DF00100 Advanced Compiler Construction
TDDC86 Compiler Optimizations and Code Generation

Instruction-Level Parallel
Processor Architectures

Instruction Scheduling

Local and Global Scheduling

Christoph Kessler, IDA,

Linkdping University

LINKOPING
UUUUUUUUU

vz
DF00100 Advanced Compiler Construction
TDDC86 Compiler Optimizations and Code Generation

RISC and Instruction-Level
Parallel Target Architectures

Christoph Kessler, IDA,
Linkdping University

CISC vs. RISC

CISC

O
O

O O 0O O O

Complex Instruction Set Computer

Memory operands for arithmetic and
logical operations possible

M(r1+r2) € M(rl+r2) * M(r3+disp)

Many instructions

Complex instructions

Few registers, not symmetric
Variable instruction size

Instruction decoding (often done in
microcode) takes much silicon
overhead

Example: 80x86, 680x0

C. Kessler, IDA, Linkoéping University

LINKOPING
II.“ UNIVERSITY

RISC
0 Reduced Instruction Set Computer
O Arithmetic/logical operations only on
registers
O addrl, r2,rl
load r1, r4
load r3+disp, r5
mul r4, r5
store r5, rl
Few, simple instructions
Many registers, all general-purpose
typ. 32 ... 256
Fixed instruction size and format
Instruction decoding hardwired
0 Example: POWER, HP-PA RISC,

MIPS, ARM, SPARC

vz
Instruction-Level Parallel (ILP) architectures

Single-lssue: (can start at most one instruction per clock cycle)

0 Simple, pipelined RISC processors
with one or multiple functional units

0 e.g. ARM, DLX

Multiple-Issue: (can start several instructions per clock cycle)

[Superscalar Processors
0 e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium

O VLIW processors

0 e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860,
HP Lx, Transmeta Crusoe;
most DSPs, e.g. Philips Trimedia TM32, Texas Instruments Tl ‘C6x,
Qualcomm Hexagon, Recore Xentium

0 EPIC processors
0 e.g. Intel Itanium family (1A-64)

C. Kessler, IDA, Linkoéping University 4

A 4

LINKOPING
II.“ UNIVERSITY

Pipelined RISC Architectures

0 A single instruction is issued per clock cycle
0 Possibly several parallel functional units / resources

0 Execution of different phases of subsequent instructions overlaps in time.
This makes them prone to:

0 data hazards (may have to delay op until operands ready),
0 control hazards (may need to flush pipeline after wrongly predicted branch),
0 structural hazards (required resource(s) must not be occupied)

0 Static scheduling (insert NOPs to avoid hazards)
vS. Run-time treatment by automatic hazard detection + pipeline stalling

issue |cycle| PM Decoder ALU, DM/ALU,; Regs
IF I 1 1R
ID) 2 | IF 1D
EX I3 3 1F; 1D, EXq
i 1F; iDs EXs MEM
MEM/EX?2 I 5 |[IFs ID, EX; MEM, WB
WB time | | 6 |IF;, IDs EX),2 MEM; WB,

C. Kessler, IDA, Linkoéping University

vz
Reservation Table, Scheduling Hazards

add- - MULTIPFLILIER .
tead | bead | stage slage slage slage slage slage wiile Rese rvatlon table
sicl [s0c2 [O 1 Q0 1 2 3 esnli - .
| pnd] apnd N specifies required resource
o < occupations
1
2 [Davidson 1975]
3

aLi MULTIPLLIER

mul:
S R t: mul ...
Tioe |°2phd|opnd bus .

. t+1: ...

