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Towards (semi-)automatic parallelization of sequential programs
0 Data dependence analysis for loops

0 Dependence tests
0 Some loop transformations

0 Loop invariant code hoisting, loop unrolling,

loop fusion, loop interchange, loop blocking and tiling,
scalar expansion, and more

0 Static loop parallelization
0 Idiom recognition
0 Run-time loop parallelization
0 Doacross parallelization
0 Inspector-executor method
0 If time permits: thread-level speculation
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Foundations: Control and Data Dependence

0 Consider statements S, T in a sequential program (S=T possible)
0 Scope of analysis is typically a function, i.e. intra-procedural analysis
0 Assume that a control flow path S ... T is possible

0 Can be done at arbitrary granularity (instructions, operations,
statements, compound statements, program regions)

0 Relevant are only the read and write effects on memory
(i.e. on program variables) by each operation,
and the effect on control flow

Example:
S: if (...){
0 Control dependence S > T,
If the fact whether T is executed may depend on S T
(e.g. condition)
0 Implies that relative execution order S 2> T }

must be preserved when restructuring the program

0 Mostly obvious from nesting structure in well-structured programs,
but more tricky in arbitrary branching code (e.g. assembler code)
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Foundations: Control and Data Dependence

0 Data dependence S - T,
If statement S may execute (dynamically) before T
and both may access the same memory location S: z=...;
and at least one of these accesses is a write

0 Means that execution order ’S before T’ must
be preserved when restructuring the program (flow dependence)

0 In general, only a conservative over-estimation
can be determined statically

0 flow dependence: (RAW, read-after-write)
» S may write a location z that T may read
0 anti dependence: (WAR, write-after-read)
» S may read a location x that T may overwrite
0 output dependence: (WAW, write-after-write)
» both S and T may write the same location

Example:

T ...=.2z2.;
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Dependence Graph

0 (Data, Control, Program) Dependence Graph:
Directed graph, consisting of all statements as vertices
and all (data, control, any) dependences as edges.

S if (e) goto S;
S: a<— ...
S3: b+a=xc
Sy c+bxf

Ss: b—x+ f

C. Kessler, IDA, Linkdping University

© control dependence by control flow: 5,65,

@ data dependence:

flow / true dependence: S; & S,
@ S; <84 and db: S5 writes b, S4reads b

anti-dependence: S; 69 S,

output dependence: S; 6° S;s
S; <185 and db: S5 writes b, S5 writes b

a
‘@ S3; <8, and de: S5 reads ¢, S, writes ¢
a
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Data Dependence Graph

0 Data dependence graph for straight-line code ("basic
block”, no branching) is always acyclic, because relative

execution order of statements is forward only.

0 Data dependence graph for a loop:
0 Dependence edge ST if a dependence may exist for
some pair of instances (iterations) of S, T
0 Cycles possible
0 Loop-independent versus loop-carried dependences

Example:
for (i=1 . ien;: i4+4 ) { loop-carried
S1: alil = b[i] + ali-11;
S2: b[1i] = ali]; loop-independent

J ﬁ (assuming that we know statically @
C. Kessler, Il that arrays a and b do not intersect)
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Example

for i from 2 to 9 do (assuming that we statically know that
f . . _ arrays A, X, Y, Z do not intersect,
S Xli] « Yl + Z1i] otherwise there might be further

S, Ali] « X[i—1] + 1 dependences)
od
[=2 =3 =4
St X[2] « Y[2| + Z]2] X[3] « Y[3] + Z[3] X[4] + Y[4] + Z[4]
S, A2l « X[1] + 1 A3 « X[2] + 1 A[4] « X[3] + 1

There is a loop-caried, forward, flow dependence from §, to ;.

lteration space dependence graph: = o 1 2 3 4 5 6 1 8 9
(Iterations unrolled)

Data dependence graph:
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Why Loop Optimization and Parallelization?

Loops are a promising object for program optimizations,
Including automatic parallelization:

0 High execution frequency
0 Most computation done in (inner) loops

0 Even small optimizations can have large impact
(cf. Amdahl’'s Law)

0 Regular, repetitive behavior

0 compact description

0 relatively simple to analyze statically
0 Well researched

C. Kessler, IDA, Linkdping University 8
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Data Dependence Analysis — Overview

0 Important for loop optimizations, vectorization and parallelization,
instruction scheduling, data cache optimizations

0 Conservative approximations to disjointness of pairs of memory accesses
0 weaker than data-flow analysis
0 but generalizes nicely to the level of individual array element
0 Loops, loop nests
0 Iteration space
0 Array subscripts in loops
0 Index space
0 Dependence testing methods
0 Data dependence graph
0 Data + control dependence graph
0 Program dependence graph
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Precedence relation between statements

S, statically (textually) precedes 55 S1 pred S

S; dynamically precedes §, 51 <8

Within loops, loop nests:  pred # <«

S1:5+0

for 7 from 1 to » do
S0 s<s+ali
S3: alil«+s

od
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Data Dependence Graph

0 Data dependence graph for straight-line code ("basic
block”, no branching) is always acyclic, because relative
execution order of statements is forward only.

