
Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Instruction-Level Parallel

Processor Architectures

Instruction Scheduling

Local and Global Scheduling

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

RISC and Instruction-Level

Parallel Target Architectures

3 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

CISC vs. RISC

CISC

Complex Instruction Set Computer

Memory operands for arithmetic and
logical operations possible

M(r1+r2)  M(r1+r2) * M(r3+disp)

Many instructions

Complex instructions

Few registers, not symmetric

Variable instruction size

Instruction decoding (often done in
microcode) takes much silicon
overhead

Example: 80x86, 680x0

RISC

Reduced Instruction Set Computer

Arithmetic/logical operations only on
registers

add r1, r2, r1
load r1, r4
load r3+disp, r5
mul r4, r5
store r5, r1

Few, simple instructions

Many registers, all general-purpose
typ. 32 ... 256

Fixed instruction size and format

Instruction decoding hardwired

Example: POWER, HP-PA RISC,
MIPS, ARM, SPARC

4 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Instruction-Level Parallel (ILP) architectures

Single-Issue: (can start at most one instruction per clock cycle)

Simple, pipelined RISC processors
with one or multiple functional units

e.g. ARM, DLX

Multiple-Issue: (can start several instructions per clock cycle)

Superscalar processors

e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium

VLIW processors

e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860,
HP Lx, Transmeta Crusoe;
most DSPs, e.g. Philips Trimedia TM32, Texas Instruments TI ‘C6x,

Qualcomm Hexagon, Recore Xentium

EPIC processors

e.g. Intel Itanium family (IA-64)

5 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Pipelined RISC Architectures

A single instruction is issued per clock cycle

Possibly several parallel functional units / resources

Execution of different phases of subsequent instructions overlaps in time.

This makes them prone to:

data hazards (may have to delay op until operands ready),

control hazards (may need to flush pipeline after wrongly predicted branch),

structural hazards (required resource(s) must not be occupied)

Static scheduling (insert NOPs to avoid hazards)

vs. Run-time treatment by automatic hazard detection + pipeline stalling

IF

ID

EX

MEM/EX2

WB time

6 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Reservation Table, Scheduling Hazards

Reservation table

specifies required resource

occupations

[Davidson 1975]

7 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Instruction Scheduling (1)

Map instructions to time slots on issue units (and resources),

such that no hazards occur

→ Global reservation table, resource usage map

8 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Instruction Scheduling (2)

Data dependences imply latency constraints

→ target-level data flow graph / data dependence graph

latency(mul) = 6 add

mul 6

6

9 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Superscalar processor

Run-time scheduling by instruction dispatcher

convenient (sequential instruction stream – as usual)

limited look-ahead buffer to analyze dependences, reorder instr.

high silicon overhead, high energy consumption

Example: Motorola MC 88110
2-way, in-order issue

superscalar

10 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Dual-Issue (w=2)

Example (1):

Linear code “mul R1,…; add …,R2” expands to

11 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Dual-Issue (w=2)

Example (2):

Linear code “mul R1,…; add …,R1” expands to

12 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

VLIW (Very Long Instruction Word) architectures

Multiple slots for instructions in long instruction-word

Direct control of functional units and resources – low decoding OH

Compiler (or assembler-level programmer)
must determine the schedule statically

independence, unit availability, packing into long instruction words

Challenging! But the compiler has more information on the program
than an on-line scheduler with a limited lookahead window.

Silicon- and
energy-efficient

13 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Clustered VLIW processor

E.g., TI C62x, C64x DSP processors

Register classes

Parallel execution constrained by operand residence

u v

Register File A Register File B

Unit A1 Unit B1

u

add.A1 u, v add.B1 u, v

Data bus

+

u v

14 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

EPIC architectures

Based on VLIW

Compiler groups instructions to LIW’s (bundles, fetch units)

Compiler takes care of resource and latency constraints

Compiler marks sequences of independent instructions as

instruction groups by inserting delimiters (stop bits)

Dynamic scheduler assigns resources and reloads new

bundles as required

15 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

EPIC Example: Instruction format for TI ’C62x

Texas Instruments

DSP processor series

TMS320C62xx

1 fetch packet (a very long instruction word) has 8 slots

may contain up to 8 instruction groups (issue packets)

to be executed in sequence

Instruction groups are marked by chaining bits.