1 t+2: add . é
2

3 ‘o stricctural
+ hazard
5 at =5

vz
Instruction Scheduling (1)
0 Map instructions to time slots on issue units (and resources),

such that no hazards occur
> Global reservation table, resource usage map

lesne ead | read| A LU MULTIPLIER | whie

anit 1 sicl | sic? | stage slage slage slage slagd stagd resull
Trioe opnd epndl @ [1 [0 |1 |2 |3 |bus
t: mul ...

t+l: add ... 1 [X]
E+2: nop ... SN

|-2 —_

¥ ¥

Ln 4= L

hu e,
Instruction Scheduling (2)

0 Data dependences imply latency constraints
> target-level data flow graph / data dependence graph

lead |bead | ALD MULTIPLIER | wnie

it 1 sicl | s1c2 | slagd slage slage slagd slage slage vesolt
Tuoe ophd| cphd| O 1 0 1 2 3 bus
t: mul R1, ... 0
t+l: nop ... 1
£+2: nop ... » DX
3 | l16..
t+4: nop ... o Egﬂu
= Y-...-.
£+6: add ...,R1 ... <l

C. Kessler, IDA, Link6éping Unive

Superscalar processor

LINKOPING
II.“ UNIVERSITY

0 Run-time scheduling by instruction dispatcher

0 convenient (sequential instruction stream — as usual)

0 limited look-ahead buffer to analyze dependences, reorder instr.

0 high silicon overhead, high energy consumption
0 Example: Motorola MC 88110

2-way, in-order issue
superscalar

C. Kessler, IDA, Linkoéping University

I-cache
1™

AN

* place 1 \ place 2 DISPATCHER

internal instruction
buffer (2 instructions)

\ _

v
Dual-Issue (w=2)

0 Example (1):
Linear code “mul R1,...; add ...,R2" expands to

m [ssue [s500 tead | tead | bead | tead AaL0 MULTILPLLER | wnle | wiile
it b2 sicl (5062 | sicl | sic? || slage slage slagd slagd slage slagd resolt | resolt
mul Rl Foror e Tune ophd| opnd| ophd| ophd| | © 1 0 1 2 3 bos | bus

add ...,R2 f ----------------
.o T N N
W\ S
[e e
No data dependence s
e B I
U .

C. Kessler, IDA, Linkoéping University 10

v
Dual-Issue (w=2)

0 Example (2):
Linear code “mul R1,...; add ...,R1” expands to

— T e bes e tead | tead | tead |tead || ALU | MULTIPLLIER |wiite | wiite
it 1hnit2 sicl [s1e? | sicl |52 || slagd stagd slage slagd stage slagy result | vesolt
mul Rl Foroe o Tume ophd| ophd| ophd| epnd| | © 1 0 1 E 3 bus | bus
'l-..-_.-.*I |:|
add L 4 4 ’ Rl l -----------------
L) L) L) 1 -----------------
W/\ T I (R
S R | R
Data dependence! 5
&
ER R R

C. Kessler, IDA, Linkoéping University 11

vz
VLIW (Very Long Instruction Word) architectures

0 Multiple slots for instructions in long instruction-word
0 Direct control of functional units and resources — low decoding OH
0 Compiler (or assembler-level programmer)
must determine the schedule statically
0 Independence, unit availability, packing into long instruction words

0 Challenging! But the compiler has more information on the program
than an on-line scheduler with a limited lookahead window.

0 Silicon- and
energy-efficient REGISTER FILE
YA AT TAY &,

A A A A
PC | | |
\L‘i addl NOP load NOP

C. Kessler, IDA, Linkoéping University

Clustered VLIW processor

0 E.g., TIC62%, Co64x DSP processors
0 Register classes
0 Parallel execution constrained by operand residence

‘ Data bus ‘
Reqister File A Regqister File B

u \Y u
2 L]
\ Unit A, / \ Unit B, /
ad v M

C. Kessler, IDA, Linkoéping University 13

houuies,
EPIC architectures

Based on VLIW
Compiler groups instructions to LIW’s (bundles, fetch units)
Compiler takes care of resource and latency constraints

O O O 0O

Compiler marks sequences of independent instructions as
Instruction groups by inserting delimiters (stop bits)