0 Data dependence graph for a loop:

0 Dependence edge S>T if a dependence may exist for
some pair of instances (iterations) of S, T

0 Cycles possible
0 Loop-independent versus loop-carried dependences

Example:
for (i=1; i<n; i++) {
S1: ali] b[i] + al[i-1];
S2: Dbl[i] ali]; loop-independent

} (assuming we know statically @
C. Kessler that arrays a and b do not intersect)

loop-carried

-~
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Loop Iteration Space

Beyond basic blocks: pred # <«

Canonical loop nest: (HIR code)

for 7, from 1 to »n; do
for i, from 1 to n, do carried

at level 3
for i; from 1 to n; do
S}(Z'l,...,l'k) ) A[f-l,z*f3] <—B[f2,f3] + 1 @D\j

So(i1y ey it) o Blia, iz +ig] <= 2 % Ali1, 2 %13

_=s=9<s=)

lteration space: 1S = [l.ny] x [1.my] X ... X [1..1f]

(the simplest case: rectangular, static loop bounds)

lteration vector 7 = (i, ...,i;) € ItS

C. Kessler, IDA, Linkdping University 13
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Example

for i from 2 to 9 do (assuming that we statically know that
; _ _ _ arrays A, X, Y, Z do not intersect,
51 X[l] & Y[Z] T Z[l] otherwise there might be further

S, Al + X[i—-1] + 1 dependences)
od
[ =2 =3 I=4
St X[2] « Y[2] + Z[2] X[3] «+ Y[3] + Z|3] X[4] «+ Y[4] + Z|4]
S, AR « X[1] + 1 APB] « X2l + 1 A[4] « X[3] + 1

There is a loop-caried, forward, flow dependence from §; to .5>.

lteration space dependencegraph: = o 1 2 '3 "4 5 6 7 '8 9
(Iterations unrolled)

Data dependence graph:
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Loop Normalization

Given a loop of the form

for 7 from L to U step S do

T
od

normalize the loop:

e lower bound 0 (C) resp. 1 (Fortran)

o step size +1
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— update all occurrences of the loop counter 7 by ixS—S+L

for i from 1 to (U —L+S)/S step 1 do
o (i%S=S+1L) ...

od
I —ixS—8S+L

C. Kessler, IDA, LInkoping University
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Dependence Distance and Direction

Lexicographic order on iteration vectors — dynamic execution order:
S1((T1yen i) S ((J1y -y i) I

either S; pred S, and (i1,...,ix)) <rex (/1,5 Jk)

or Si=S8 and (i,.,ir) <iex (Jiyeees i)

distance vector d = j—7 = (j1 — i1, ..., jr — i)

direction vector dirv = sgn(j —17) = (sgn(j, —i1),...,sgn(jr — ir))
interms of symbols =< ><>"*

Example: LS*1(<Z.1,Z.2,Z.3,Z.4>) 57”;92(@1,2'2,2'3,2'4))
distance vector d = (0,0,0,0), direction vector dirv = (=,=,=,=),
loop-independent dependence

Example: LSY2(<Z-1,Z-2,Z-3,Z-4>) 6f ;Sl((fl,l'z,l'g —|—f4,f4>)
distance vector d = (0,0,7,0), direction vector dirv = (=,=,>,=),
loop-carried dependence (carried by i3-loop / at level 3)

C. Kessler, IDA, Linkdping University 16
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Dependence Equation System

One-dimensional array 4 accessed in & nested loops: Sy LA[FG)..

s there a dependence between S, (7) and S,(/) for some 7, j € 1tS?

; k
typically 1, glinear:  f(i)=ao+ X aji;,  g(i)=bo+ Y by,
=1 =

L k r
Existi,j € ZF with (i) =g()), i.e., a0+ Y ajij = bo+ 3 byj;,  dep. equation
/=1 =1

subjectto 7,7 €115, i.e.,

1<iy<m, 1<j5<m,
: iter. space constraints: linear inequalities
1 <ip<ng, 1< p<mg

— constrained linear Diophantine equation system — ILP (NP-complete)

C. Kessler, IDA, Linkdping University 17
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Linear Diophantine Equations

n
Qax;=c
J=1

wheren>1, «c,a,€%, 3dj:a,#0, x,€Z

Example 1: x+4y =1
has infinitely many solutions, e.g. x=5and y = —1.

Example 2: 5x— 10y =2
has no solution in Z: absolute term must be multiple of 5

Theorem:
> a;x; =c has a solution iff gcd(ay,...,as)|c.
i=1

Proof: see e.g. [Zima/Chapman p. 143]

C. Kessler, IDA, Linkdping University 18
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Dependence Testing, 1: GCD-Test

Often, a simple test is sufficient to prove independence: e.g.,

gcd-test  [Banerjee'76], [Towle’76]:
independence If \ ;

sed (CJ{ahbf} ) 1 S

constraints on /1S not considered

Example: for i from 1 to 4 do
Si1: blil+al3xi—5]+2
S, al2xi+ 1]« 1.0/i

solutionto 2i+1 =3 — 5 exists in Z as gcd(3,2)|(-5—1+3—2)

not checked whether such i, j existin {1,...,4}
C. Kessler, IDA, Linkoping University 19
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For multidimensional arrays?

subscript-wise test vs. linearized indexing

fori ... fori ...
St LAlxi], 2] Si: LAl Ali*(s;+1)]
Sy LA 2xi 4 1] Sy Al Alix(sp+ 1)+ 1]
Moreover:

Hierarchical structuring of dependence tests [Burke/Cytron's6]

C. Kessler, IDA, Linkdping University 20
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Survey of Dependence Tests
gcd test
separability test (gcd test for special case, exact)
Banerjee-Wolfe test [Banerjee’88] rational solution in 7S
Delta-test [Goff/Kennedy/Tseng'91]
Power test [Wolfe/Tseng'91]
Simple Loop Residue test [Maydan/Hennessy/Lam’'91]
Fourier-Motzkin Elimination [Maydan/Hennessy/Lam’91]

Omega test [Pugh/Wonnacott'92]

C. Kessler, IDA, Linkdping University 21
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Loop Optimizations — General Issues

0 Move loop invariant computations out of loops
0 Modify the order of iterations or parts thereof

Goals:

0 Improve data access locality

0 Faster execution

0 Reduce loop control overhead

0 Enhance possibilities for loop parallelization or vectorization

Only transformations that preserve the program semantics (its
iInput/output behavior) are admissible

0 Conservative (static) criterium: preserve data dependences
0 Need data dependence analysis for loops (- DF00100)

C. Kessler, IDA, Linkdping University 23
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Some important loop transformations

Loop normalization

Loop parallelization

Loop invariant code hoisting

Loop interchange

Loop fusion vs. Loop distribution / fission

Strip-mining / loop tiling / blocking vs. Loop linearization
Loop unrolling, unroll-and-jam

Loop peeling

Index set splitting, Loop unswitching

Scalar replacement, Scalar expansion

O O O O O 0 0 0o 0o O 04

Later: Software pipelining
More: Cycle shrinking, Loop skewing, ...

