
Christoph Kessler, IDA,

Linköping University

DF00100 Advanced Compiler Construction

DF00100

Advanced Compiler Construction

2021

Organization, Motivation, Overview

https://www.ida.liu.se/~chrke/courses/ACC

2 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Staff 2021

Lectures / Presentation session / Examination

Christoph Kessler, IDA, Linköping University
christoph.kessler \at liu.se

Welf Löwe, Linnaeus-University, Växjö,
welf.lowe \at lnu.se (guest lecturer / guest examiner)

Martin Sjölund, IDA, Linköping University
martin.sjolund \at liu.se (guest lecturer)

Possibly 1-2 further guest lectures to be confirmed/scheduled

Lessons

Christoph Kessler

August Ernstsson, IDA, august.ernstsson \at liu.se

Labs (LLVM)

August Ernstsson

Course administrator

Anne Moe, IDA, anne.moe \at liu.se

3 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Course moments (total: 9 hp)

Lectures and exam

2 lecture blocks (week 6 + week 7)

See course web page for schedule, contents

Written/oral exam 31 March 2021 09:00-13:00, 4.5hp

Mandatory presence 50% of the lectures + lessons for
admission to presentation and exam

Labs, 3 hp (could be done in groups of 2)

LLVM open-source compiler framework, llvm.org

Lab part 1: IR and program analysis, 1.5hp

Lab part 2: Code generation, 1.5hp

Presentation 24 March 2021 09:15-… (whole day), 1.5hp

of a recent compiler research paper

Opposition on another presentation

Written summary with your own words, ca. 2 pages

4 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Lessons and Labs

Lessons:

Theory exercises, good as preparation for the exam

To get out most of the lessons for yourself:

Prepare your solutions ahead of time

Present your solution in class

Labs:

Lab introduction today (Tuesday) at 13:15

Mission critical, attendance is highly recommended

5 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Why Another Compiler Course? (1)

Focus of traditional compiler courses

(e.g., TDDB44, TDDD55):

Understand concepts of programming languages

Syntax, semantics

Good application of formal languages

and automata theory

Lexing, parsing

Toy languages and toy target architectures

Front-end, parser generators, symbol table, AST,

syntax-driven translation, quadruples, simple code generation

Technology well-established since 1970s

6 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Why Another Compiler Course? (2)

Current compiler technology R&D has a different focus:

Rate of programming language introduction is rather low

Mostly, DSLs (usually compile to C/C++)

Few students will be hired to write industrial frontends

Rate of architectural change and variety is high

Processor architecture: DSP, superscalar, VLIW/EPIC, SIMD, GPU, ML accelerators,
SMP, NUMA, Cluster, Multicore, MPSoC, reconfigurable, FPGA

Memory architecture: memory hierarchy, HBM, prefetching, device memory, local
memory, memory banks, in-memory-computing, …

A new computer architecture does not sell without a (~C) compiler

Optimizing compilers vs. Manual low-level coding and tuning

High requirements on code

Performance, Realtime constraints, Code size, Energy efficiency

Performance portability, utilization of accelerators

Moore’s Law is slowing down → more performance growth must come from the
software – most conveniently from an optimizing compiler

Hot issues: Automatic program optimization, vectorization and parallelization, accelerator
use, high-quality target code generation; run-time adaptivity; coupling with libraries

Required for this: Static analysis of programs, multi-level internal representations,
graph algorithms, combinatorial optimization, architecture modeling

Also hot, but not covered here: Static analysis for correctness and security

7 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Contents

Advanced Intermediate Representation Design
Multi-Level IRs
Static Single Assignment (SSA) Form

Static Analysis of Programs
Control Flow Analysis
Data Flow Analysis
Abstract Interpretation
Points-to Analysis
Dependence Analysis
WCET Analysis (not 2021)

High-Level Optimizations
Loop Optimizations e.g. for Data Locality; Loop Parallelization; …
Task Fusion, Resource Allocation, Mapping, Scheduling, DVFS

Optimized Target Code Generation
Instruction Selection, Instruction Scheduling, Register Allocation, …

Code generation and optimization for special target architectures
DSP, clustered VLIW, SIMD, parallel, GPU, ...

Adaptivity, Autotuning and Other Issues (as time permits)
Guest lectures e.g. about DSL compilation, e.g. Modelica compiler
Student presentations about selected recent compiler research papers
Labs: LLVM

8 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Literature

No single book covers the course contents completely.

→ Combine different book chapters and papers

List on course homepage

In the library

9 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Literature (cont.)

C. Kessler: Compiling for VLIW DSPs.

Book chapter, in S. Bhattacharyya, E. Deprettere, R. Leupers

and J. Takala, eds., Handbook of Signal Processing Systems,

3rd Edition, Springer, 2019. Ca. 41 pages.

Preprint handed out

Mandatory course literature

for the code generation part

TekNat-Library has the complete book

10 DF00100 Advanced Compiler ConstructionC. Kessler, IDA, Linköping University

Prerequisites

A first course in compiler construction

TDDB44, TDDD55 or similar

or read the Dragon book in advance

A course in computer architecture

Processor structure, pipelining, assembler language…

or read Hennessy/Patterson: Computer Architecture

or watch Onur Mutlu’s 2020 Computer Architecture lectures
videos on youtube:
https://www.youtube.com/watch?reload=9&v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN

Background in discrete maths, data structures and algorithms

Graphs, trees; depth-first search; connected components;
backtracking, dynamic programming, branch-and-bound,…

Integer linear programming

Some repetition material
available on course homepage

