Sinneuniversitetet Abstract Interpretation Welf Löwe Welf.Lowe@Inu.se

Outline

- Summary of Data Flow Analysis
- Problems left open
- Abstract interpretation idea

Complete Partial Order (CPO)

- Partially ordered sets (U, \sqsubseteq) over a universe U• Smallest element $\bot \in U$ Partial order relation \sqsubseteq
- Ascending chain $C=[c_1,c_2,...] \subseteq U$ Smallest element c_1
- ci-1⊆ci
- Maybe finite or countable: constructor for next element $\alpha = next([c_1, c_2, ..., \alpha_{i-1}])$ Unique largest element s of chain $C = [c_1, c_2, ...]$
- ci ⊆s (larger than all chain elements ci)
 s called supremum s = □(C)
- Ascending chain property: any (may be countable) ascending chain $C \subseteq U$ has an element c_i with i is finite and

 - for all elements $c < i \subseteq c_i$ and for all elements $c < i \equiv c_i$,
- then $c_i = \bigsqcup(C)$
- Example: $(\mathcal{P}^{\mathcal{A}}, \subseteq)$ and $C=[\emptyset, \{1\}, \{1,2\}, \{1,2\}, \dots], c_i=\{\max(c_{i-1})+1\} \cup c_{i-1}$ s = $\cup(C) = \mathcal{N}$ but ascending chain property does not hold

5

CPOs and Lattices

2

- Lattice $L = (U, \sqcup, \Box)$
 - any two elements a, b of U have
 - an infimum $\prod(a, b)$ unique largest smaller of a, b
 - a supremum (*a*, *b*) unique smallest bigger of *a*, *b* • unique smallest element \perp (bottom)
 - unique largest element ⊤ (top)
- A lattice L = (U,□,□) defines two CPOs (U,□)
- upwards:

 - $a \sqsubseteq b \Leftrightarrow a \bigsqcup b = b$, smallest \bot , If L finite heights \Rightarrow ascending chain property holds ($c_i = \top$)
 - downwards:
 - $b \sqsubseteq a \Leftrightarrow a \bigsqcup b = b (\Leftrightarrow a \bigsqcup b = a)$, smallest \top ,
 - If L finite heights ⇒ ascending chain property holds (ci = ⊥)

Special lattices of importance

- Boolean Lattice over U={true, false}
 - \perp = true, T= false, true \Box false, $\bigsqcup(a,b)=a \lor b$, $\square(a,b)=a \land b$ Finite heights
- Generalization: Bit Vector Lattice over $U = \{true, false\}^n$ Finite heights if n is finite
- Power Set Lattice \mathcal{P}^S over *S* (set of all subsets of a set *S*)
 - $\perp = \emptyset$, $\mathsf{T} = S$, $\sqsubseteq = \subseteq$, $\bigsqcup(a,b) = a \bigcup b$, $\square(a,b) = a \bigcap b$ or the dual lattice
 - $\perp = S$, $\mathsf{T} = \emptyset$, $\sqsubseteq = \supseteq$, $\bigsqcup(a,b) = a \bigcap b$, $\bigcap(a,b) = a \bigcup b$
 - Finite heights if S is finite

Functions on CPOs

- Functions $f: U \rightarrow U'$ (if not indicated otherwise, we assume U = U')
- f monotone: $x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)$ with $x, y \in U$
- f continuous: $f(\Box C) = \Box f(C)$ with $f(C) = f([x_1, x_2, ...]) = [f(x_1), f(x_2), ...]$
- f continuous \Rightarrow f monotone,
- $f \text{ monotone} \land U \text{ is finite} \Rightarrow f \text{ continuous}$
- f monotone \land (U, \sqsubseteq) a CPO with ascending chain property \Rightarrow f continuous
- $f \text{ monotone} \land (U, \square, \square)$ a lattice with finite heights $\Rightarrow f \text{ continuous}$

