oo
DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Optimization and Parallelization
of Sequential Programs

Introduction to Data Dependence Analysis

Christoph Kessler

IDA / PELAB
LinkGping University
Sweden

Christoph Kessler, IDA,
Linkdping University

huuies
Outline

Towards (semi-)automatic parallelization of sequential programs
0 Data dependence analysis for loops

0 Dependence tests
0 Some loop transformations

0 Loop invariant code hoisting, loop unrolling,

loop fusion, loop interchange, loop blocking and tiling,
scalar expansion, and more

0 Static loop parallelization
0 Idiom recognition
0 Run-time loop parallelization
0 Doacross parallelization
0 Inspector-executor method
0 If time permits: thread-level speculation

C. Kessler, IDA, Linkdping University 2

LINKOPING
II.“ UNIVERSITY

Foundations: Control and Data Dependence

0 Consider statements S, T in a sequential program (S=T possible)
0 Scope of analysis is typically a function, i.e. intra-procedural analysis
0 Assume that a control flow path S ... T is possible

0 Can be done at arbitrary granularity (instructions, operations,
statements, compound statements, program regions)

0 Relevant are only the read and write effects on memory
(i.e. on program variables) by each operation,
and the effect on control flow

Example:
S: if (...){
0 Control dependence S > T,
If the fact whether T is executed may depend on S T
(e.g. condition)
0 Implies that relative execution order S 2> T }

must be preserved when restructuring the program

0 Mostly obvious from nesting structure in well-structured programs,
but more tricky in arbitrary branching code (e.g. assembler code)

C. Kessler, IDA, Linkdping University 3

LINKOPING
II.“ UNIVERSITY

Foundations: Control and Data Dependence

0 Data dependence S - T,
If statement S may execute (dynamically) before T
and both may access the same memory location S: z=...;
and at least one of these accesses is a write

0 Means that execution order ’S before T’ must
be preserved when restructuring the program (flow dependence)

0 In general, only a conservative over-estimation
can be determined statically

0 flow dependence: (RAW, read-after-write)
» S may write a location z that T may read
0 anti dependence: (WAR, write-after-read)
» S may read a location x that T may overwrite
0 output dependence: (WAW, write-after-write)
» both S and T may write the same location

Example:

T ...=.2z2.;

C. Kessler, IDA, Linkdping University 4

LINKOPING
II.“ UNIVERSITY

Dependence Graph

0 (Data, Control, Program) Dependence Graph:
Directed graph, consisting of all statements as vertices
and all (data, control, any) dependences as edges.

S if (e) goto S;
S: a<— ...
S3: b+a=xc
Sy c+bxf

Ss: b—x+ f

C. Kessler, IDA, Linkdping University

© control dependence by control flow: 5,65,

@ data dependence:

flow / true dependence: S; & S,
@ S; <84 and db: S5 writes b, S4reads b

anti-dependence: S; 69 S,

output dependence: S; 6° S;s
S; <185 and db: S5 writes b, S5 writes b

a
‘@ S3; <8, and de: S5 reads ¢, S, writes ¢
a

5

LINKOPING
II.“ UNIVERSITY

Data Dependence Graph

0 Data dependence graph for straight-line code ("basic
block”, no branching) is always acyclic, because relative

execution order of statements is forward only.

0 Data dependence graph for a loop:
0 Dependence edge ST if a dependence may exist for
some pair of instances (iterations) of S, T
0 Cycles possible
0 Loop-independent versus loop-carried dependences

Example:
for (i=1 . ien;: i4+4) { loop-carried
S1: alil = b[i] + ali-11;
S2: b[1i] = ali]; loop-independent

J ﬁ (assuming that we know statically @
C. Kessler, Il that arrays a and b do not intersect)

~ -

LINKOPING
II.“ UNIVERSITY

Example

for i from 2 to 9 do (assuming that we statically know that
f . . _ arrays A, X, Y, Z do not intersect,
S Xli] « Yl + Z1i] otherwise there might be further

S, Ali] « X[i—1] + 1 dependences)
od
[=2 =3 =4
St X[2] « Y[2| + Z]2] X[3] « Y[3] + Z[3] X[4] + Y[4] + Z[4]
S, A2l « X[1] + 1 A3 « X[2] + 1 A[4] « X[3] + 1

There is a loop-caried, forward, flow dependence from §, to ;.

lteration space dependence graph: = o 1 2 3 4 5 6 1 8 9
(Iterations unrolled)

Data dependence graph:

C. Kessler, IDA, Linkdping University 7

LINKOPING
II.“ UNIVERSITY

Why Loop Optimization and Parallelization?

Loops are a promising object for program optimizations,
Including automatic parallelization:

0 High execution frequency
0 Most computation done in (inner) loops

0 Even small optimizations can have large impact
(cf. Amdahl’'s Law)

0 Regular, repetitive behavior

0 compact description

0 relatively simple to analyze statically
0 Well researched

C. Kessler, IDA, Linkdping University 8

oo
DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Data Dependence Analysis
for Loops

A more formal introduction

Christoph Kessler, IDA,
Linkdping University

LINKOPING
II.“ UNIVERSITY

Data Dependence Analysis — Overview

0 Important for loop optimizations, vectorization and parallelization,
instruction scheduling, data cache optimizations

0 Conservative approximations to disjointness of pairs of memory accesses
0 weaker than data-flow analysis
0 but generalizes nicely to the level of individual array element
0 Loops, loop nests
0 Iteration space
0 Array subscripts in loops
0 Index space
0 Dependence testing methods
0 Data dependence graph
0 Data + control dependence graph
0 Program dependence graph

C. Kessler, IDA, Linkdping University 10

LINKOPING
II.“ UNIVERSITY

Precedence relation between statements

S, statically (textually) precedes 55 S1 pred S

S; dynamically precedes §, 51 <8

Within loops, loop nests: pred # <«

S1:5+0

for 7 from 1 to » do
S0 s<s+ali
S3: alil«+s

od

C. Kessler, IDA, Linkdping University 11

LINKOPING
II.“ UNIVERSITY

Data Dependence Graph

0 Data dependence graph for straight-line code ("basic
block”, no branching) is always acyclic, because relative
execution order of statements is forward only.