.

C. Kessler, IDA, Linkdping University 24
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Loop Invariant Code Hoisting

0 Move loop invariant code out of the loop

0 Compilers can do this automatically if they can statically
find out what code is loop invariant

0 Example:
for (i=0; i<10; i++)
afil =b[i] +c/d;

C. Kessler, IDA, Linkdping University

tmp=c/d;
:ll> for (i=0; i<10; i++)

ali] = b[i] + tmp;

25
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Loop Unrolling

0 Loop unrolling
0 Can be enforced with compiler options e.g. —funroll=2

0 Example:
for (i=0; i<50; i++) { for (i =0; i<50; i+=2) {
ali] = bli]; e ali] = bl
} a[i+1] = b[i+1];

}

© Reduces loop overhead (total # comparisons, branches, increments)

© Longer loop body may enable further local optimizations
(e.g. common subexpression elimination,
register allocation, instruction scheduling,
using SIMD instructions)

® longer code
- Exercise: Formulate the unrolling rule for statically unknown upper loop limit
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Loop Unrolling

for 7 from 1 to 100 step 4 do
i| < ali] + bli]

i+ 1] < ali+1] + Dli+1]
i+2] « ali+2] + bli+2]
i+3] + ali+3] + D|i+3]

for 7 from 1 to 100 do
alil] < ali] + bli] unroll by 4:
od

2 D 2 9

od

+ less overhead per useful operation
+ longer basic blocks for local optimizations
(local CSE, local reg.-allocation, local scheduling, SW pipelining)

— longer code

C. Kessler, IDA, Linkdping University 27
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Loop Unrolling with Unknown Upper Bound

for 7 from 1 to N do
ali] < ali] + bli]
od

unroll by 4:

used e.g. in BLAS

C. Kessler, IDA, Linkdping University 28

i 1
while 7+3 < Ndo
ali] < ali] + bli]
ali+ 1] < ali+1] + bli+1]
ali+2] < ali+2] + bli+2]
ali+ 3] « al[i+3] + bli+ 3]
i < i+ 4
od
while 7 < N do
ali] < ali] + bli]
i +— i+ 1
od




LINKOPING
II.“ UNIVERSITY

Loop Unroll-And-Jam

unroll the outer loop
and fuse the resulting inner loops:

for i from 1 to N step 2 do
for jfrom 1 to N do
ali] < ali] + b[J]
ali+ 1| < ali+1] + b|J|
od
od

for 7 from 1 to N do
for jfrom 1 to N do
ali] < ali] + b[j] unroll&am:
od
od

The same conditions as for loop interchange (for the two
iInnermost loops after the unrolling step) must hold
(for a formal treatment see [Allen/Kennedy’02, Ch. 8.4.1]).

+ Increases reuse Iin inner loop
+ less overhead

C. Kessler, IDA, Linkdping University 29
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Loop Peeling

remove the first (or last) iteration of the loop

and clone the loop body for that iteration.
it N > 1 then

for 7 from 1 to N do all] « (x+)xbll]

L - for i from 2 to N do
' by i eel first iteration:
I al] + (-+2) bl
od

fi

(Test on trip count can be removed if N > 1 is statically known.)

+ can enable loop fusion

+ may extract conditionals handling boundary cases from the loop

— longer code

C. Kessler, IDA, Linkdping University 30



LINKOPING
II.“ UNIVERSITY

Loop Interchange (1)

0 For properly nested loops
(statements in innermost loop body only)

0 Example 1:

for (j=0; j<M; j++) for (i=0; i<N; i++)
for (i=0; i<N; i++) :Il> for (j=0; |<M; j++)

a[i][j]=0.0; a[i][j]=0.0;
J J
a[0][0] row-wise LYY} =—— ' a[0][M-1]
i storage of , i —
2D-arrays =
1Nne In C, Java «=" _ new iterationjorder
ey oId.iteration order
a[N-1][0] a[N-1][0]

0 Can improve data access locality in memory hierarchy
(fewer cache misses / page faults)

0 Can help with subsequent vectorization of innermost loops
C. Kessler, IDA, Linkdping University 31



LINKOPING
II.“ UNIVERSITY

Recall:
Loop-Carried Data Dependences
0 Recall: Data dependence S - T, S 7= -
If operation S may execute (dynamically) before operation T o
and both may access the same memory location T

and at least one of these accesses is a write
0 In general, only a conservative over-estimation can be determined

statically.