- Power Set Lattice ($P^{\mathcal{N}}, \cup, \cap$), U=set of all subsets of Natural numbers \mathcal{N}
- Define a (meaningless) function:
 - $f(u) = \emptyset \Leftrightarrow u \in U$ finite
 - $f(u) = \mathcal{N} \Leftrightarrow u \in U$ infinite
- f is monotone $u \subseteq u' \Rightarrow f(u) \subseteq f(u')$, e.g.,
- $\emptyset \subseteq \{0\} \subseteq \{0,1\} \subseteq ... \Rightarrow f(\emptyset) \subseteq f(\{0\}) \subseteq f(\{0,1\}) \subseteq ... = \emptyset \subseteq \emptyset \subseteq \emptyset \subseteq ...$ • f is not continuous $f(\cup C) \neq \cup f(C)$, e.g.:

 - $C=[\emptyset, \{0\}, \{0,1\}, ...]$
 - $f(C) = [f(\emptyset), f(\{0\}), f(\{0,1\}), \dots] = [\emptyset, \emptyset, \emptyset, \dots]$
 - $\cup f(C) = \cup [f(\emptyset), f(\{0\}), f(\{0,1\}), \dots] = \cup [\emptyset, \emptyset, \emptyset, \dots] = \emptyset$
 - $\cup C = \cup [\emptyset, \{0\}, \{0,1\}, \dots] = \mathcal{N}$
 - $f(\cup C) = f(\cup [\emptyset, \{0\}, \{0,1\}, ...]) = f(\mathcal{N}) = \mathcal{N}$
- Note: Power Set Lattice $(\varPhi^{y_i}\cup,\cap)$ is not of finite heights and ascending chain property does not hold

Fixed Point Theorem (Knaster-Tarski)

Fixed point of a function: X with f(X) = X

- For *CPO* (U, \sqsubseteq) and monotone functions $f: U \rightarrow U$
- Minimum (or least or smallest) fixed point X exists
- X is unique
- For CPO (U, \sqsubseteq) with smallest element \perp and continuous functions $f: U \rightarrow U$
- Minimum fixed point $X = \bigsqcup f^n(\bot)$
- X iteratively computable

CPO (U, \square) fulfills ascending chain property $\Rightarrow X$ is computable effectively Special cases:

8

10

- (U, \sqsubseteq) with U finite,
- (U,□) defined by a finite heights lattice.

Monotone DFA Framework

Solution of a set of DFA equations is a fix point computation

- Contribution of a computation A of kind K (Alloc, Add, Load, Store, Call ...) is modeled by monotone transfer function • $f_K: U \to U$,
 - Set F of transfer functions is closed under composition and (obviously) the composed functions are monotone as well
- Contribution of predecessor computations Pre of A is modeled by supremum [] of predecessor properties (successor Succ, resp., for backward problems)
- Existence of the smallest fix point X is guaranteed, if domain U of analysis values $\mathit{P}(\mathit{A})$ completely partially ordered (U,\sqsubseteq)
- It is efficiently computable if (U, \sqsubseteq) additionally fulfills the ascending chain property

Monotone DFA Framework (cont'd)

- Monotone DFA Framework: $(U, \sqsubseteq, F, \iota)$
- (U, □) a CPO of analysis values fulfilling the ascending chain property
- $F = \{f_K: U \to U, f_K: U \to U, ...\}$ set of monotone transfer functions (closed under composition, analysis problem specific)
- *ι* ∈ U initial value (analysis problem-specific)
- Analysis instance of a Monotone DFA Framework is given by a graph G • $G = (N, E, n^1)$ data flow graph of a specific program, with the start node n¹ ∈N
- $((N \times U \times U)^{|N|}, \sqsubseteq_{Vector})$ defines a *CPO*:
 - Let $a=(i, x_{in}, x_{out}), b=(j, y_{in}, y_{out}), a, b \in (N \times U \times U)$ $a \sqsubseteq_{\text{Triple}} b \Leftrightarrow i = j \land x_{in} \sqsubseteq y_{in} \land x_{out} \sqsubseteq y_{out}$

 - Let $m = [a^1, a^2, \dots, a^{[N]}]$, $n = [b^1, b^2, \dots, b^{[N]}]$, $m, n \in (N \times U \times U)^{[N]}$ $m \sqsubseteq_{\text{Vector }} n \Leftrightarrow a^1 \sqsubseteq_{\text{Triple }} b^1 \land a^2 \sqsubseteq_{\text{Triple }} b^2 \land \dots \land a^{[N]} \sqsubseteq_{\text{Triple }} b^{[N]}$
 - Smallest element is vector $[(n^1, \iota, \bot), (n^2, \bot, \bot), \dots, (n^{|N|}, \bot, \bot)]$