0 Data dependence graph for a loop:

0 Dependence edge S>T if a dependence may exist for
some pair of instances (iterations) of S, T

0 Cycles possible
0 Loop-independent versus loop-carried dependences

Example:
for (i=1; i<n; i++) {
S1: ali] b[i] + al[i-1];
S2: Dbl[i] ali]; loop-independent

} (assuming we know statically @
C. Kessler that arrays a and b do not intersect)

loop-carried

-~

LINKOPING
II.“ UNIVERSITY

Loop Iteration Space

Beyond basic blocks: pred # <«

Canonical loop nest: (HIR code)

for 7, from 1 to »n; do
for i, from 1 to n, do carried

at level 3
for i; from 1 to n; do
S}(Z'l,...,l'k)) A[f-l,z*f3] <—B[f2,f3] + 1 @D\j

So(i1y ey it) o Blia, iz +ig] <= 2 % Ali1, 2 %13

_=s=9<s=)

lteration space: 1S = [l.ny] x [1.my] X ... X [1..1f]

(the simplest case: rectangular, static loop bounds)

lteration vector 7 = (i, ...,i;) € ItS

C. Kessler, IDA, Linkdping University 13

LINKOPING
II.“ UNIVERSITY

Example

for i from 2 to 9 do (assuming that we statically know that
; _ _ _ arrays A, X, Y, Z do not intersect,
51 X[l] & Y[Z] T Z[l] otherwise there might be further

S, Al + X[i—-1] + 1 dependences)
od
[=2 =3 I=4
St X[2] « Y[2] + Z[2] X[3] «+ Y[3] + Z|3] X[4] «+ Y[4] + Z|4]
S, AR « X[1] + 1 APB] « X2l + 1 A[4] « X[3] + 1

There is a loop-caried, forward, flow dependence from §; to .5>.

lteration space dependencegraph: = o 1 2 '3 "4 5 6 7 '8 9
(Iterations unrolled)

Data dependence graph:

C. Kessler, IDA, Linkdping University 14

Loop Normalization

Given a loop of the form

for 7 from L to U step S do

T
od

normalize the loop:

e lower bound 0 (C) resp. 1 (Fortran)

o step size +1

LINKOPING
II.“ UNIVERSITY

— update all occurrences of the loop counter 7 by ixS—S+L

for i from 1 to (U —L+S)/S step 1 do
o (i%S=S+1L) ...

od
I —ixS—8S+L

C. Kessler, IDA, LInkoping University

v
Dependence Distance and Direction

Lexicographic order on iteration vectors — dynamic execution order:
S1((T1yen i) S ((J1y -y i) I

either S; pred S, and (i1,...,ix)) <rex (/1,5 Jk)

or Si=S8 and (i,.,ir) <iex (Jiyeees i)

distance vector d = j—7 = (j1 — i1, ..., jr — i)

direction vector dirv = sgn(j —17) = (sgn(j, —i1),...,sgn(jr — ir))
interms of symbols =< ><>"*

Example: LS*1(<Z.1,Z.2,Z.3,Z.4>) 57”;92(@1,2'2,2'3,2'4))
distance vector d = (0,0,0,0), direction vector dirv = (=,=,=,=),
loop-independent dependence

Example: LSY2(<Z-1,Z-2,Z-3,Z-4>) 6f ;Sl((fl,l'z,l'g —|—f4,f4>)
distance vector d = (0,0,7,0), direction vector dirv = (=,=,>,=),
loop-carried dependence (carried by i3-loop / at level 3)

C. Kessler, IDA, Linkdping University 16

LINKOPING
II.“ UNIVERSITY

Dependence Equation System

One-dimensional array 4 accessed in & nested loops: Sy LA[FG)..

s there a dependence between S, (7) and S,(/) for some 7, j € 1tS?

; k
typically 1, glinear: f(i)=ao+ X aji;, g(i)=bo+ Y by,
=1 =

L k r
Existi,j € ZF with (i) =g()), i.e., a0+ Y ajij = bo+ 3 byj;, dep. equation
/=1 =1

subjectto 7,7 €115, i.e.,

1<iy<m, 1<j5<m,
: iter. space constraints: linear inequalities
1 <ip<ng, 1< p<mg

— constrained linear Diophantine equation system — ILP (NP-complete)

C. Kessler, IDA, Linkdping University 17

LINKOPING
II.“ UNIVERSITY

Linear Diophantine Equations

n
Qax;=c
J=1

wheren>1, «c,a,€%, 3dj:a,#0, x,€Z

Example 1: x+4y =1
has infinitely many solutions, e.g. x=5and y = —1.

Example 2: 5x— 10y =2
has no solution in Z: absolute term must be multiple of 5

Theorem:
> a;x; =c has a solution iff gcd(ay,...,as)|c.
i=1

Proof: see e.g. [Zima/Chapman p. 143]

C. Kessler, IDA, Linkdping University 18

LINKOPING
II.“ UNIVERSITY

Dependence Testing, 1: GCD-Test

Often, a simple test is sufficient to prove independence: e.g.,

gcd-test [Banerjee'76], [Towle’76]:
independence If \ ;

sed (CJ{ahbf}) 1 S

constraints on /1S not considered

Example: for i from 1 to 4 do
Si1: blil+al3xi—5]+2
S, al2xi+ 1]« 1.0/i

solutionto 2i+1 =3 — 5 exists in Z as gcd(3,2)|(-5—1+3—2)

not checked whether such i, j existin {1,...,4}
C. Kessler, IDA, Linkoping University 19

LINKOPING
II.“ UNIVERSITY

For multidimensional arrays?

subscript-wise test vs. linearized indexing

fori ... fori ...
St LAlxi], 2] Si: LAl Ali*(s;+1)]
Sy LA 2xi 4 1] Sy Al Alix(sp+ 1)+ 1]
Moreover:

Hierarchical structuring of dependence tests [Burke/Cytron's6]

C. Kessler, IDA, Linkdping University 20

KT R
Survey of Dependence Tests
gcd test
separability test (gcd test for special case, exact)
Banerjee-Wolfe test [Banerjee’88] rational solution in 7S
Delta-test [Goff/Kennedy/Tseng'91]
Power test [Wolfe/Tseng'91]
Simple Loop Residue test [Maydan/Hennessy/Lam’'91]
Fourier-Motzkin Elimination [Maydan/Hennessy/Lam’91]

Omega test [Pugh/Wonnacott'92]

C. Kessler, IDA, Linkdping University 21

oo
DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Loop Transformations
and Parallelization