0 Data dependence S—>T is called loop carried by a loop L
if the data dependence S—>T may exist for instances of Sand T

in different iterations of L.
0 Example: lteration space': ST -

A
A~

L: for (i=1; i<N; i++) { i=1

T:: ... = X[I-1];
S: x[i]=..; @

}

1

I

1

1 —
1

1

I

I

e
orler &

> partial order between the operation instances resp. iterations
32

_— - -
—_ -

| -
—_— -

! 1
! 1
! 1
! I
! 1
! 1

\

\h

C. Kessler, IDA, Linkdping University
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Loop Interchange (2)

0 Be careful with loop carried data dependences!
0 Example 2:
for (j=1; |<M; |++)
for (i=0; i<N; i++)

-afif] =...af+11[-1]..

for (i=0; I<N; I++)
for (j=1; |<M; j++)
aliljl =...a[i+1]f-1]...;

J

Iteration 4 a : . J
space: | 1f 1f 4] 1| lteration () reads h " tteration (i) reads
I I Iocan_n a[|4_r1][]-1] thgt = location a[i+1][j-1],
i j | was written in an earlier | ' - that will be over-
| iteration, (I-1,1+1) y 1 written in a later
1707l «===" iteration (i+1,j-1)

¥ old iteration order new iteration ordeP\

0 Interchanging the loop headers would violate the partial iteration order
given by the data dependences

C. Kessler, IDA, Linkdping University 33
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Loop Interchange (3)

0 Be careful with loop-carried data dependences!

0 Example 3:
for (j=1; |<M; |++)

for (i=1; i<N; i++)

afif] =...afi-1]-1]...

for (i=1; i<N; i++)
for (=1, |<M; j++)

a[ili] =...a[i-1][-1]...;

lteration 14 . ™\ Ve
space: | Iteration (j,i) reads —| lteration (i,j) reads
I location a[i-1][j-1] that | g location ai-1][j-1]
i I was written in earlier =| that was written in
l'  lteration (-1,-1) ) ammm—— earlier iteration
new iteration order \_ (i-1,)-1)

¥ old iteration order

0 Generally: Interchanging loop headers is only admissible if loop-carried
dependences have the same direction for all loops in the loop nest
(all directed along or all against the iteration order)

C. Kessler, IDA, Linkdping University
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Loop Fusion

0 Merge subsequent loops with same header
0 Safe if neither loop carries a (backward) dependence

0 Example:
for (i=0; i<N; i++) for (i= 0; i<N; i++) {
a[fi]=...; :ll> alfi]=...;
for (i=0; Ii<N; i++) Lo=.ali]...;
=...a[l }

OK —
Read of a]i] still after
write of aJi], for all |

For N sufficiently large,
a[i] will no longer be in
the cache at this time

© Can improve data access locality
and reduces number of branches

C. Kessler, IDA, Linkdping University 35
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Loop Fusion
— Index variable name does not matter

for i from 1to N do

cli] « ali] + bli] for 7 from 1 to N do
od cli] « ali] + bli]
for j from 1 to N do dli] < ali] * eli]
d[j] < alj]  e[j] fuse: od

od
find second «li] in the cache

For array a large enough, or even in aregister

ali] will no longer be cached. j € N (if downwards exposed)

Safe if neither loop carries a (backward) dependence.

+ |ocality: can convert inter-loop reuse to intra-loop reuse
+ larger basic blocks
+ reduce loop overhead

C. Kessler, IDA, Linkdping University 36



Special Case: Kernel Fusion for GPU

Serial Kernel Fusion

Rtk
i

// start N1=N2 threads
{

code kernell
code_kernel2

}

C. Kessler, IDA, Linkdping University
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Parallel Kernel Fusion

Wbt i

// start N1+N2 threads
.

if (thread _idx < N1)
code kernell
else
code_kernel2

LINKOPING
UNIVERSITY
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Loop Distribution (a.k.a. Loop Fission)

for (i=1; 1i<n; 1+4+) {
S1: ali+l] = b[i-1] + cl[i];
S2: b[1i] = ali] * k;
S3: c[1i] = b[i] - 1;
}
d Loop distribution
for (i=1; 1i<n; 1++) {
S1: ali+l] = bli-1] + cl[i];
S2: b[1] = ali] * k;
} .
for (i=1; 1i<n; 1++) ";SCC_)
S3: c[1i] = bl1] - 1;

Safe if all statements forming a SCC in the dependence graph
end up in the same loop.
Forward (loop-carried) dep’s are ok, but keep topological order.

+ often enables vectorization; better cache utilization of each loop.
C. Kessler, IDA, Linkdping University 38



LINKOPING
II.“ UNIVERSITY

Loop Iteration Reordering

A transformation that reorders the iterations of a level-k-loop,

without making any other changes,
is valid if the loop carries no dependence.

Example:

for (i=1; i<n; i++) ‘ j-loop carries a dependence, its

| iteration order must be preserved

for (j=1; j<m; J++)
for (k=1; k<r; k++)
S ali] [7] [k] = ali] [J-1] [k] (=,<,=)

C. Kessler, IDA, Linkdping University 39
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Loop Parallelization

A transformation that reorders the iterations of a level-k-loop,

without making any other changes,
is valid if the loop carries no dependence.

Example:
for (i=1; 1i<n; 1++)
for (3=1; jJ<m; J++)
for (k=1; k<r; k++)
S: ali] [3] [k] = ... alil[j3-111[k] ... (=,<,=)

‘ j-loop carries a dependence, its
Iteration order must be preserved

It is valid to convert a sequential loop to a parallel loop
If it does not carry a dependence.

