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CISC vs. RISC

CISC

Complex Instruction Set Computer

Memory operands for arithmetic and 
logical operations possible

M(r1+r2)  M(r1+r2) * M(r3+disp)

Many instructions

Complex instructions

Few registers, not symmetric

Variable instruction size

Instruction decoding (often done in 
microcode) takes much silicon 
overhead

Example:  80x86, 680x0

RISC

Reduced Instruction Set Computer

Arithmetic/logical operations only on 
registers

add r1, r2, r1
load r1, r4
load r3+disp, r5
mul  r4, r5
store r5, r1

Few, simple instructions

Many registers, all general-purpose
typ.  32 ... 256

Fixed instruction size and format

Instruction decoding hardwired

Example:  POWER, HP-PA RISC,
MIPS, ARM, SPARC
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Instruction-Level Parallel (ILP) architectures 

Single-Issue:    (can start at most one instruction per clock cycle)

Simple, pipelined RISC processors
with one or multiple functional units

e.g. ARM, DLX

Multiple-Issue:   (can start several instructions per clock cycle)

Superscalar processors

e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium 

VLIW processors

e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860, 
HP Lx, Transmeta Crusoe; 
most DSPs, e.g. Philips Trimedia TM32, Texas Instruments TI ‘C6x,

Qualcomm Hexagon, Recore Xentium

EPIC processors

e.g. Intel Itanium family  (IA-64)
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Pipelined RISC Architectures

A single instruction is issued per clock cycle

Possibly several parallel functional units / resources

Execution of different phases of subsequent instructions overlaps in time. 

This makes them prone to:

data hazards (may have to delay op until operands ready),

control hazards (may need to flush pipeline after wrongly predicted branch), 

structural hazards (required resource(s) must not be occupied)

Static scheduling (insert NOPs to avoid hazards)

vs. Run-time treatment by automatic hazard detection + pipeline stalling

IF

ID

EX

MEM/EX2

WB time
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Reservation Table, Scheduling Hazards

Reservation table

specifies required resource 

occupations

[Davidson 1975]
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Instruction Scheduling (1)

Map instructions to time slots on issue units (and resources), 

such that no hazards occur

→ Global reservation table,  resource usage map
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Instruction Scheduling (2)

Data dependences imply latency constraints

→ target-level data flow graph / data dependence graph

latency(mul) = 6 add

mul 6

6
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Superscalar processor

Run-time scheduling by instruction dispatcher

convenient (sequential instruction stream – as usual)

limited look-ahead buffer to analyze dependences, reorder instr.

high silicon overhead, high energy consumption

Example:  Motorola MC 88110
2-way, in-order issue 

superscalar
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Dual-Issue (w=2)

Example (1): 

Linear code  “mul R1,…; add …,R2” expands to



11 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Dual-Issue  (w=2)

Example (2): 

Linear code  “mul R1,…; add …,R1” expands to
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VLIW (Very Long Instruction Word) architectures

Multiple slots for instructions in long instruction-word

Direct control of functional units and resources – low decoding OH

Compiler (or assembler-level programmer) 
must determine the schedule statically  

independence, unit availability, packing into long instruction words 

Challenging!  But the compiler has more information on the program 
than an on-line scheduler with a limited lookahead window.

Silicon- and 
energy-efficient
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Clustered VLIW processor   

E.g.,  TI C62x, C64x  DSP processors

Register classes 

Parallel execution constrained by operand residence 

u v

Register File A Register File B

Unit  A1 Unit  B1

u

add.A1   u,  v add.B1   u,  v

Data bus

+

u v
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EPIC architectures

Based on VLIW

Compiler groups instructions to LIW’s (bundles, fetch units)

Compiler takes care of resource and latency constraints

Compiler marks sequences of independent instructions as 

instruction groups by inserting delimiters (stop bits)

Dynamic scheduler assigns resources and reloads new 

bundles as required
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EPIC Example:  Instruction format for TI ’C62x

Texas Instruments 

DSP processor series 

TMS320C62xx

1 fetch packet (a very long instruction word) has 8 slots

may contain up to 8 instruction groups (issue packets)

to be executed in sequence

Instruction groups are marked by chaining bits.

Up to 8 instructions in an instruction group

Instructions within an instruction group must use disjoint 

resources (basically, different functional units)

Example:  3 issue groups  { A||B||C } ; { D||E||F } ; { G||H }
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EPIC Example:  Intel IA-64  (Itanium)

Constraints on bundle contents and placement of delimiters 

for instruction groups:  24 templates

M I I

M I I

M I I

M I I

M M I

M M I

M M I

M M I

M L I

M L I

M F I

M F I

M M F

M M F

M I B

M I B

M B B

M B B

B B B

B B B

M M B

M M B

M F B

M F B

Instruction types:

M = Memory  (on M unit)

I   = Integer    (on I  unit)

F  = Floatingpoint  (on F unit)

B  = Branch   (on B unit)

A  = supertype of I and M

LX = uses 2 bundle slots, uses I and B units

NOP can replace anything, uses no unit

An implementation of the

IA-64 instruction set interface

is the Itanium processor series.

M I BF

Functional units:
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Example: Local scheduling for IA-64

A DAG with a greedy and an optimal schedule

M1

M3 M4 M5

I2

F6

M1 I2 NOP

M3 M4 NOP

M5 F6 NOP

used templates:

MI;I / MMI; / MFI;

used templates:

M;MI / MMF;

Adapted from:  S. Haga, R. Barua:  EPIC Instruction 

Scheduling based on Optimal Approaches.

