gets insignificant

(e.g. sgemm in Cholesky and MatMul)

Evaluation of Generated Transfer-Fusion Optimized CUDA Code

Vector	No Transfer	Transfer	Speedup
Vector	Fusion	Fusion	Speedup
Length [floats]	$[\mu s]$	$[\mu s]$	[%]
	-, -	-, -	
			$I = 5, M_{init} = 3$)
4K	211	141	49.6%
16K	415	327	26.9%
64K	1136	1028	10.5%
256K	4010	3641	10.1%
1M	14455	13907	3.9%
4M	55421	55464	-0.1%
			$= 24, M_{init} = 10$)
4K	818	302	170.9%
16K	1850	1451	27.5%
64K	5744	5086	12.9%
256K	23188	23000	0.8%
1M	95858	94608	1.3%
4M	368109	374662	-1.7%
Ho	rner's Rule Pol	ynomial Ev	valuation ($N = 20$)
4K	550	492	11.8%
16K	952	873	9.0%
64K	2567	2272	13.0%
256K	8355	7600	9.9%
1M	27836	26989	3.1%
4M	105938	105644	0.3%
4x4 Bloc	ks Cholesky Fa	actorization	, Linear-Work Kernels
4K	471	422	11.6%
16K	900	847	6.3%
64K	2583	2498	3.4%
256K	9119	8748	4.2%
1M	33391	33012	1.1%
4M	130660	131693	-0.8%
4	4x4 Blocks Den	se Cholesky	v Factorization
4K	543	421	29.0%
16K	1757	1586	10.8%
64K	11634	11304	0.3%
256K	85341	84500	0.0%
1M	681376	680848	0.0%
4M	6748217	6752271	-0.0%
2x21	Blocks Matrix M	Aultiply Li	near-Work Kernels
4K	330	256	28.9%
16K	651	572	13.8%
64K	1952	1765	10.6%
256K	7185	6505	10.5%
230K 1M	25401	24930	10.5%
4M	100026	99363	0.7%
	gate Gradient I	oop, steady 141	state, SPMV on CPU
4K			5.0%
16K	271 769	271	0.0%
	/09	753	2.1%
64K 256K	2656	2581	2.9%

- Allocation time not included
- Speedups between 5% and 170% at 4K float vectors
 - Speedup decreases with operand size,
 - but remains significant until 1M floats
 - for kernels with low arithmetic intensity
 - (e.g. vector-add, saxpy)
- Speedup quickly drops off for <u>>64K</u> floats for computation-heavy kernels,
 - as transfer time gets insignificant
 - (e.g. sgemm in Cholesky and MatMul)

	Vector	No Allocation	Allocation	Speedup
CUDA code,	Length	Fusion	Fusion	
including	[floats]	[µs]	[µs]	[%]
	Ran	idom Dataflow G	raph ($N = 5$,	$M_{init} = 3$)
Fused Memory	4K	645	1165	-44.6%
	16K	824	1349	-38.9%
Allocations	64K	3318	2031	63.4%
	256K	110	4865	133.8%
	1M	29229	14889	96.3%
		98861	95382	3.6%
Due to the memory	Horn	er's Rule Polyno	mial Evaluati	ion ($N = 20$)
allocation fusion	4K	891	1106	-19.4%
anomaly on our GPU	16K	2020	1787	13.0%
at 2-operand-fusions	64K	5756	4738	21.5%
	256K	18437	13951	32.2%
	1M	28265	23890	18.3%
	4M	67899	65024	4.4%
	Conjuga	te Gradient loop,	steady state,	SPMV on CPU
	4K	557	850	-34.5%
	16K	649	999	-35.0%
	64K	1871	1829	2.3%
	256K	6523	5583	16.8%
	1M	17224	16455	4.7%
	4M	60741	59841	1.5%

Summary and Outlook

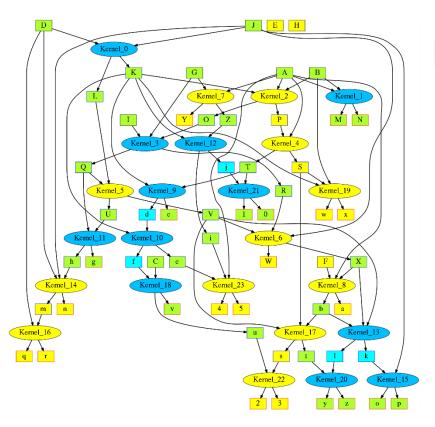
- Global-scope reordering of vector variables in memory to optimize operand upload / download message fusion in distributed heterogeneous systems
 - 1. Analyze the Kernel-Vector Data-Flow Graph
 - 2. Build the Affinity Graph
 - 3. Max-weight Hamiltonian Paths in Affinity graph CCs
 - 4. Emitting code: Greedy vs. Tight strategy
- **Experiments** for synthetic kernel graphs
 - Low optimization time, good # transfer-fusions
 - Decent speedups for up to 1M elements and kernels of low oper. intensity
 - Prototype source code: www.ida.liu.se/~chrke/transferfusion
 - Future work: Tuning to decide up to which vector sizes to apply; work around the allocation fusion anomaly; use of optimized kernels