Data flow equations define monotone functions in (N × U × U, □): P_{in}(A) = □ X ∈ P_{re(A)} (P_{out}(X)) $P_{out}(A) = \overline{f_{Kind(A)}}(P_{in}(A))$ with $f_{Kind(A)} \in F$ transfer function of A Smallest fix point of this system of equations is efficiently computable since $(V \times U)$ and hence $(N \times U \times U)^{|N|}$ completely partially ordered and (Nfulfill the ascending chain property - System of equations defines monotone function in $(N \times U \times U)^{|N|}$ Data flow analysis algorithm: Start with the smallest element: [(n¹, ι, ⊥), (n², ⊥, ⊥), ...,(n^{|N|}, ⊥, ⊥)] Apply equations in any (fair) order Until no P_{in}(A) nor P_{out}(A) changes

11

Monotone DFA Framework (cont'd)

- Assume a Power Set Lattice P^S
- Initialization with the smallest element
- General initializations with ⊥ for all but start node n¹:
- may: Initialization with [(n¹, ι, Ø), (n², Ø, Ø), ...,(n^{|N|}, Ø, Ø)] as empty set Ø is the smallest element for each position
- must: Initialization with $[(n^1, t, S), (n^2, S, S), ..., (n^{[N]}, S, S)]$ as universe of values *S* is the smallest element for each position in the inverse lattice
- Special (problem specific) initializations i:
 - forward: $[(n^1,\,\iota\,,\perp\,),\ldots],\,$ the general initialization (Ø or S) is not defined before the start node
 - backward: [, . . , (n^c, \perp, i)], the general initialization (\oslash or S) is not defined after the end node

MFP and MOP

- For a monotone DFA problem (set of equations) $DFE = (U, \sqsubseteq, F, \iota)$ and GDefine: Minimum Fixed Point MFP is computed by iteratively applying F beginning with the smallest element in U
- beginning with the stratest element in DLet $DFE(n) = (U, \sqsubseteq F, i)$ and G'(n) (same equations as DFE, applied to path graphs) Define: Meet Over all Paths MOP of DFE in (any arbitrary) node n is the minimum fix point MFP of DFE(n) in node n. MFP is equivalent with MOP, if f are distributive over \bigsqcup in U,

- MFP is a conservative approximation of the MOP otherwise
- Attention:
- It is not decidable if a path is actually executable
- Hence, MOP is already conservative approximation of the actual analysis result since some path may be not executable in any program run
- $MOP \neq MOEP$ (meet over all executable paths)

Example for $MFP(G) \neq MOP(G)$

Constant propagation: value vector: $(x,y,z) \in \{0,1,unknown\}^3$

Errors due to our DFA Method

- Call Graphs:
 - Nodes Procedures, Edges calls
 - Only a conservative approximation of actually possible calls, some calls represented in the call graph might never occur in any program run
 - Allows impossible paths like
 - call \rightarrow procedure \rightarrow another call
- Data flow graph of a procedure:
 - Nodes Statements (Expressions), Edges (initial or essential) dependencies between them
 - Application of a monotone DFA framework computes MFP not MOP

Outline

- Summary of Data Flow Analysis
- Problems left open
- Abstract interpretation idea

Problems left open · How to derive the transfer functions for a DFA · How to make sure they compute the intended result, i.e.,

- · MOP approximates the intended question, and
 - $MOP \square MFP$?