Example
fOI‘ (i:l; i<l’l; i++) Loopparallelizatio> forall ( i, l, I, p )
S: Dbl[i] = 2 * c[1]; bli] = 2 * c[1];

Principle: Parallelize outermost loop(s), vectorize innermost loop(s)

o
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Remark on Loop Parallelization

0 Introducing temporary copies of arrays can remove some
antidependences to enable automatic loop parallelization

0 Example:
for (1I=0; I<n; I++)
ali] = a[i] + a[i+1];

0 The loop-carried dependence can be eliminated:

for (I=0; I<n; I++) Parallelizable loop
aold[i+1] = a[i+1];
for (1I=0; I<n; i++) Parallelizable loop

a[i] = a[i] + aold[i+1];

C. Kessler, IDA, Linkdping University 41



LINKOPING
II.“ UNIVERSITY

Strip Mining / Loop Blocking

for (i=0; i<n; i++)
a[i] = b[1i] + c[1];

@ Loop blocking with block size s

for (ii=0; ii<n; ii+=s) // loop over blocks
for (i=ii; i<min(ii+s,n); i++) // loop within block
a[i] = b[i] + c[1];

Reverse transformation: Loop linearization

C. Kessler, IDA, Linkdping University 42



LINKOPING
II.“ UNIVERSITY

Loop (Nest) Tiling

for (i=0; i<n; i++)
for (3=0; j<m; J++)
a[i][J] = b[i]l[J] + c[JjlI[i]:

@ Loop nest tiling with tile size s x s - Step 1: loop blocking

for (ii=0; ii<n; ii+=s) // loop over blocks
for (i=ii; i<min(ii+s,n); i++) // loop within block
for (jj=0; jj<m; jj+=s) // loop over blocks
for (j=jj; j<min(jj+s,m); j++) // loop within blk
a[i][J] = b[1][3] + c[]]1I[1];
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Loop (Nest) Tiling

for (i=0; i<n; i++)
for (3=0; j<m; J++)
a[i][J] = b[i]l[J] + c[JjlI[i]:

Loop nest tiling with tile size s x s - Step 2: Loop interchange

for (ii=0; ii<n; ii+=s) // loop over blocks
for (jj=0; jj<m; jj+=s) // loop over blocks
for (i=ii; i<min(ii+s,n); i++) // loop within block
for (j=jj; j<min(jj+s,m); j++) // loop within blk
a[i][J] = b[1][3] + c[]J]I[1];

Tiling = loop blocking for multiple loop headers in a loop nest
+ loop interchange
—> loops scanning a tile become innermost loops

Goal: increase locality, support vectorization (vector registers)
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Tiled Matrix-Matrix Multiplication (1)

0 Matrix-Matrix multiplication C=AXxB
here for square (n x n) matrices C, A, B, with n large (~103):

0 Gy = Zkzl__n A By, foralli,j=1...n

0 Standard algorithm for Matrix-Matrix multiplication
(here without the initialization of C-entries to 0):

for (i=0: i<n: i++) =

|
A Kk B

for (j=0; j<n; j++)
for (k=0; k<n; k++)
Cljl] += ADIk] * BIK][];

|
Good spatial locality on A, C

Bad spatial locality on B

(many capacity misses)
C. Kessler, IDA, Linkdping University 45



Tiled Matrix-Matrix Multiplication (2)

0 Block each loop by block size S
(choose S so that a block of A, B, C fit in cache toget

LINKOPING
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ner), :
ll

then interchange loops kK
0 Code after tiling: B —
for (ii=0; ii<n; ii+=S) = ~
for (j=0; Ji<n; jji+=S) \/ \ /
for (kk=0; kk<n; kk+=S)
for (i=ii; 1 <Iii+S; i++) f;?zd ;p;ir:ijllclzocality

for (=)); | <Jj+S; J++)
for (k=kk; k < kk+S: k++)
Ch]p] += Alf[k] * BIK]QT;
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Loop (Nest) Tiling (cont.)

0 Beware: Tiling Is not always semantics-preserving
0 Dependences could lead to unschedulable code

Example:
fori=1, .., 4
forj=1, ...,4
S(1,)): All[] = x*Ai-1][j-1] + y*A[i-1][j] + z*A[i-1][j+1];

@t@ @t@
i
aif s @
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Remark on Locality Transformations

0 An alternative can be to change the data layout rather than the
control structure of the program

0 Example: Store matrix B in transposed form,
or, if necessary, consider transposing it, which may pay off over
several subsequent computations

» Finding the best layout for all multidimensional arrays is a
NP-complete optimization problem
[Mace, 1988]

0 Example: Recursive array layouts that preserve locality
» Morton-order layout
» Hierarchically tiled arrays
0 Inthe best case, can make computations cache-oblivious
0 Performance largely independent of cache size

0 Further example: AOS vs. SOA layout for images on CPU/GPU
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Loop Nest Flattening / Linearization

Flattens a multidimensional iteration space to a linear space:

for i from Oton—1do for k from O tom-n—1 do
for j from O to m—1 do I < k/m
iteration(i, j) linearize: i~ k% m
od iteration(i, j)
od od

+ |arger iteration space, better for scheduling / load balancing

— overhead to reconstruct original iteration variables
may be reduced by using induction variables i, j
that are updated by accumulating additions instead of div and mod
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Index Set Splitting

Divide the iferation space into two portions.

for i from 1 to 10 do
ali] < bli] + ¢l
od
split after 10: for /i from 11 to 100 do
alil| < bli| + cli]
dli| < ali] + ali—10]
od

for 7/ from 1 to 100 do
ali] < bli| + cli]
if 7 > 10 then
dli] + ali] + ali—10]
fi
od

+ removes condition evaluation in every iteration
+ factors out the parallelizable set of iterations

— longer code
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Loop Unswitching

if expression then
for i from 1 to 100 do

for i from 1 to 100 do ali| < ali] + bi]

alil] < ali] + bi] dli] < 0

if expression then unswitch: od

dlil < 0 else

fi for i from 1 to 100 do

od ali] < ali] + bli
od
fi

+ hoist loop-invariant control flow out of loop nest
+ no tests, no branches in loop body

— larger basic blocks (see above), simpler software pipelining
— longer code
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Scalar Expansion / Array Privatization

promote a scalar temporary to an array to break a dependence cycle

if N> 1
allocate 7'[1..NV|
for i from 1 to N do for i from 1 to NV do

t < ali] + b|J]
clij « t+1
od od
t < t'[N]//ift live on exit
fi

+ removes the loop-carried antidependence due to ¢
— can now parallelize the loop!