Christoph Kessler, IDA,
Linkdping University

LINKOPING
II.“ UNIVERSITY

Loop Optimizations — General Issues

0 Move loop invariant computations out of loops
0 Modify the order of iterations or parts thereof

Goals:

0 Improve data access locality

0 Faster execution

0 Reduce loop control overhead

0 Enhance possibilities for loop parallelization or vectorization

Only transformations that preserve the program semantics (its
iInput/output behavior) are admissible

0 Conservative (static) criterium: preserve data dependences
0 Need data dependence analysis for loops (- DF00100)

C. Kessler, IDA, Linkdping University 23

LINKOPING
II.“ UNIVERSITY

Some important loop transformations

Loop normalization

Loop parallelization

Loop invariant code hoisting

Loop interchange

Loop fusion vs. Loop distribution / fission

Strip-mining / loop tiling / blocking vs. Loop linearization
Loop unrolling, unroll-and-jam

Loop peeling

Index set splitting, Loop unswitching

Scalar replacement, Scalar expansion

O O O O O 0 0 0o 0o O 04

Later: Software pipelining
More: Cycle shrinking, Loop skewing, ...

.

C. Kessler, IDA, Linkdping University 24

LINKOPING
II.“ UNIVERSITY

Loop Invariant Code Hoisting

0 Move loop invariant code out of the loop

0 Compilers can do this automatically if they can statically
find out what code is loop invariant

0 Example:
for (i=0; i<10; i++)
afil =b[i] +c/d;

C. Kessler, IDA, Linkdping University

tmp=c/d;
:ll> for (i=0; i<10; i++)

ali] = b[i] + tmp;

25

LINKOPING
II.“ UNIVERSITY

Loop Unrolling

0 Loop unrolling
0 Can be enforced with compiler options e.g. —funroll=2

0 Example:
for (i=0; i<50; i++) { for (i =0; i<50; i+=2) {
ali] = bli]; e ali] = bl
} a[i+1] = b[i+1];

}

© Reduces loop overhead (total # comparisons, branches, increments)

© Longer loop body may enable further local optimizations
(e.g. common subexpression elimination,
register allocation, instruction scheduling,
using SIMD instructions)

® longer code
- Exercise: Formulate the unrolling rule for statically unknown upper loop limit

LINKOPING
II.“ UNIVERSITY

Loop Unrolling

for 7 from 1 to 100 step 4 do
i| < ali] + bli]

i+ 1] < ali+1] + Dli+1]
i+2] « ali+2] + bli+2]
i+3] + ali+3] + D|i+3]

for 7 from 1 to 100 do
alil] < ali] + bli] unroll by 4:
od

2 D 2 9

od

+ less overhead per useful operation
+ longer basic blocks for local optimizations
(local CSE, local reg.-allocation, local scheduling, SW pipelining)

— longer code

C. Kessler, IDA, Linkdping University 27

LINKOPING
II.“ UNIVERSITY

Loop Unrolling with Unknown Upper Bound

for 7 from 1 to N do
ali] < ali] + bli]
od

unroll by 4:

used e.g. in BLAS

C. Kessler, IDA, Linkdping University 28

i 1
while 7+3 < Ndo
ali] < ali] + bli]
ali+ 1] < ali+1] + bli+1]
ali+2] < ali+2] + bli+2]
ali+ 3] « al[i+3] + bli+ 3]
i < i+ 4
od
while 7 < N do
ali] < ali] + bli]
i +— i+ 1
od

LINKOPING
II.“ UNIVERSITY

Loop Unroll-And-Jam

unroll the outer loop
and fuse the resulting inner loops:

for i from 1 to N step 2 do
for jfrom 1 to N do
ali] < ali] + b[J]
ali+ 1| < ali+1] + b|J|
od
od

for 7 from 1 to N do
for jfrom 1 to N do
ali] < ali] + b[j] unroll&am:
od
od

The same conditions as for loop interchange (for the two
iInnermost loops after the unrolling step) must hold
(for a formal treatment see [Allen/Kennedy’02, Ch. 8.4.1]).

+ Increases reuse Iin inner loop
+ less overhead

C. Kessler, IDA, Linkdping University 29

LINKOPING
II.“ UNIVERSITY

Loop Peeling

remove the first (or last) iteration of the loop

and clone the loop body for that iteration.
it N > 1 then

for 7 from 1 to N do all] « (x+)xbll]

L - for i from 2 to N do
' by i eel first iteration:
I al] + (-+2) bl
od

fi

(Test on trip count can be removed if N > 1 is statically known.)

+ can enable loop fusion

+ may extract conditionals handling boundary cases from the loop

— longer code

C. Kessler, IDA, Linkdping University 30

LINKOPING
II.“ UNIVERSITY

Loop Interchange (1)

0 For properly nested loops
(statements in innermost loop body only)

0 Example 1:

for (j=0; j<M; j++) for (i=0; i<N; i++)
for (i=0; i<N; i++) :Il> for (j=0; |<M; j++)

a[i][j]=0.0; a[i][j]=0.0;
J J
a[0][0] row-wise LYY} =—— ' a[0][M-1]
i storage of , i —
2D-arrays =
1Nne In C, Java «=" _ new iterationjorder
ey oId.iteration order
a[N-1][0] a[N-1][0]

0 Can improve data access locality in memory hierarchy
(fewer cache misses / page faults)

0 Can help with subsequent vectorization of innermost loops
C. Kessler, IDA, Linkdping University 31

LINKOPING
II.“ UNIVERSITY

Recall:
Loop-Carried Data Dependences
0 Recall: Data dependence S - T, S 7= -
If operation S may execute (dynamically) before operation T o
and both may access the same memory location T

and at least one of these accesses is a write
0 In general, only a conservative over-estimation can be determined

statically.