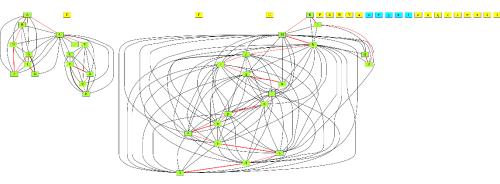
Possible usage scenarios

- Static optimization in kernel compilers (e.g., DSL)
- Dynamic optimization: lazy execution builds runtime graph
 - Amortize optimization time over multiple iterations over same graph
- **Future extensions**: Combine with scheduling (and more...)

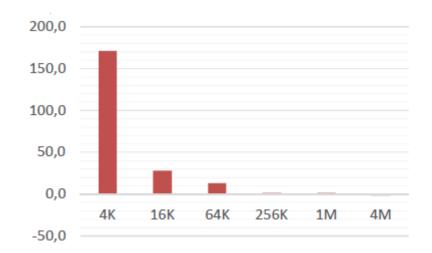
Questions?

References

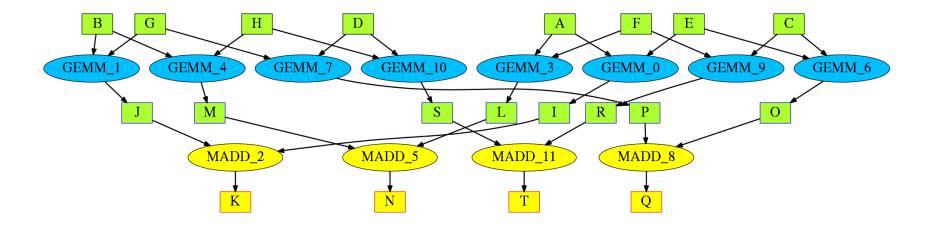

This paper:

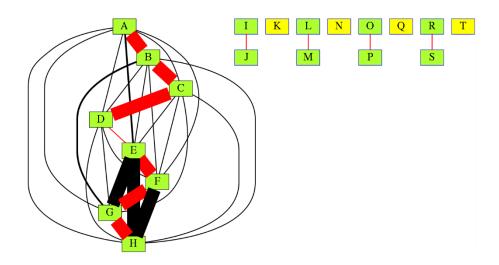

- Christoph Kessler: Global optimization of operand transfer fusion in heterogeneous computing. Proc. 22nd International Workshop on Software and Compilers for Embedded Systems (SCOPES-2019), St. Goar, Germany, May 2019. ACM. DOI: 10.1145/3323439.3323981
- Lu Li, Christoph Kessler: Lazy Allocation and Transfer Fusion Optimization for GPU-based Heterogeneous Systems. Proc. Euromicro PDP-2018 Int. Conf. on Parallel, Distributed, and Network-Based Processing, Cambridge, UK, Mar. 2018, IEEE.
- Prototype implementation source code: https://www.ida.liu.se/~chrke55/transferfusion/

BACKUP SLIDES

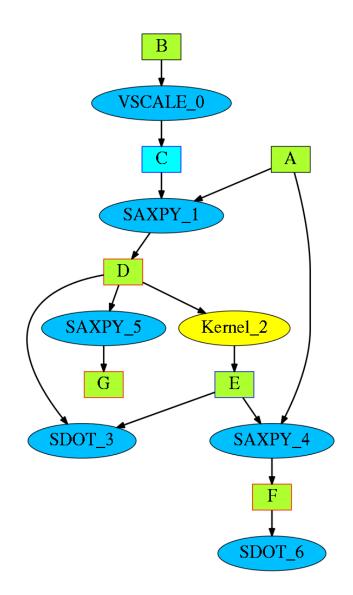


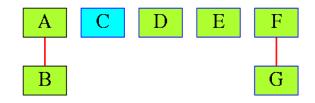
Random DAG, N=24




25 startups saved

2x2 Block Matrix-Matrix Multiply





Gain: 11 startups

Conjugate Gradient Solver, Main Loop

Gain: 2 startups