O]l < ali] + bj]

expand scalar z:
P clil — P[]+ 1

- needs more array space
Loop must be countable, scalar must not have upward exposed uses.

May also be done conceptually only, to enable parallelization:
just create one private copy of 7 for every processor = array privatization
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ldiom recognition and algorithm replacement

Traditional loop parallelization fails for loop-carried dep. with distance 1:

SO0: s = 05 C. Kessler: Pattern-driven
for (i=1; i<n; 1i++) automatic parallelization.
<5 s = g + alil; Scientific Programming, 1996
A. Shafiee-Sarvestani,
s2: alo] N < [O]. ' . E. Hansson, C. Kessler:
for (1=1; 1i<n; 1++) Extensible recognition of
S3: ali]l] = al[i-1] * b[i] + cI[i]; algorithmic patterns in DSP
programs for automatic
_ - _ parallelization. Int. J. on
| Idiom recognition (pattern matching) Parallel Programming, 2013.

S1’: s = VSUM( al[l:n-1], 0 );
S3’: al0:n-1] = FOLR( b[l:n-1], c[0:n-1], mul, add );
1 Algorithm replacement

S1’’: s = par_sum( a, 0, n, 0 );
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fori=1toN i
Polyhedral / Polytope Model forj =1 to min(i,M)
loopbody( i, j)
0 Researched since late 1980s (with earlier roots),

O

[

[

still active (see e.g. IMPACT workshop series)

Compact representation of the loop nest iteration space of d
perfectly nested loops as the points of a polytope (polyhedron) in Z¢

0 Usually, loop normalization to obtain stride +1 §io)oXeX X X JoXeo
1 E.g. in 2D: rectangular, triangular, trapezoidal, etc. [©CC @@ ® ® O O

Loop bounds must be affine (linear) functions C000060C0
of the indexes of outer loops (or constant) 0000600 C

0 The polytope is the intersection of halfspaces over Z¢ i
0 The faces of the polytope are defined by the bounds of the loops
Can apply described loop transformations as dependences allow
0 Can often be described as unimodular linear mappings
Parallelism and scheduling options can be determined statically
0 constrained by the data dependences

Schedule = space-time mapping of iterations to parallel processors
and time axis must be affine.

Code generator (e.g. cloog) generates code (nest of d for loops) that

o kess2CANS e palyhedron, given index bound parameters and a schedule

KOpi iversl



Polyhedral Example:
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Loop Nest Skewing and Parallelization

fori=1toN
forj=1toM
afi,j] = f( afi-1,j], a[i, j-1] )

it  JejeXeye
O0O0O0
;oooo
000Q

(assuming here for simplicity that
we have procs = N parallel
processing units to use. If not,
apply strip mining / tiling ...)

generate
HIR/src code:

C. Kessler, IDA, Linkdping University

mapping/
scheduling:

forall proc =1to N
for time = min(proc, N) to max(M+proc, M+N-1)
a[i,j] = f( a[time-1, proc-1], a[time-1, proc] )
55
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Limits of Static Analyzability

Outlook: Runtime Analysis and
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Remark on static analyzability (1)

0 Static dependence information is always a (safe)
overapproximation of the real (run-time) dependences

0 Finding out the real ones exactly is statically undecidable!

0 If in doubt, a dependence must be assumed
- may prevent some optimizations or parallelization

0 One main reason for imprecision is aliasing, i.e. the program
may have several ways to refer to the same memory location

0 Example: Pointer aliasing
void mergesort (int *a, intn)
{ ...
mergesort (a, n/2),
mergesort (a + n/2, n-n/2);

How could a static analysis
tool (e.g., compiler) know
that the two recursive
calls read and write

disjoint subarrays/ of a?

<8

}
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Remark on static analyzability (2)

0 Static dependence information is always a (safe)
overapproximation of the real (run-time) dependences

0 Finding out the latter exactly Is statically undecidable!

0 If in doubt, a dependence must be assumed
- may prevent some optimizations or parallelization

0 Another reason for imprecision are statically unknown values
that imply whether a dependence exists or not

1 Example: Unknown dependence distance
// value of K statically unknown
for (i=0: i<N: i++)

{

Loop-carried dependence
if K<N.

Otherwise, the loop is
parallelizable.

S afi] = a[i] + a[K];

}
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Outlook: Runtime Parallelization
Sometimes parallelizability cannot be decided statically.

if is_parallelizable(...)
forall i in [0..n-1] do  //parallel version of the loop
iteration(i);
od
else
forifrom Oton—1do  // sequential version of the loop
iteration(i);
od
fi

The runtime dependence test is_parallelizable(...)

itself may partially run in parallel.
C. Kessler, IDA, Linkdping University 59
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K1 F
Goal of run-time parallelization

0 Typical target: irregular loops

for (1=0; I<n; I1++)

ali] = f(a[g@)] a[h()] ...);
0 Array index expressions g, h... depend on run-time data

0 Iterations cannot be statically proved independent
(and not either dependent with distance +1)

0 Principle:
At runtime, inspect g, h ... to find out the real dependences
and compute a schedule for partially parallel execution

0 Can also be combined with speculative parallelization
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Overview

0 Run-time parallelization of irregular loops
0 DOACROSS parallelization
0 Inspector-Executor Technique (shared memory)
0 Inspector-Executor Technique (message passing) *
0 Privatizing DOALL Test *
0 Speculative run-time parallelization of irregular loops *
0 LRPD Test*
0 General Thread-Level Speculation
0 Hardware support *