0 Dynamic scheduler assigns resources and reloads new
bundles as required

C. Kessler, IDA, Linkoéping University 14

LINKOPING
II.“ UNIVERSITY

EPIC Example: Instruction format for Tl ’C62x

Program cache / Program memory

¢ ¢

0 Texas Instruments

Register file A (A0-A15)) |1x Register file B (B0-B15)
DSP processor series 1 v dfr id v et i b vy
TM SBZOCGZXX QLQ .S‘,l .N\Il .D‘l ;.DZ; .1\112 .S‘2 .ITZ

Data cache / Data memory

0 1 fetch packet (a very long instruction word) has 8 slots

0 may contain up to 8 instruction groups (issue packets)
to be executed in sequence

0 Instruction groups are marked by chaining bits.
» Up to 8 instructions in an instruction group

0 Instructions within an instruction group must use disjoint
resources (basically, different functional units)

0 Example: 3issue groups { A||B||IC }; {D||IE||F }; {G]||H}
A 1 B |l C 0 D |l E |l F 0 G |l H 0

C. Kessler, IDA, Linkoéping University 15

LINKOPING
II.“ UNIVERSITY

EPIC Example: Intel IA-64 (Itanium)

0 Constraints on bundle contents and placement of delimiters
for instruction groups: 24 templates

M [1] [MIm][1] [M[L]1] [MIM]F] [m]B]B] [M[M]B
M1 (] (MM} (ML 1] [m[m]F] [m[B]E] [m[m]E]
M 1] [MMm[1] [m[F[1] [m]1]B] [B]B]B]| [M][F]B
m] (MM IMIE[] (m[1]e] [B]B]B} [M][F]E]

Instruction types:

M = Memory (on M unit)

| =Integer (on | unit)

F = Floatingpoint (on F unit)

B = Branch (on B unit)

A = supertype of | and M

LX = uses 2 bundle slots, uses | and B units
c.kes NOP can replace anything, uses no unit

TANTATAYY,

An implementation of the
|A-64 instruction set interface
IS the Itanium processor series.

Example: Local scheduling for |A-64

0 A DAG with a greedy and an optimal schedule

) (=)
() (we) (s
G

C. Kessler, IDA, Linkoéping University

LINKOPING
II.“ UNIVERSITY

M1

12

NOP

M3

M4

NO

M5

F6

NO

used templates:
MI;1 / MMI; | MFI,

17

M1

M3

M4

MS

12
F6

used templates:
M;MI / MMF;

Adapted from: S. Haga, R. Barua: EPIC Instruction
Scheduling based on Optimal Approaches.

vz
A Generic ILP-Architecture Model
for Retargetable Code Optimization

0 Issue width w
w-way In-order superscalar or size of longest instruction group

0 w Issue units
1]...|w 1 f

0 fresources
functional units, internal buses, ...

0 Instruction set |
for each instruction y in |, specify its
- syntax: mnemonic, parameters, types
- semantics: (tree)pattern in terms of IR operations, latency
- resource requirements: reservation table, issue unit(s)

0 Formal specification in XADML [Bednarski'06]
(register sets etc. not considered here)

C. Kessler, IDA, Linkoéping University 18

vz
DF00100 Advanced Compiler Construction
TDDC86 Compiler Optimizations and Code Generation

Instruction Scheduling

Overview

Christoph Kessler, IDA,
Linkdping University

vz
Instruction Scheduling

Generic Resource model: Reservation table e | [1oed| ALU | MULTIBLLER fuic
e M 1 e P P o i o
S - F t: mul R1,... o
Optimize: time, space, energy t41: nop .. LB
. t+2: nop ...]
Local Scheduling sl
(f. Basic blocks / DAGS) t+4: nop ... vk
5
0 Data dependences t+6: add ..., Rl ..>%| ...