M1 M3 I2

M4 M5 F6
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A Generic ILP-Architecture Model

for Retargetable Code Optimization

Issue width w

w-way in-order superscalar or size of longest instruction group

w issue units

f resources

functional units, internal buses, …

Instruction set I

for each instruction y in I, specify its

- syntax: mnemonic, parameters, types

- semantics: (tree)pattern in terms of IR operations, latency

- resource requirements: reservation table, issue unit(s)

Formal specification in xADML    [Bednarski’06]

(register sets etc. not considered here)

1 … w 1 … f
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Instruction Scheduling

Generic Resource model:  Reservation table

Optimize: time, space, energy

Local Scheduling 
(f. Basic blocks / DAGs)

Data dependences 
→ Topological sorting

List Scheduling  (diverse heuristics)

Optimal Scheduling 
(Exhaustive search, DP, B&B, CLP, ILP)

Global Scheduling

Code motion, Branch delay slot filling

Trace scheduling, Region scheduling, ...

Cyclic scheduling for loops (Software pipelining)

There exist retargetable schedulers
and scheduler generators, e.g. for GCC since 2003



Christoph Kessler, IDA, 

Linköping University

DF00100 Advanced Compiler Construction

TDDC86 Compiler Optimizations and Code Generation

Local Instruction Scheduling



22 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Optimization problems in local scheduling
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MRIS:  Space-optimal scheduling



24 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Example:  Topological Sorting (0)

d

a b c

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

Given:  

Data flow graph of a basic block

(a directed acyclic graph, DAG)
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Example:  Topological Sorting (1)

d

a b c

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

a
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Example:  Topological Sorting (2)

d

a b c

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

ba
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Example:  Topological Sorting (3)

d

a b c

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

da    b
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Example:  Topological Sorting (4)

d

a b c

f

e

Not yet considered

Data ready  (zero-indegree set)

Already scheduled, still alive

Already scheduled, no longer referenced

and so on...a   b   d



29 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

List scheduling = Topological sorting
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Topological Sorting and Scheduling

Construct schedule incrementally 
in topological (= causal) order

”Appending” instructions to partial code sequence: 
close up in target schedule reservation table 
(as in ”Tetris”) 

Idea: Find optimal target-schedule by enumerating 
all  topological sortings ...

Beware of scheduling anomalies
with complex reservation tables!  

[K. / Bednarski / Eriksson  2007]
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Greedy List Scheduling for VLIW  (1)
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Greedy List Scheduling for VLIW  (2)
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Local Scheduling Heuristics

List Scheduling Heuristics

Deepest Level First (a.k.a.  highest level first etc.)

Select, among ready instructions, one with longest 
accumulated latency on a path towards any dependence 
sink  (root node)

Forward vs Backward scheduling

Critical Path Scheduling

Detect a critical path (longest accumulated latency)
in the DAG,  schedule its nodes → partial schedule, 
and remove them from the DAG.

Repeat until DAG is empty, 
splicing in new nodes between scheduled ones as 
appropriate, or inserting fresh time slots where needed
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Scheduling Branch Instructions

Delayed Branch

Effect of conditional branch on program counter is delayed

1 or more instructions after a branch instruction are always executed, 

independent of the condition outcome

 SPARC, HP PA-RISC:  1 delay slot

 TI ’C62x:  5 delay slots
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Scheduling Branch Instructions

Delayed Branch

Effect of conditional branch on program counter is delayed

1 or more instructions after a branch instruction are always executed, 

independent of the condition outcome

 SPARC, HP PA-RISC:  1 delay slot

 TI ’C62x:  5 delay slots

Scheduling:  Fill delay slots with useful instruction if there is one, 

otherwise with NOP

Heuristic for finding candidate instructions: 

1. Instructions from same basic block that are not control dependent on 

the branch and that the condition is not data dependent of

2. Instructions from most likely branch target basic block for speculative 

execution

See e.g. [Muchnick Ch. 17.1.1] for further details
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Trace Scheduling
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Trace Scheduling  (2)
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Trace Scheduling (3)

Insertion of compensation code

Case: When moving an instruction i2 to a predecessor 

block B in the trace T (e.g., to fill a branch delay slot)



41 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköping University

Trace Scheduling (4)

Insertion of compensation code

Case: When moving an instruction i1 to a successor block 

of B in the trace T
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Trace Scheduling  (5)

Summary of cases:
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Region Scheduling
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Program regions for global scheduling

Trace (see above)

A path of basic blocks

Superblock

A trace with the restriction that there may be no branches into any of its 

basic blocks, except the first one

Treegions = Extended Basic Blocks

An out-tree of basic blocks – no branch into any of its basic blocks, 

except the first one

Hyperblock

A single-entry, multiple exit region with internal control flow.

As superblocks, but allow hammocks resolved by predication.

All these regions are acyclic  (but may be part of a cycle around)

Traces and superblocks are ”linear regions”, 

while treegions and hyperblocks are ”nonlinear regions”
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Summary + Outlook:  Instruction Scheduling
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Further scheduling issues, not covered

*  Utilization of hardware loop instructions
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Hardware Loop Instruction
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Predicated Code Generation
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Generation of Instruction Schedulers

Given:  Instruction set with 

reservation table for each instruction 

Set of resource-valid schedules = regular language over the alphabet of 

instructions

Scheduling instr. A after B leads to a certain pipeline state

(functional unit reservations and pending latencies of recently issued 

instructions)

Scheduling A in pipeline state q leads to new pipeline state q’

→ Finite automaton (”Müller automaton”) of all possible pipeline states 

and (appending) scheduling transitions

Or finite transducer → gives also the time offset for next instruction

Precompute possible states + transitions → Scheduling much faster 

(table lookup instead of interpreting reservation table composition)

Reversed automaton to allow insertions at any location

Automata become huge!  But can be optimized.
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Recommended Reading (Generating 

Schedulers from Reservation Tables)
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