0 Data dependence S—>T is called loop carried by a loop L
if the data dependence S—>T may exist for instances of Sand T

in different iterations of L.
0 Example: lteration space': ST -

A
A~

L: for (i=1; i<N; i++) { i=1

T:: ... = X[I-1];
S: x[i]=..; @

}

1

I

1

1 —
1

1

I

I

e
orler &

> partial order between the operation instances resp. iterations
32

_— - -
—_ -

| -
—_— -

! 1
! 1
! 1
! I
! 1
! 1

\

\h

C. Kessler, IDA, Linkdping University

LINKOPING
II.“ UNIVERSITY

Loop Interchange (2)

0 Be careful with loop carried data dependences!
0 Example 2:
for (j=1; |<M; |++)
for (i=0; i<N; i++)

-afif] =...af+11[-1]..

for (i=0; I<N; I++)
for (j=1; |<M; j++)
aliljl =...a[i+1]f-1]...;

J

Iteration 4 a : . J
space: | 1f 1f 4] 1| lteration () reads h " tteration (i) reads
I I Iocan_n a[|4_r1][]-1] thgt = location a[i+1][j-1],
i j | was written in an earlier | ' - that will be over-
| iteration, (I-1,1+1) y 1 written in a later
1707l «===" iteration (i+1,j-1)

¥ old iteration order new iteration ordeP\

0 Interchanging the loop headers would violate the partial iteration order
given by the data dependences

C. Kessler, IDA, Linkdping University 33

LINKOPING
II.“ UNIVERSITY

Loop Interchange (3)

0 Be careful with loop-carried data dependences!

0 Example 3:
for (j=1; |<M; |++)

for (i=1; i<N; i++)

afif] =...afi-1]-1]...

for (i=1; i<N; i++)
for (=1, |<M; j++)

a[ili] =...a[i-1][-1]...;

lteration 14 . ™\ Ve
space: | Iteration (j,i) reads —| lteration (i,j) reads
I location a[i-1][j-1] that | g location ai-1][j-1]
i I was written in earlier =| that was written in
l' lteration (-1,-1)) ammm—— earlier iteration
new iteration order _ (i-1,)-1)

¥ old iteration order

0 Generally: Interchanging loop headers is only admissible if loop-carried
dependences have the same direction for all loops in the loop nest
(all directed along or all against the iteration order)

C. Kessler, IDA, Linkdping University

34

Loop Fusion

0 Merge subsequent loops with same header
0 Safe if neither loop carries a (backward) dependence

0 Example:
for (i=0; i<N; i++) for (i= 0; i<N; i++) {
a[fi]=...; :ll> alfi]=...;
for (i=0; Ii<N; i++) Lo=.ali]...;
=...a[l }

OK —
Read of a]i] still after
write of aJi], for all |

For N sufficiently large,
a[i] will no longer be in
the cache at this time

© Can improve data access locality
and reduces number of branches

C. Kessler, IDA, Linkdping University 35

LINKOPING
UNIVERSITY

LINKOPING
II.“ UNIVERSITY

Loop Fusion
— Index variable name does not matter

for i from 1to N do

cli] « ali] + bli] for 7 from 1 to N do
od cli] « ali] + bli]
for j from 1 to N do dli] < ali] * eli]
d[j] < alj] e[j] fuse: od

od
find second «li] in the cache

For array a large enough, or even in aregister

ali] will no longer be cached. j € N (if downwards exposed)

Safe if neither loop carries a (backward) dependence.

+ |ocality: can convert inter-loop reuse to intra-loop reuse
+ larger basic blocks
+ reduce loop overhead

C. Kessler, IDA, Linkdping University 36

Special Case: Kernel Fusion for GPU

Serial Kernel Fusion

Rtk
i

// start N1=N2 threads
{

code kernell
code_kernel2

}

C. Kessler, IDA, Linkdping University

37

Parallel Kernel Fusion

Wbt i

// start N1+N2 threads
.

if (thread _idx < N1)
code kernell
else
code_kernel2

LINKOPING
UNIVERSITY

LINKOPING
II.“ UNIVERSITY

Loop Distribution (a.k.a. Loop Fission)

for (i=1; 1i<n; 1+4+) {
S1: ali+l] = b[i-1] + cl[i];
S2: b[1i] = ali] * k;
S3: c[1i] = b[i] - 1;
}
d Loop distribution
for (i=1; 1i<n; 1++) {
S1: ali+l] = bli-1] + cl[i];
S2: b[1] = ali] * k;
} .
for (i=1; 1i<n; 1++) ";SCC_)
S3: c[1i] = bl1] - 1;

Safe if all statements forming a SCC in the dependence graph
end up in the same loop.
Forward (loop-carried) dep’s are ok, but keep topological order.

+ often enables vectorization; better cache utilization of each loop.
C. Kessler, IDA, Linkdping University 38

LINKOPING
II.“ UNIVERSITY

Loop Iteration Reordering

A transformation that reorders the iterations of a level-k-loop,

without making any other changes,
is valid if the loop carries no dependence.

Example:

for (i=1; i<n; i++) ‘ j-loop carries a dependence, its

| iteration order must be preserved

for (j=1; j<m; J++)
for (k=1; k<r; k++)
S ali] [7] [k] = ali] [J-1] [k] (=,<,=)

C. Kessler, IDA, Linkdping University 39

LINKOPING
II.“ UNIVERSITY

Loop Parallelization

A transformation that reorders the iterations of a level-k-loop,

without making any other changes,
is valid if the loop carries no dependence.

Example:
for (i=1; 1i<n; 1++)
for (3=1; jJ<m; J++)
for (k=1; k<r; k++)
S: ali] [3] [k] = ... alil[j3-111[k] ... (=,<,=)

‘ j-loop carries a dependence, its
Iteration order must be preserved

It is valid to convert a sequential loop to a parallel loop
If it does not carry a dependence.

Example
fOI‘ (i:l; i<l’l; i++) Loopparallelizatio> forall (i, l, I, p)
S: Dbl[i] = 2 * c[1]; bli] = 2 * c[1];

Principle: Parallelize outermost loop(s), vectorize innermost loop(s)

o

LINKOPING
II.“ UNIVERSITY

Remark on Loop Parallelization

0 Introducing temporary copies of arrays can remove some
antidependences to enable automatic loop parallelization

0 Example:
for (1I=0; I<n; I++)
ali] = a[i] + a[i+1];

0 The loop-carried dependence can be eliminated:

for (I=0; I<n; I++) Parallelizable loop
aold[i+1] = a[i+1];
for (1I=0; I<n; i++) Parallelizable loop

a[i] = a[i] + aold[i+1];

C. Kessler, IDA, Linkdping University 41

LINKOPING
II.“ UNIVERSITY

Strip Mining / Loop Blocking

for (i=0; i<n; i++)
a[i] = b[1i] + c[1];

@ Loop blocking with block size s

for (ii=0; ii<n; ii+=s) // loop over blocks
for (i=ii; i<min(ii+s,n); i++) // loop within block
a[i] = b[i] + c[1];