—> Topological sorting
0 List Scheduling (diverse heuristics)

0 Optimal Scheduling
(Exhaustive search, DP, B&B, CLP, ILP)

Global Scheduling

0 Code motion, Branch delay slot filling

0 Trace scheduling, Region scheduling, ...

0 Cyclic scheduling for loops (Software pipelining)

There exist retargetable schedulers
and scheduler generators, e.g. for GCC since 2003

C. Kessler, IDA, Linkoéping University 20

vz
DF00100 Advanced Compiler Construction
TDDC86 Compiler Optimizations and Code Generation

Local Instruction Scheduling

Christoph Kessler, IDA,
Linkdping University

vz
Optimization problems in local scheduling

MRIS — minimum register need instruction scheduling

+ Spilling (store/reload) takes additional time

+ Power consumption in embedded procs. increases with # mem. accesses
+ Superscalar processors with shadow registers and register renaming

— compiler-generated spill code cannot be eliminated at run time

— NP—complete [Sethi’ 73]

MTIS — minimum time instruction scheduling

+ hiding pipeline delays

+ exploiting instruction—level parallelism (for superscalar/VLIW)

— NP—complete [Garey/Johnson'79, Gross'83, Lawler et al.'87]

RCMTIS - register—constrained minimum time instruction scheduling

SMRTIS = simultaneous minimization of space and time

C. Kessler, IDA, Linkoéping University 22

LINKOPING
II.“ UNIVERSITY

MRIS: Space-optimal scheduling

(a) based on postorder traversal of the DAG

Special case: tree: space-opt. schedule in linear time [Sethi, Ullman "70]
Special case: vector tree (node size attribute): space-opt. O(nlogn) [Rauber'90]

Special case: series-par. DAG: space-opt. schedule in pol. time [qpttler '81]

General DAG, contiguous schedules (< 2")
e Random dfs [K., Paul, Rauber '91]
e Enumeration with DC strategy [K., Rauber '93/93]

(b) based on topological sorting of the DAG — general schedules (< n!)
e space-optimal (enumeration + dynamic programming) (K. "96]

(c) based on finding instruction lineages in the DAG
¢ heuristic method by [Govindarajan et al. "00]

— see separate lecture on MRIS

C. Kessler, IDA, Linkoéping University 23

LINKOPING
II.“ UNIVERSITY

Example: Topological Sorting (0)

Given:
_ Data flow graph of a basic block
Not yet considered (a directed acyclic graph, DAG)

Data ready (zero-indegree set)

Already scheduled, still alive

CO0®

Already scheduled, no longer referenced

C. Kessler, IDA, Linkoéping University 24

LINKOPING
II.“ UNIVERSITY

Example: Topological Sorting (1)

Not yet considered
Data ready (zero-indegree set)

Already scheduled, still alive

CO0®

Already scheduled, no longer referenced

C. Kessler, IDA, Linkoéping University 25

LINKOPING
II.“ UNIVERSITY

Example: Topological Sorting (2)

Not yet considered
Data ready (zero-indegree set)

Already scheduled, still alive

CO0®

Already scheduled, no longer referenced

C. Kessler, IDA, Linkoéping University 26

LINKOPING
II.“ UNIVERSITY

Example: Topological Sorting (3)

Not yet considered
Data ready (zero-indegree set)

Already scheduled, still alive

CO0®

Already scheduled, no longer referenced

C. Kessler, IDA, Linkoéping University 27

LINKOPING
II.“ UNIVERSITY

Example: Topological Sorting (4)

Not yet considered
Data ready (zero-indegree set)

Already scheduled, still alive

CO0®

Already scheduled, no longer referenced

ab d and so on...

C. Kessler, IDA, Linkoéping University 28

LINKOPING
II.“ UNIVERSITY

List scheduling = Topological sorting

I.-" 1\\ H Q/ ™
.l -'Illlll : .'I: P‘.