Up to 8 instructions in an instruction group

Instructions within an instruction group must use disjoint

resources (basically, different functional units)

Example: 3 issue groups { A||B||C } ; { D||E||F } ; { G||H }

16 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

EPIC Example: Intel IA-64 (Itanium)

Constraints on bundle contents and placement of delimiters

for instruction groups: 24 templates

M I I

M I I

M I I

M I I

M M I

M M I

M M I

M M I

M L I

M L I

M F I

M F I

M M F

M M F

M I B

M I B

M B B

M B B

B B B

B B B

M M B

M M B

M F B

M F B

Instruction types:

M = Memory (on M unit)

I = Integer (on I unit)

F = Floatingpoint (on F unit)

B = Branch (on B unit)

A = supertype of I and M

LX = uses 2 bundle slots, uses I and B units

NOP can replace anything, uses no unit

An implementation of the

IA-64 instruction set interface

is the Itanium processor series.

M I BF

Functional units:

17 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: Local scheduling for IA-64

A DAG with a greedy and an optimal schedule

M1

M3 M4 M5

I2

F6

M1 I2 NOP

M3 M4 NOP

M5 F6 NOP

used templates:

MI;I / MMI; / MFI;

used templates:

M;MI / MMF;

Adapted from: S. Haga, R. Barua: EPIC Instruction

Scheduling based on Optimal Approaches.

M1 M3 I2

M4 M5 F6

18 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

A Generic ILP-Architecture Model

for Retargetable Code Optimization

Issue width w

w-way in-order superscalar or size of longest instruction group

w issue units

f resources

functional units, internal buses, …

Instruction set I

for each instruction y in I, specify its

- syntax: mnemonic, parameters, types

- semantics: (tree)pattern in terms of IR operations, latency

- resource requirements: reservation table, issue unit(s)

Formal specification in xADML [Bednarski’06]

(register sets etc. not considered here)

1 … w 1 … f

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Instruction Scheduling

Overview

20 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Instruction Scheduling

Generic Resource model: Reservation table

Optimize: time, space, energy

Local Scheduling
(f. Basic blocks / DAGs)

Data dependences
→ Topological sorting

List Scheduling (diverse heuristics)

Optimal Scheduling
(Exhaustive search, DP, B&B, CLP, ILP)

Global Scheduling

Code motion, Branch delay slot filling

Trace scheduling, Region scheduling, ...

Cyclic scheduling for loops (Software pipelining)

There exist retargetable schedulers
and scheduler generators, e.g. for GCC since 2003

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Local Instruction Scheduling

22 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Optimization problems in local scheduling

23 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

MRIS: Space-optimal scheduling

24 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: Topological Sorting (0)

d

a b c

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

Given:

Data flow graph of a basic block

(a directed acyclic graph, DAG)

25 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: Topological Sorting (1)

d

a b c

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

a

26 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: Topological Sorting (2)

d

a b c

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

ba

27 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: Topological Sorting (3)

d

a b c

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

da b

28 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example: Topological Sorting (4)

d

a b c

f

e

Not yet considered

Data ready (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

and so on...a b d

29 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

List scheduling = Topological sorting

30 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Topological Sorting and Scheduling

Construct schedule incrementally
in topological (= causal) order

”Appending” instructions to partial code sequence:
close up in target schedule reservation table
(as in ”Tetris”)

Idea: Find optimal target-schedule by enumerating
all topological sortings ...

Beware of scheduling anomalies
with complex reservation tables!

[K. / Bednarski / Eriksson 2007]

31 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Greedy List Scheduling for VLIW (1)

32 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Greedy List Scheduling for VLIW (2)

33 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Local Scheduling Heuristics

List Scheduling Heuristics

Deepest Level First (a.k.a. highest level first etc.)

Select, among ready instructions, one with longest
accumulated latency on a path towards any dependence
sink (root node)

Forward vs Backward scheduling

Critical Path Scheduling

Detect a critical path (longest accumulated latency)
in the DAG, schedule its nodes → partial schedule,
and remove them from the DAG.