Reverse transformation: Loop linearization

C. Kessler, IDA, Linkdping University 42

LINKOPING
II.“ UNIVERSITY

Loop (Nest) Tiling

for (i=0; i<n; i++)
for (3=0; j<m; J++)
a[i][J] = b[i]l[J] + c[JjlI[i]:

@ Loop nest tiling with tile size s x s - Step 1: loop blocking

for (ii=0; ii<n; ii+=s) // loop over blocks
for (i=ii; i<min(ii+s,n); i++) // loop within block
for (jj=0; jj<m; jj+=s) // loop over blocks
for (j=jj; j<min(jj+s,m); j++) // loop within blk
a[i][J] = b[1][3] + c[]]1I[1];

C. Kessler, IDA, Linkdping University 43

LINKOPING
II.“ UNIVERSITY

Loop (Nest) Tiling

for (i=0; i<n; i++)
for (3=0; j<m; J++)
a[i][J] = b[i]l[J] + c[JjlI[i]:

Loop nest tiling with tile size s x s - Step 2: Loop interchange

for (ii=0; ii<n; ii+=s) // loop over blocks
for (jj=0; jj<m; jj+=s) // loop over blocks
for (i=ii; i<min(ii+s,n); i++) // loop within block
for (j=jj; j<min(jj+s,m); j++) // loop within blk
a[i][J] = b[1][3] + c[]J]I[1];

Tiling = loop blocking for multiple loop headers in a loop nest
+ loop interchange
—> loops scanning a tile become innermost loops

Goal: increase locality, support vectorization (vector registers)

C. Kessler, IDA, Linkdping University 44

LINKOPING
II.“ UNIVERSITY

Tiled Matrix-Matrix Multiplication (1)

0 Matrix-Matrix multiplication C=AXxB
here for square (n x n) matrices C, A, B, with n large (~103):

0 Gy = Zkzl__n A By, foralli,j=1...n

0 Standard algorithm for Matrix-Matrix multiplication
(here without the initialization of C-entries to 0):

for (i=0: i<n: i++) =

|
A Kk B

for (j=0; j<n; j++)
for (k=0; k<n; k++)
Cljl] += ADIk] * BIK][];

|
Good spatial locality on A, C

Bad spatial locality on B

(many capacity misses)
C. Kessler, IDA, Linkdping University 45

Tiled Matrix-Matrix Multiplication (2)

0 Block each loop by block size S
(choose S so that a block of A, B, C fit in cache toget

LINKOPING
II.“ UNIVERSITY

ner), :
ll

then interchange loops kK
0 Code after tiling: B —
for (ii=0; ii<n; ii+=S) = ~
for (j=0; Ji<n; jji+=S) \/ \ /
for (kk=0; kk<n; kk+=S)
for (i=ii; 1 <Iii+S; i++) f;?zd ;p;ir:ijllclzocality

for (=)); | <Jj+S; J++)
for (k=kk; k < kk+S: k++)
Ch]p] += Alf[k] * BIK]QT;

C. Kessler, IDA, Linkdping University 46

Loop (Nest) Tiling (cont.)

0 Beware: Tiling Is not always semantics-preserving
0 Dependences could lead to unschedulable code

Example:
fori=1, .., 4
forj=1, ...,4
S(1,)): All[] = x*Ai-1][j-1] + y*A[i-1][j] + z*A[i-1][j+1];

@t@ @t@
i
aif s @

C. Kessler, IDA, Linkdping University 47

i lpl
gtg 2.4

E;@i @i@i

LINKOPING
II.“ UNIVERSITY

Remark on Locality Transformations

0 An alternative can be to change the data layout rather than the
control structure of the program

0 Example: Store matrix B in transposed form,
or, if necessary, consider transposing it, which may pay off over
several subsequent computations

» Finding the best layout for all multidimensional arrays is a
NP-complete optimization problem
[Mace, 1988]

0 Example: Recursive array layouts that preserve locality
» Morton-order layout
» Hierarchically tiled arrays
0 Inthe best case, can make computations cache-oblivious
0 Performance largely independent of cache size

0 Further example: AOS vs. SOA layout for images on CPU/GPU

C. Kessler, IDA, Linkdping University 48

LINKOPING
II.“ UNIVERSITY

Loop Nest Flattening / Linearization

Flattens a multidimensional iteration space to a linear space:

for i from Oton—1do for k from O tom-n—1 do
for j from O to m—1 do I < k/m
iteration(i, j) linearize: i~ k% m
od iteration(i, j)
od od

+ |arger iteration space, better for scheduling / load balancing

— overhead to reconstruct original iteration variables
may be reduced by using induction variables i, j
that are updated by accumulating additions instead of div and mod

C. Kessler, IDA, Linkdping University 49

LINKOPING
II.“ UNIVERSITY

Index Set Splitting

Divide the iferation space into two portions.

for i from 1 to 10 do
ali] < bli] + ¢l
od
split after 10: for /i from 11 to 100 do
alil| < bli| + cli]
dli| < ali] + ali—10]
od

for 7/ from 1 to 100 do
ali] < bli| + cli]
if 7 > 10 then
dli] + ali] + ali—10]
fi
od

+ removes condition evaluation in every iteration
+ factors out the parallelizable set of iterations

— longer code

C. Kessler, IDA, Linkdping University 50

[T R
Loop Unswitching

if expression then
for i from 1 to 100 do

for i from 1 to 100 do ali| < ali] + bi]

alil] < ali] + bi] dli] < 0

if expression then unswitch: od

dlil < 0 else

fi for i from 1 to 100 do

od ali] < ali] + bli
od
fi

+ hoist loop-invariant control flow out of loop nest
+ no tests, no branches in loop body

— larger basic blocks (see above), simpler software pipelining
— longer code

C. Kessler, IDA, Linkdping University 51

LINKOPING
II.“ UNIVERSITY

Scalar Expansion / Array Privatization

promote a scalar temporary to an array to break a dependence cycle

if N> 1
allocate 7'[1..NV|
for i from 1 to N do for i from 1 to NV do

t < ali] + b|J]
clij « t+1
od od
t < t'[N]//ift live on exit
fi

+ removes the loop-carried antidependence due to ¢
— can now parallelize the loop!

O]l < ali] + bj]

expand scalar z:
P clil — P[]+ 1

- needs more array space
Loop must be countable, scalar must not have upward exposed uses.