: ‘ - scheduled(7)
O @] © O

l select v
DAG G -

4 - sclreduled(2)
O O O O

C. Kessler, IDA, Linkoéping University

top_sort(Set z, int[] INDEG, int ¢)
ifz£0 /I (t<n)

select arbitrary node ve z;

/I implicitly remove all edges (v,u) Vu:

INDEG(u) — 1 where 3(v,u)
INDEG(u) elsewhere

I/l update zero-indegree set:

—{v}U{new leaves}
= {u : INDEG(u) = 0}

S[t] < v;
top_sort(Z, INDEG’, t+1);
else output S[1 : »| fi

INDEG' (1) = {

- -~
Z 4 Z

Call top_sort(zo, INDEGy, 1)

produces a schedule in S[1 : #|
29

Topological Sorting and Scheduling

0 Construct schedule incrementally
In topological (= causal) order

0 "Appending” instructions to partial code sequence:
close up in target schedule reservation table ‘

(as in "Tetris”)

0 Idea: Find optimal target-schedule by enumerating
all topological sortings ...

» Beware of scheduling anomalies
with complex reservation tables!
[K. / Bednarski / Eriksson 2007]

L

C. Kessl(:; ID {j 'D (:} 30

Greedy List Scheduling for VLIW (1)

A greedy heuristic for list scheduling

fills in one step as many slots in a VLIW word as possible
with ready instructions of the zeroindegree set.

ol |

. - scheduled(7)
O '@*d o © O

C. Kessler, IDA, Linkoéping University

31

LINKOPING
II.“ UNIVERSITY

REGISTER FILE

b [\ o/ \osh / \ s¥ee

addi

NOP load

NOP

LINKOPING
II.“ UNIVERSITY

Greedy List Scheduling for VLIW (2)

A greedy heuristic for list scheduling
fills in one step as many slots in a VLIW word as possible

with ready instructions of the zeroindegree set.

Not optimal!
(optimal) greedy schedule: (non-optimal) greedy schedule:
t IntFIt-Unit | IntMem-Unit t IntFlIt-Unit | IntMem-Unit
1 | FItOp FltLd 1 | FItOp IntOp
2 | IntOp IntLd 2 | — IntLd
3 | — FltLd

C. Kessler, IDA, Linkoéping University 32

vz
Local Scheduling Heuristics

0 List Scheduling Heuristics
0 Deepest Level First (a.k.a. highest level first etc.)

» Select, among ready instructions, one with longest
accumulated latency on a path towards any dependence
sink (root node)

» Forward vs Backward scheduling

0 Critical Path Scheduling

0 Detect a critical path (longest accumulated latency)
In the DAG, schedule its nodes - partial schedule,
and remove them from the DAG.

0 Repeat until DAG is empty,
splicing in new nodes between scheduled ones as
appropriate, or inserting fresh time slots where needed

C. Kessler, IDA, Linkoéping University 33

vz
DF00100 Advanced Compiler Construction
TDDC86 Compiler Optimizations and Code Generation

Global Instruction Scheduling

Christoph Kessler, IDA,
Linkdping University

vz
Scheduling Branch Instructions

0 Delayed Branch
0 Effect of conditional branch on program counter is delayed

0 1 or more instructions after a branch instruction are always executed,
iIndependent of the condition outcome

» SPARC, HP PA-RISC: 1 delay slot
» TI1°C62x: 5 delay slots

r—1 sub R17, 1, R17

t bnez R1l7, TARGETLRBL delayed conditional branch instructic
r+1 add R13, R1l4, R15
d=2 delay slots
t+2 nop
+3 load R18, R17, R18 TARGETLBL

C. Kessler, IDA, Linkoéping University 35

vz
Scheduling Branch Instructions

0 Delayed Branch
0 Effect of conditional branch on program counter is delayed

0 1 or more instructions after a branch instruction are always executed,
iIndependent of the condition outcome

» SPARC, HP PA-RISC: 1 delay slot
» T1°C62x: 5 delay slots

0 Scheduling: Fill delay slots with useful instruction if there is one,
otherwise with NOP

0 Heuristic for finding candidate instructions:

1. Instructions from same basic block that are not control dependent on
the branch and that the condition is not data dependent of