* = not covered in this lecture. See the references.
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DOACROSS Parallelization

0 Useful if loop-carried dependence distances are unknown, but often > 1
0 Allow independent subsequent loop iterations to overlap
0 Bilateral synchronization between really-dependent iterations

Example:

for (1=0; i<n; i++)

ali] = ft(alg@)] ...)

sh float aold[n];

sh flag done[n]; //flag (semaphore) array

forall1in 0..n-1 { //spawn n threads, one per iteration
done[i] = 0;
aold[i] = a[i]; // create a copy

forall iin 0..n-1 { // spawn n threads, one per iteration
If (g(i) <1) waituntil done[ g(i) ] );
all] = f(alg()] ... )
set( doneJi] );
else

afi] = f(aold[g(i) ], ...); setdoneli];
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Inspector-Executor Technique (1)

0 Compiler generates 2 pieces of customized code for such loops:

O Inspector

0 calculates values of index expression
by simulating whole loop execution

» typically, based on sequential version of the source loop
(some computations could be left out)

0 computes implicitly the real iteration dependence graph

0 computes a parallel schedule as (greedy) wavefront traversal of the
iteration dependence graph in topological order

» all iterations in same wavefront are independent
» schedule depth = #wavefronts = critical path length

0 Executor
0 follows this schedule to execute the loop
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Inspector-Executor Technique (2)

0 Source loop:
for (1=0; I<n; I1++)

ali] = t(alg(]alh(®)],...);

O Inspector:

int wf[n]; // wavefront indices

Int depth = 0;

for (1I=0; I<n; I++)
wi[i] = 0; //init.

for (I=0; I<n; i++) {
wili] = max (wf[ g(i) ], wi[ h(i) ], ... ) + 1;
depth = max ( depth, wfli] );

}

0 Inspector considers only flow dependences (RAW),
anti- and output dependences to be preserved by executor
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Inspector-Executor Technique (3)

0 Example: | o (1 |2 (3 |4 |5
for (i=0; i<n; i++) g(1) 2 |0 (2 |1 |1 |O
afi] =...alg() ] ...; wilii |0 |1 |o |2 |2 |1

0 Executor: g(i)<i? |no |yes |no |yes |yes |yes

float aold[n]; // buffer array

aold[1:n] = a[1:n];

for (w=0; w<depth; w++) |
forall (i in {0..n-1}: wf[i] == w) {

/I start task/thread where wif[i] == w: _

al = (g(i) < i)? alg(i)] : aold[g()]; ..

... Il similarly, a2 for h etc.

afil = f(al, a2, ...);

} // wait for all threads of round w

ink6ping University 66
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Inspector-Executor Technique (4)

Problem: Inspector remains sequential — no speedup

Solution approaches:

0 Re-use schedule over subsequent iterations of an outer loop
If access pattern does not change

0 amortizes inspector overhead across repeated executions

0 Parallelize the inspector using doacross parallelization
[Saltz,Mirchandaney’91]

0 Parallelize the inspector using sectioning [Leung/Zahorjan’91]
0 compute processor-local wavefronts in parallel, concatenate
0 trade-off schedule quality (depth) vs. inspector speed
0 Parallelize the inspector using bootstrapping [Leung/Z."91]

0 Start with suboptimal schedule by sectioning,
use this to execute the inspector - refined schedule
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Speculatively parallel execution

0 For automatic parallelization of sequential code where
dependences are hard to analyze statically

0 Works on a task graph
0 constructed implicitly and dynamically
0 Speculate on:

0 control flow, data independence, synchronization, values

We focus on thread-level speculation (TLS) for CMP/MT processors.
Speculative instruction-level parallelism is not considered here.

0 Task:

0 statically: Connected, single-entry subgraph of the control-
flow graph

» Basic blocks, loop bodies, loops, or entire functions

0 dynamically: Contiguous fragment of dynamic instruction
stream within static task region, entered at static task entry
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TLS Example

Code view
Function/Moaodule calls

main () { / l
a=f1 -
0 / int f1() {

ir
f2() {

f2(); —=

' return p;

y

“xecution
time

Sequential thread view
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TLS thread view

Non—speculative

thread
‘ Speculative (1) )
(T2) \

Speculative
Return

(T3) \ \
value p

- = — o ] = = = = = ==

Return value b

{ |

main() f2() f1()

f2() Exploiting module-level
T_ speculative parallelism
main ) (across function calls)

Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.
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Data dependence problem in TLS

Original
thread T1 12 T3
Al
Wa |3 D |
I I
| f“% ' Ra :
PR |
I{/:I/ ,"J ! !
Rb Rb ORI
(5) ! , T3
b Wb “ Wa Restart | : =
.......... ale I_ ——a [’Ib
, 1
E Wa | |\ Ra
g
= (2
& 6
| (N,
(=4 [3} I
(Y4 —
Wh
Ra
1 Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.
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Speculatively parallel execution of tasks

0 Speculation on inter-task control flow

0 After having assigned a task,
predict its successor task and start it speculatively

0 Speculation on data independence
0 For inter-task memory data (flow) dependences
» conservatively: await write (memory synchronization, message)

» speculatively: hope for independence and continue (execute the
load)

0 Roll-back of speculative results on mis-speculation (expensive)
0 When starting speculation, state must be buffered
0 Squash an offending task and all its successors, restart

0 Commit speculative results when speculation resolved to correct

0 Task is retired
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Selecting Tasks for Speculation

0 Small tasks:
0 too much overhead (task startup, task retirement)
0 low parallelism degree
0 Large tasks:
0 higher misspeculation probability
0 higher rollback cost

0 many speculations ongoing in parallel may saturate the
resources

0 Load balancing issues
0 avolid large variation in task sizes
0 Traversal of the program’s control flow graph (CFG)
0 Heuristics for task size, control and data dep. speculation
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TLS Implementations
0 Software-only speculation

0 for loops [Rauchwerger, Padua '94, '95]
O ...