May also be done conceptually only, to enable parallelization:
just create one private copy of 7 for every processor = array privatization

C. Kessier, IDA, LINKOpINg UNIversity

LINKOPING
II.“ UNIVERSITY

ldiom recognition and algorithm replacement

Traditional loop parallelization fails for loop-carried dep. with distance 1:

SO0: s = 05 C. Kessler: Pattern-driven
for (i=1; i<n; 1i++) automatic parallelization.
<5 s = g + alil; Scientific Programming, 1996
A. Shafiee-Sarvestani,
s2: alo] N < [O]. ' . E. Hansson, C. Kessler:
for (1=1; 1i<n; 1++) Extensible recognition of
S3: ali]l] = al[i-1] * b[i] + cI[i]; algorithmic patterns in DSP
programs for automatic
_ - _ parallelization. Int. J. on
| Idiom recognition (pattern matching) Parallel Programming, 2013.

S1’: s = VSUM(al[l:n-1], 0);
S3’: al0:n-1] = FOLR(b[l:n-1], c[0:n-1], mul, add);
1 Algorithm replacement

S1’’: s = par_sum(a, 0, n, 0);
C. Kessler, IDA, Linkdping University 53

fori=1toN i
Polyhedral / Polytope Model forj =1 to min(i,M)
loopbody(i, j)
0 Researched since late 1980s (with earlier roots),

O

[

[

still active (see e.g. IMPACT workshop series)

Compact representation of the loop nest iteration space of d
perfectly nested loops as the points of a polytope (polyhedron) in Z¢

0 Usually, loop normalization to obtain stride +1 §io)oXeX X X JoXeo
1 E.g. in 2D: rectangular, triangular, trapezoidal, etc. [©CC @@ ® ® O O

Loop bounds must be affine (linear) functions C000060C0
of the indexes of outer loops (or constant) 0000600 C

0 The polytope is the intersection of halfspaces over Z¢ i
0 The faces of the polytope are defined by the bounds of the loops
Can apply described loop transformations as dependences allow
0 Can often be described as unimodular linear mappings
Parallelism and scheduling options can be determined statically
0 constrained by the data dependences

Schedule = space-time mapping of iterations to parallel processors
and time axis must be affine.

Code generator (e.g. cloog) generates code (nest of d for loops) that

o kess2CANS e palyhedron, given index bound parameters and a schedule

KOpi iversl

Polyhedral Example:

LINKOPING
II.“ UNIVERSITY

Loop Nest Skewing and Parallelization

fori=1toN
forj=1toM
afi,j] = f(afi-1,j], a[i, j-1])

it JejeXeye
O0O0O0
;oooo
000Q

(assuming here for simplicity that
we have procs = N parallel
processing units to use. If not,
apply strip mining / tiling ...)

generate
HIR/src code:

C. Kessler, IDA, Linkdping University

mapping/
scheduling:

forall proc =1to N
for time = min(proc, N) to max(M+proc, M+N-1)
a[i,j] = f(a[time-1, proc-1], a[time-1, proc])
55

oo
DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Concluding Remarks

Limits of Static Analyzability

Outlook: Runtime Analysis and
Parallelization

Christoph Kessler, IDA,
Linkdping University

LINKOPING
II.“ UNIVERSITY

Remark on static analyzability (1)

0 Static dependence information is always a (safe)
overapproximation of the real (run-time) dependences

0 Finding out the real ones exactly is statically undecidable!

0 If in doubt, a dependence must be assumed
- may prevent some optimizations or parallelization

0 One main reason for imprecision is aliasing, i.e. the program
may have several ways to refer to the same memory location

0 Example: Pointer aliasing
void mergesort (int *a, intn)
{ ...
mergesort (a, n/2),
mergesort (a + n/2, n-n/2);

How could a static analysis
tool (e.g., compiler) know
that the two recursive
calls read and write

disjoint subarrays/ of a?

<8

}

C. Kessler, IDA, Linkdping University 57

LINKOPING
II.“ UNIVERSITY

Remark on static analyzability (2)

0 Static dependence information is always a (safe)
overapproximation of the real (run-time) dependences

0 Finding out the latter exactly Is statically undecidable!

0 If in doubt, a dependence must be assumed
- may prevent some optimizations or parallelization

0 Another reason for imprecision are statically unknown values
that imply whether a dependence exists or not

1 Example: Unknown dependence distance
// value of K statically unknown
for (i=0: i<N: i++)

{

Loop-carried dependence
if K<N.

Otherwise, the loop is
parallelizable.

S afi] = a[i] + a[K];

}

C. Kessler, IDA, Linkdping University 58

LINKOPING
II.“ UNIVERSITY

Outlook: Runtime Parallelization
Sometimes parallelizability cannot be decided statically.

if is_parallelizable(...)
forall i in [0..n-1] do //parallel version of the loop
iteration(i);
od
else
forifrom Oton—1do // sequential version of the loop
iteration(i);
od
fi

The runtime dependence test is_parallelizable(...)

itself may partially run in parallel.
C. Kessler, IDA, Linkdping University 59

II “LINKOPING
@ UNIVERSITY
TDDC78 Programming of Parallel Computers

TDDD56 Multicore and GPU Programming

Run-Time Parallelization

K1 F
Goal of run-time parallelization

0 Typical target: irregular loops

for (1=0; I<n; I1++)

ali] = f(a[g@)] a[h()] ...);
0 Array index expressions g, h... depend on run-time data

0 Iterations cannot be statically proved independent
(and not either dependent with distance +1)

0 Principle:
At runtime, inspect g, h ... to find out the real dependences
and compute a schedule for partially parallel execution

0 Can also be combined with speculative parallelization

C. Kessler, IDA, Linkdping University 61

LINKOPING
II.“ UNIVERSITY

Overview

0 Run-time parallelization of irregular loops
0 DOACROSS parallelization
0 Inspector-Executor Technique (shared memory)
0 Inspector-Executor Technique (message passing) *
0 Privatizing DOALL Test *
0 Speculative run-time parallelization of irregular loops *
0 LRPD Test*
0 General Thread-Level Speculation
0 Hardware support *

* = not covered in this lecture. See the references.