Repeat until DAG is empty,
splicing in new nodes between scheduled ones as
appropriate, or inserting fresh time slots where needed

Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Global Instruction Scheduling

35 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Scheduling Branch Instructions

Delayed Branch

Effect of conditional branch on program counter is delayed

1 or more instructions after a branch instruction are always executed,

independent of the condition outcome

 SPARC, HP PA-RISC: 1 delay slot

 TI ’C62x: 5 delay slots

36 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Scheduling Branch Instructions

Delayed Branch

Effect of conditional branch on program counter is delayed

1 or more instructions after a branch instruction are always executed,

independent of the condition outcome

 SPARC, HP PA-RISC: 1 delay slot

 TI ’C62x: 5 delay slots

Scheduling: Fill delay slots with useful instruction if there is one,

otherwise with NOP

Heuristic for finding candidate instructions:

1. Instructions from same basic block that are not control dependent on

the branch and that the condition is not data dependent of

2. Instructions from most likely branch target basic block for speculative

execution

See e.g. [Muchnick Ch. 17.1.1] for further details

38 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Trace Scheduling

39 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Trace Scheduling (2)

40 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Trace Scheduling (3)

Insertion of compensation code

Case: When moving an instruction i2 to a predecessor

block B in the trace T (e.g., to fill a branch delay slot)

41 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Trace Scheduling (4)

Insertion of compensation code

Case: When moving an instruction i1 to a successor block

of B in the trace T

42 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Trace Scheduling (5)

Summary of cases:

43 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Region Scheduling

44 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Program regions for global scheduling

Trace (see above)

A path of basic blocks

Superblock

A trace with the restriction that there may be no branches into any of its

basic blocks, except the first one

Treegions = Extended Basic Blocks

An out-tree of basic blocks – no branch into any of its basic blocks,

except the first one

Hyperblock

A single-entry, multiple exit region with internal control flow.

As superblocks, but allow hammocks resolved by predication.

All these regions are acyclic (but may be part of a cycle around)

Traces and superblocks are ”linear regions”,

while treegions and hyperblocks are ”nonlinear regions”

45 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Summary + Outlook: Instruction Scheduling

46 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Further scheduling issues, not covered

* Utilization of hardware loop instructions

47 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Hardware Loop Instruction

48 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Predicated Code Generation

49 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Generation of Instruction Schedulers

Given: Instruction set with

reservation table for each instruction

Set of resource-valid schedules = regular language over the alphabet of

instructions

Scheduling instr. A after B leads to a certain pipeline state

(functional unit reservations and pending latencies of recently issued

instructions)

Scheduling A in pipeline state q leads to new pipeline state q’

→ Finite automaton (”Müller automaton”) of all possible pipeline states

and (appending) scheduling transitions

Or finite transducer → gives also the time offset for next instruction

Precompute possible states + transitions → Scheduling much faster

(table lookup instead of interpreting reservation table composition)

Reversed automaton to allow insertions at any location

Automata become huge! But can be optimized.

50 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Recommended Reading (global scheduling)

J. Fisher. Trace scheduling: A technique for global microcode

compaction. IEEE Trans. Computers, 30(7):478–490, 1981.

Paolo Faraboschi, Joseph A. Fisher, Cliff Young:

Instruction Scheduling for Instruction Level Parallel Processors.

Proceedings of the IEEE, vol. 89 no. 11, Nov. 2001

Daniel Kästner, Sebastian Winkel:

ILP-based Instruction Scheduling for IA-64.

Proc. ACM SIGPLAN LCTES-2001, June 2001

Sebastian Winkel. Optimal Global Instruction Scheduling for the Itanium®

Processor Architecture. Ph.D. thesis. Saarland University, Saarbrücken,

Germany, 2004. ISBN 3-937436-01-6

51 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Recommended Reading (Generating

Schedulers from Reservation Tables)

T. Müller: Employing finite automata for resource scheduling. Proc.

MICRO-26, 1993

Proebsting, Fraser: Detecting pipeline structural hazards quickly. Proc.

ACM POPL-1994

Bala, Rubin: Efficient instruction scheduling using finite state automata.

Proc. MICRO-28, 1995

Eichenberger, Davidson: A reduced multi-pipeline machine description

that preserves scheduling constraints. Proc. ACM PLDI-1996