0 Hardware-based speculation

0 Typically, integrated in cache coherence protocols

0 Used with multithreaded processors / chip multiprocessors
for automatic parallelization of sequential legacy code

0 If source code available, compiler may help e.g. with
Identifying suitable threads
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Some references on Dependence Analysfé‘,'wm
Loop optimizations and Transformations

0 H. Zima, B. Chapman: Supercompilers for Parallel and Vector
Computers. Addison-Wesley / ACM press, 1990.

0 M. Wolfe: High-Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

0 R. Allen, K. Kennedy: Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2002.

ldiom recognition and algorithm replracement:

0 C. Kessler: Pattern-driven automatic parallelization. Scientific
Programming 5:251-274, 1996.

0 A. Shafiee-Sarvestani, E. Hansson, C. Kessler: Extensible
recognition of algorithmic patterns in DSP programs for
automatic paral-lelization. Int. J. on Parallel Programming,
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Some references on Dependence Analysis,
Loop optimizations and Transformations

0 H. Zima, B. Chapman: Supercompilers for Parallel and Vector Computers.
Addison-Wesley / ACM press, 1990.

0 M. Wolfe: High-Performance Compilers for Parallel Computing. Addison-
Wesley, 1996.

0 R. Allen, K. Kennedy: Optimizing Compilers for Modern Architectures.
Morgan Kaufmann, 2002.

ldiom recognition and algorithm replacement:

0 C. Kessler: Pattern-driven automatic parallelization.
Scientific Programming 5:251-274, 1996.

0 A. Shafiee-Sarvestani, E. Hansson, C. Kessler: _
Extensible recognition of algorithmic patterns in DSP programs for automatic
parallelization. Int. J. on Parallel Programming, 2013.

Frameworks
0 Polly
0 Cloog

0 PluTo polyhedral transformation framework: _
An automatic parallelizer and locality optimizer for affine loop nests
http://pluto-compiler.sourceforge.net/
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Polyhedral Compilation Frameworks

0 Closely related to (parametric) integer programming
0 PIPS, PIPlib

0 Paul Feautrier: Dataflow Analysis of Array and Scalar References.
International Journal of Parallel Programming, 1991

0 and many others
More recent work e.g.
0 Polly for LLVM: https://polly.llvm.org/

0 PluTo

0 U. Bondhugula, PhD thesis, 2008:
https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf

0 Cloog

0 for code generation (scanning a polyhedron, given iteration domain
bounds and a schedule)

0 http://www.cloog.org
0 Polybench polyhedral benchmark suite
0 Annual IMPACT workshop series at HIPEAC conference
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Some references on run-time parallelization

0 R. Cytron: Doacross: Beyond vectorization for multiprocessors. Proc. ICPP-1986

0 D. Chen, J. Torrellas, P. Yew: An Efficient Algorithm for the Run-time Parallelization of DO-
ACROSS Loops, Proc. IEEE Supercomputing Conf., Nov. 2004, IEEE CS Press, pp. 518-527

0 R. Mirchandaney, J. Saltz, R. M. Smith, D. M. Nicol, K. Crowley: Principles of run-time support
for parallel processors, Proc. ACM Int. Conf. on Supercomputing, July 1988, pp. 140-152.

0 J. Saltz and K. Crowley and R. Mirchandaney and H. Berryman: Runtime Scheduling and
Execution of Loops on Message Passing Machines, Journal on Parallel and Distr. Computing
8 (1990): 303-312.

0 J. Saltz, R. Mirchandaney: The preprocessed doacross loop. Proc. ICPP-1991 Int. Conf. on
Parallel Processing. |

0 S. Leung, J. Zahorjan: Improving the performance of run-time parallelization. Proc. ACM
PPoPP-1993, pp. 83-91.

0 Lawrence Rauchwerger, David Padua: The Privatizing DOALL Test: A Run-Time Technique
for DOALL Loop Identification and Array Privatization. Proc. ACM Int. Conf. on
Supercomputing, July 1994, pp. 33-45.

0 Lawrence Rauchwerger, David Padua: The LRPD Test: Speculative Run-Time Parallelization
of Loops with Privatization and Reduction Parallelization. Proc. ACM SIGPLAN PLDI-95,
1995, pp. 218-232.
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Some references on speculative execution /
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parallelization

O

O

T. Vijaykumar, G. Sohi: Task Selection for a Multiscalar Processor.
Proc. MICRO-31, Dec. 1998.

J. Martinez, J. Torrellas: Speculative Locks for Concurrent Execution of Critical
Sections in Shared-Memory Multiprocessors. Proc. WMPI at ISCA, 2001.

F. Warg and P. Stenstrom: Limits on speculative module-level parallelism in
imperative and object-oriented programs on CMP platforms. Pr. IEEE PACT 2001.

P. Marcuello and A. Gonzalez: Thread-spawning schemes for speculative
multithreading. Proc. HPCA-8, 2002.

J. Steffan et al.: Improving value communication for thread-level speculation.
HPCA-8, 2002.

M. Cintra, J. Torrellas: Eliminating squashes through learning cross-thread
violations in speculative parallelization for multiprocessors. HPCA-8, 2002.

Fredrik Warg and Per Stenstrom: Improving speculative thread-level parallelism
through module run-length prediction. Proc. IPDPS 2003.

F. Warg: Techniques for Reducing Thread-Level Speculation Overhead in Chip
Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

T. Ohsawa et al.: Pinot: Speculative multi-threading processor architecture
exploiting parallelism over a wide range of granularities. Proc. MICRO-38, 2005.
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