C. Kessler, IDA, Linkdping University 62

LINKOPING
II.“ UNIVERSITY

DOACROSS Parallelization

0 Useful if loop-carried dependence distances are unknown, but often > 1
0 Allow independent subsequent loop iterations to overlap
0 Bilateral synchronization between really-dependent iterations

Example:

for (1=0; i<n; i++)

ali] = ft(alg@)] ...)

sh float aold[n];

sh flag done[n]; //flag (semaphore) array

forall1in 0..n-1 { //spawn n threads, one per iteration
done[i] = 0;
aold[i] = a[i]; // create a copy

forall iin 0..n-1 { // spawn n threads, one per iteration
If (g(i) <1) waituntil done[g(i)]);
all] = f(alg()] ...)
set(doneJi]);
else

afi] = f(aold[g(i)], ...); setdoneli];

C. Kessler, IDA, Linkdping University} 63

LINKOPING
II.“ UNIVERSITY

Inspector-Executor Technique (1)

0 Compiler generates 2 pieces of customized code for such loops:

O Inspector

0 calculates values of index expression
by simulating whole loop execution

» typically, based on sequential version of the source loop
(some computations could be left out)

0 computes implicitly the real iteration dependence graph

0 computes a parallel schedule as (greedy) wavefront traversal of the
iteration dependence graph in topological order

» all iterations in same wavefront are independent
» schedule depth = #wavefronts = critical path length

0 Executor
0 follows this schedule to execute the loop

C. Kessler, IDA, Linkdping University 64

LINKOPING
II.“ UNIVERSITY

Inspector-Executor Technique (2)

0 Source loop:
for (1=0; I<n; I1++)

ali] = t(alg(]alh(®)],...);

O Inspector:

int wf[n]; // wavefront indices

Int depth = 0;

for (1I=0; I<n; I++)
wi[i] = 0; //init.

for (I=0; I<n; i++) {
wili] = max (wf[g(i)], wi[h(i)], ...) + 1;
depth = max (depth, wfli]);

}

0 Inspector considers only flow dependences (RAW),
anti- and output dependences to be preserved by executor

C. Kessler, IDA, Linkdping University 65

LINKOPING
II.“ UNIVERSITY

Inspector-Executor Technique (3)

0 Example: | o (1 |2 (3 |4 |5
for (i=0; i<n; i++) g(1) 2 |0 (2 |1 |1 |O
afi] =...alg()] ...; wilii |0 |1 |o |2 |2 |1

0 Executor: g(i)<i? |no |yes |no |yes |yes |yes

float aold[n]; // buffer array

aold[1:n] = a[1:n];

for (w=0; w<depth; w++) |
forall (i in {0..n-1}: wf[i] == w) {

/I start task/thread where wif[i] == w: _

al = (g(i) < i)? alg(i)] : aold[g()]; ..

... Il similarly, a2 for h etc.

afil = f(al, a2, ...);

} // wait for all threads of round w

ink6ping University 66

-
) -
N e _m e _m—m———-

iteration (flow) dependence graph
(depth=3)

LINKOPING
II.“ UNIVERSITY

Inspector-Executor Technique (4)

Problem: Inspector remains sequential — no speedup

Solution approaches:

0 Re-use schedule over subsequent iterations of an outer loop
If access pattern does not change

0 amortizes inspector overhead across repeated executions

0 Parallelize the inspector using doacross parallelization
[Saltz,Mirchandaney’91]

0 Parallelize the inspector using sectioning [Leung/Zahorjan’91]
0 compute processor-local wavefronts in parallel, concatenate
0 trade-off schedule quality (depth) vs. inspector speed
0 Parallelize the inspector using bootstrapping [Leung/Z."91]

0 Start with suboptimal schedule by sectioning,
use this to execute the inspector - refined schedule

C. Kessler, IDA, Linkdping University 67

oo
DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Thread-Level Speculation

Christoph Kessler, IDA,
Linkdping University

v
Speculatively parallel execution

0 For automatic parallelization of sequential code where
dependences are hard to analyze statically

0 Works on a task graph
0 constructed implicitly and dynamically
0 Speculate on:

0 control flow, data independence, synchronization, values

We focus on thread-level speculation (TLS) for CMP/MT processors.
Speculative instruction-level parallelism is not considered here.

0 Task:

0 statically: Connected, single-entry subgraph of the control-
flow graph

» Basic blocks, loop bodies, loops, or entire functions

0 dynamically: Contiguous fragment of dynamic instruction
stream within static task region, entered at static task entry

C. Kessler, IDA, Linkdping University 69

TLS Example

Code view
Function/Moaodule calls

main () { / l
a=f1 -
0 / int f1() {

ir
f2() {

f2(); —=

' return p;

y

“xecution
time

Sequential thread view

LINKOPING
II.“ UNIVERSITY

TLS thread view

Non—speculative

thread
‘ Speculative (1))
(T2) \

Speculative
Return

(T3) \ \
value p

- = — o] = = = = = ==

Return value b

{ |

main() f2() f1()

f2() Exploiting module-level
T_ speculative parallelism
main) (across function calls)

Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

C. Kessler, IDA, Linkdping University

70

LINKOPING
II.“ UNIVERSITY

Data dependence problem in TLS

Original
thread T1 12 T3
Al
Wa |3 D |
I I
| f“% ' Ra :
PR |
I{/:I/ ,"J ! !
Rb Rb ORI
(5) ! , T3
b Wb “ Wa Restart | : =
.......... ale I_ ——a [’Ib
, 1
E Wa | |\ Ra
g
= (2
& 6
| (N,
(=4 [3} I
(Y4 —
Wh
Ra
1 Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

C. Kessler, IDA, Linkdping University 71

LINKOPING
II.“ UNIVERSITY

Speculatively parallel execution of tasks

0 Speculation on inter-task control flow

0 After having assigned a task,
predict its successor task and start it speculatively

0 Speculation on data independence
0 For inter-task memory data (flow) dependences
» conservatively: await write (memory synchronization, message)

» speculatively: hope for independence and continue (execute the
load)

0 Roll-back of speculative results on mis-speculation (expensive)
0 When starting speculation, state must be buffered
0 Squash an offending task and all its successors, restart

0 Commit speculative results when speculation resolved to correct

0 Task is retired
C. Kessler, IDA, Linkdping University 72

LINKOPING
II.“ UNIVERSITY

Selecting Tasks for Speculation

0 Small tasks:
0 too much overhead (task startup, task retirement)
0 low parallelism degree
0 Large tasks:
0 higher misspeculation probability
0 higher rollback cost

0 many speculations ongoing in parallel may saturate the
resources

0 Load balancing issues
0 avolid large variation in task sizes
0 Traversal of the program’s control flow graph (CFG)
0 Heuristics for task size, control and data dep. speculation

C. Kessler, IDA, Linkdping University 73

v
TLS Implementations
0 Software-only speculation

0 for loops [Rauchwerger, Padua '94, '95]
O ...