2. Instructions from most likely branch target basic block for speculative
execution

0 See e.g. [Muchnick Ch. 17.1.1] for further details

C. Kessler, IDA, Linkoéping University 36

houuies,
Trace Scheduling

developed for VLIW architectures [Fisher'31] [Ellis’'85]

e idea: enlarge the scope of local scheduling to traces
trace = acyclic path of basic blocks in the CFG

track execution frequencies for BB's/traces (e.g., profiling)

e idea: make the most frequent trace fast:

+ virtually merge BB'’s in the most frequent trace
schedule trace as one BB, e.g. by greedy VLIW list scheduling

+ insert compensation code in less frequent side traces for correctness
— accept slowdown for side traces
— program lenght may grow (worst case: exponentially)

+ continue same procedure with next frequent trace

C. Kessler, IDA, Linkoéping University 38

LINKOPING
II." UNIVERSITY

Trace Scheduling (2)

Traces in a control flow graph,

numbered in order of decreasing
execution frequency

A trace ends at a backward branch,
or at a join point with another trace
of higher execution frequency
(which thus was constructed earlier).

C. Kessler, IDA, Linkdping University 39

Trace Scheduling (3)

0 Insertion of compensation code

LINKOPING
II.“ UNIVERSITY

0 Case: When moving an instruction 12 to a predecessor

block B in the trace T (e.qg., to fill a branch delay slot)
T:

T:

C. Kessler, IDA, Linkoéping University

40

)
Cl?//

LINKOPING
II.“ UNIVERSITY

Trace Scheduling (4)

0 Insertion of compensation code

0 Case: When moving an instruction i1 to a successor block
of Binthe trace T

T: 5. T: a.
))
i =
Ciz) - i

C. Kessler, IDA, Linkoéping University 41

LINKOPING
Ilo“ UNIVERSITY

Trace Scheduling (5)

0 Summary of cases:

Code reordering with insertion of compensation code
Hoisting an assignment

Interchange assignment and label

Moving assignments across conditional branches
Moving a branch

iInterchange branches

C. Kessler, IDA, Linkoéping University 42

LINKOPING
II.“ UNIVERSITY

Region Scheduling

[Gupta/Soffa’90]

ldea: avoid idle cycles caused by regions with insufficient parallelism
Program region = one or several BB’s that require the same control condition

Repeatedly apply a set of local code transformations:
e loop unrolling
e moving instructions from BB’s with excessive parallelism
iInto BB’s with insufficient parallelism
e merging of regions
to balance the degree of parallelism

Heuristic measure for average degree of parallelism in a region:
instructions(region) / length of critical path(region)

C. Kessler, IDA, Linkoéping University 43

vz
Program regions for global scheduling

0 Trace (see above)
0 A path of basic blocks
0 Superblock

0 A trace with the restriction that there may be no branches into any of its
basic blocks, except the first one

0 Treegions = Extended Basic Blocks

0 An out-tree of basic blocks — no branch into any of its basic blocks,
except the first one

0 Hyperblock

0 A single-entry, multiple exit region with internal control flow.
As superblocks, but allow hammocks resolved by predication.

0 All these regions are acyclic (but may be part of a cycle around)

0 Traces and superblocks are “linear regions”,
while treegions and hyperblocks are "nonlinear regions”

C. Kessler, IDA, Linkoéping University 44

vz
Summary + Outlook: Instruction Scheduling

e usually, optimize for time (other important metrics: space, energy)
— see also lecture on energy-aware code generation

e |ocal methods
postorder traversals, forward/backward list scheduling, optimal methods
— see also lecture on space-optimal scheduling (MRIS)

e global methods
trace scheduling, percolation scheduling, region scheduling
— see also lecture on software pipelining

e interferences with instruction selection, register allocation,
— phase-ordering problems
— see also lecture on integrated code generation

e interferences with data layout, exploit advanced addressing units, ...
— see also lecture on code generation for DSPs