0 Hardware-based speculation

0 Typically, integrated in cache coherence protocols

0 Used with multithreaded processors / chip multiprocessors
for automatic parallelization of sequential legacy code

0 If source code available, compiler may help e.g. with
Identifying suitable threads

C. Kessler, IDA, Linkdping University 74

LINKOPING

Some references on Dependence Analysfé‘,'wm
Loop optimizations and Transformations

0 H. Zima, B. Chapman: Supercompilers for Parallel and Vector
Computers. Addison-Wesley / ACM press, 1990.

0 M. Wolfe: High-Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

0 R. Allen, K. Kennedy: Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2002.

ldiom recognition and algorithm replracement:

0 C. Kessler: Pattern-driven automatic parallelization. Scientific
Programming 5:251-274, 1996.

0 A. Shafiee-Sarvestani, E. Hansson, C. Kessler: Extensible
recognition of algorithmic patterns in DSP programs for
automatic paral-lelization. Int. J. on Parallel Programming,

C. KessgrQE;IAa_Tnk(‘jping University 75

oo
DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Questions?

Christoph Kessler, IDA,
Linkdping University

LINKOPING
II.“ UNIVERSITY

Some references on Dependence Analysis,
Loop optimizations and Transformations

0 H. Zima, B. Chapman: Supercompilers for Parallel and Vector Computers.
Addison-Wesley / ACM press, 1990.

0 M. Wolfe: High-Performance Compilers for Parallel Computing. Addison-
Wesley, 1996.

0 R. Allen, K. Kennedy: Optimizing Compilers for Modern Architectures.
Morgan Kaufmann, 2002.

ldiom recognition and algorithm replacement:

0 C. Kessler: Pattern-driven automatic parallelization.
Scientific Programming 5:251-274, 1996.

0 A. Shafiee-Sarvestani, E. Hansson, C. Kessler: _
Extensible recognition of algorithmic patterns in DSP programs for automatic
parallelization. Int. J. on Parallel Programming, 2013.

Frameworks
0 Polly
0 Cloog

0 PluTo polyhedral transformation framework: _
An automatic parallelizer and locality optimizer for affine loop nests
http://pluto-compiler.sourceforge.net/

C. Kessler, IDA, Linkdping University 77

LINKOPING
II.“ UNIVERSITY

Polyhedral Compilation Frameworks

0 Closely related to (parametric) integer programming
0 PIPS, PIPlib

0 Paul Feautrier: Dataflow Analysis of Array and Scalar References.
International Journal of Parallel Programming, 1991

0 and many others
More recent work e.g.
0 Polly for LLVM: https://polly.llvm.org/

0 PluTo

0 U. Bondhugula, PhD thesis, 2008:
https://www.csa.iisc.ac.in/~udayb/publications/uday-thesis.pdf

0 Cloog

0 for code generation (scanning a polyhedron, given iteration domain
bounds and a schedule)

0 http://www.cloog.org
0 Polybench polyhedral benchmark suite
0 Annual IMPACT workshop series at HIPEAC conference

C. Kessler, IDA, Linkdping University 78

LINKOPING
II.“ UNIVERSITY

Some references on run-time parallelization

0 R. Cytron: Doacross: Beyond vectorization for multiprocessors. Proc. ICPP-1986

0 D. Chen, J. Torrellas, P. Yew: An Efficient Algorithm for the Run-time Parallelization of DO-
ACROSS Loops, Proc. IEEE Supercomputing Conf., Nov. 2004, IEEE CS Press, pp. 518-527

0 R. Mirchandaney, J. Saltz, R. M. Smith, D. M. Nicol, K. Crowley: Principles of run-time support
for parallel processors, Proc. ACM Int. Conf. on Supercomputing, July 1988, pp. 140-152.

0 J. Saltz and K. Crowley and R. Mirchandaney and H. Berryman: Runtime Scheduling and
Execution of Loops on Message Passing Machines, Journal on Parallel and Distr. Computing
8 (1990): 303-312.

0 J. Saltz, R. Mirchandaney: The preprocessed doacross loop. Proc. ICPP-1991 Int. Conf. on
Parallel Processing. |

0 S. Leung, J. Zahorjan: Improving the performance of run-time parallelization. Proc. ACM
PPoPP-1993, pp. 83-91.

0 Lawrence Rauchwerger, David Padua: The Privatizing DOALL Test: A Run-Time Technique
for DOALL Loop Identification and Array Privatization. Proc. ACM Int. Conf. on
Supercomputing, July 1994, pp. 33-45.

0 Lawrence Rauchwerger, David Padua: The LRPD Test: Speculative Run-Time Parallelization
of Loops with Privatization and Reduction Parallelization. Proc. ACM SIGPLAN PLDI-95,
1995, pp. 218-232.

C. Kessler, IDA, Linkdping University 79

Some references on speculative execution /

LINKOPING
II.“ UNIVERSITY

parallelization

O

O

T. Vijaykumar, G. Sohi: Task Selection for a Multiscalar Processor.
Proc. MICRO-31, Dec. 1998.

J. Martinez, J. Torrellas: Speculative Locks for Concurrent Execution of Critical
Sections in Shared-Memory Multiprocessors. Proc. WMPI at ISCA, 2001.

F. Warg and P. Stenstrom: Limits on speculative module-level parallelism in
imperative and object-oriented programs on CMP platforms. Pr. IEEE PACT 2001.

P. Marcuello and A. Gonzalez: Thread-spawning schemes for speculative
multithreading. Proc. HPCA-8, 2002.

J. Steffan et al.: Improving value communication for thread-level speculation.
HPCA-8, 2002.

M. Cintra, J. Torrellas: Eliminating squashes through learning cross-thread
violations in speculative parallelization for multiprocessors. HPCA-8, 2002.

Fredrik Warg and Per Stenstrom: Improving speculative thread-level parallelism
through module run-length prediction. Proc. IPDPS 2003.

F. Warg: Techniques for Reducing Thread-Level Speculation Overhead in Chip
Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

T. Ohsawa et al.: Pinot: Speculative multi-threading processor architecture
exploiting parallelism over a wide range of granularities. Proc. MICRO-38, 2005.

C. Kessler, IDA, Linkdping University 80