C. Kessler, IDA, Linkoéping University 45

vz
Further scheduling issues, not covered

* Utilization of hardware loop instructions

e creating and scheduling predicated code

e speculation (with and without hardware support)
prefetching (load speculation), branch speculation, value speculation ...

e run-time scheduling, profile-driven scheduling

¢ automatic generation of instruction schedulers: finite state automata
[Proebsting/Fraser: Detecting Pipeline Hazards Quickly, POPL94],
[Bala/Rubin MICRO-28, 1993]
e.g. the new GCC scheduler [Makarov, GCC Dev. Summit 2003]

C. Kessler, IDA, Linkoéping University 46

vz
Hardware Loop Instruction

add 8192, R17 ; trip countin R17 repeat 2, 8192 ; loop count in LR
LOOPIBL:sub R17, 1, R17 load R15, LR, R18
load R15, R17, R18 store R18, R16, LR
store R1l8, R16, R1l7
bnez R17, LOOPLBL
NEXTLBL: . ..

2 instructions

C. Kessler, IDA, Linkoéping University 47

Predicated Code Generation

sub R17, 1,

bnez R1l7, ELSELBL
store R13, R17, R15

jump NEXTLBL

ELSELBL: load R18, R17,

NEXTLBL: . ..

C. Kessler, IDA, Linkoéping University

48

LINKOPING
II.“ UNIVERSITY

sub R17, 1, R17
cmpne R17, 0, P1
store R13, R15
load R18, R17, R18

LINKOPING
II.“ UNIVERSITY

Generation of Instruction Schedulers

O

O
O

Given: Instruction set with
0 reservation table for each instruction

Set of resource-valid schedules = regular language over the alphabet of
Instructions

Scheduling instr. A after B leads to a certain pipeline state
(functional unit reservations and pending latencies of recently issued
Instructions)

Scheduling A in pipeline state q leads to new pipeline state q’

- Finite automaton ("Muller automaton”) of all possible pipeline states
and (appending) scheduling transitions

0 Or finite transducer - gives also the time offset for next instruction

Precompute possible states + transitions - Scheduling much faster
(table lookup instead of interpreting reservation table composition)

Reversed automaton to allow insertions at any location
Automata become huge! But can be optimized.

C. Kessler, IDA, Linkoéping University 49

LINKOPING
II.“ UNIVERSITY

Recommended Reading (global scheduling)

O

J. Fisher. Trace scheduling: A technique for global microcode
compaction. IEEE Trans. Computers, 30(7):478-490, 1981.

Paolo Faraboschi, Joseph A. Fisher, Cliff Young:
Instruction Scheduling for Instruction Level Parallel Processors.
Proceedings of the IEEE, vol. 89 no. 11, Nov. 2001

Daniel Kastner, Sebastian Winkel:
ILP-based Instruction Scheduling for |A-64.
Proc. ACM SIGPLAN LCTES-2001, June 2001

Sebastian Winkel. Optimal Global Instruction Scheduling for the Itanium®
Processor Architecture. Ph.D. thesis. Saarland University, Saarbricken,
Germany, 2004. ISBN 3-937436-01-6

C. Kessler, IDA, Linkoéping University 50

LINKOPING
II.“ UNIVERSITY

Recommended Reading (Generating
Schedulers from Reservation Tables)

O

T. Muller: Employing finite automata for resource scheduling. Proc.
MICRO-26, 1993

Proebsting, Fraser: Detecting pipeline structural hazards quickly. Proc.
ACM POPL-1994

Bala, Rubin: Efficient instruction scheduling using finite state automata.
Proc. MICRO-28, 1995

Eichenberger, Davidson: A reduced multi-pipeline machine description
that preserves scheduling constraints. Proc. ACM PLDI-1996

C. Kessler, IDA, Linkoéping University 51