19

21

<i>V</i> (: x; = 0 <i>A</i> : x; = 1 <i>B</i> : x; = 0 <i>C</i> : y = 0	MFP (only definitions of <i>x</i>)			
$ \begin{array}{c} \hline N: y = 0 \\ RD_{in}(M) \\ RD_{out}(M) \\ RD_{in}(A) \\ RD_{in}(B) \\ RD_{out}(A) \\ RD_{in}(B) \\ RD_{out}(C) \\ RD_{in}(C) \\ RD_{in}(N) \\ RD_{out}(N) \\ RD_{out}(N) \end{array} $	$= \emptyset \cap RD_{out}(N)$ $= RD_{in}(M) - \{M, A, B\} \cup \{M\}$ $= RD_{out}(M)$ $= RD_{in}(A) - \{M, A, B\} \cup \{A\}$ $= RD_{out}(M)$ $= RD_{in}(B) - \{M, A, B\} \cup \{B\}$ $= RD_{out}(M)$ $= RD_{in}(C)$ $= RD_{out}(A) \cap RD_{out}(B) \cap RD$ $= RD_{in}(N)$	$= \emptyset$ $= \{M\}$ $= \{M\}$ $= \{A\}$ $= \{M\}$	26	
1				

Example: Run (for x)				
	$RD_{in}(M)$	= Ø	=Ø	
N: y := 0	$RD_{out}(M)$	$= RD_{in}(M) - \{M, A, B\} \cup \{M\}$	$= \{M\}$	
↓ ↓	$RD_{in}(A)$	$= RD_{out}(M)$	$= \{M\}$	
	$RD_{out}(A)$	$= RD_{in}(A) - \{M, A, B\} \cup \{A\}$	$= \{A\}$	
	$RD_{in}(N)$	$= RD_{out}(A)$	$= \{A\}$	
	$RD_{out}(N)$	$= RD_{in}(N)$	$= \{A\}$	
	$RD_{in}(M)$	$= RD_{out}(N)$	$= \{A\}$	
	$RD_{out}(M)$	$= RD_{in}(M) - \{M, A, B\} \cup \{M\}$	$= \{M\}$	
	$RD_{in}(C)$	$= RD_{out}(M)$	$= \{M\}$	
	$RD_{out}(C)$	$= RD_{in}(C)$	$= \{M\}$	
	$RD_{in}(N)$	$= RD_{out}(C)$	$= \{M\}$	
	$RD_{out}(N)$	$= RD_{in}(N)$	$= \{M\}$	

Problem left open

- How to make sure RD computes the correct result? As intended by the problem
- Exact result or a conservative approximation
- Actually, in the example program and the specific run RD behaves correctly:
- Static analysis: RDout(N) = Ø
- Example run: $RD_{out}(N) = \{A\}, RD_{out}(N) = \{M\}$
- {A}⊑Ø and {M}⊑Ø
 Recall that RD was a must problem, ascending on the downwards CPO induced by the lattice power set lattice

28

30

- Hence __relation is the inverse set inclusion ⊇ on the label sets
- How does this generalize?
 - For all runs, all programs, and for all dataflow problems
 - We cannot test all (countable) paths of all (countable) programs and all (infinitely many) possible dataflow problems

Outline

- Summary of Data Flow Analysis
- Problems left open
- Abstract interpretation idea

Abstract Interpretation

- Relates semantics of a programming language to an abstract analysis semantics
- Allows to compute or prove correct data flow equations (transfer functions)
 - Define abstraction of the execution semantics wrt. analysis problem
 - Define abstraction of execution traces to program points (in general, finite many contexts for each program point)
 - Prove that they are abstractions indeed.
- Idea even generalizes to other than dataflow analyses, as well (e.g., control flow analysis)

- Non-standard semantics: actually expected analysis results are defined for traces as an abstraction of the program's execution semantics wrt. the analysis problem
- Standard semantics: a program's execution semantics is defined by the semantics of each programming (or intermediate) language computation kind K (Alloc, Add, Load, Store, Call ...) and their composition in the program
- There are only finitely many such kinds

Observation

32

34

- Traces and semantics analysis values define a CPO (U, ⊑) Universe U defined by $Tr \rightarrow \mathcal{P}^{Labels}$
 - Partial order : elements are ordered iff same program *G*, hence *Labels*, and same traces
 - subset of P^{Labels}
- Smallest element $\epsilon \rightarrow \emptyset$ Universe U is not finite
- Even if the non-standard semantics (e.g., analysis function RD_{act}) is monotone, it is in general not continuous as universe not finite since Tr(G) is not
- Then a solution to the analysis problem may exist, but cannot computed iteratively by applying the analysis function on the smallest element to fix point
 - Non-terminating program runs Infinitely many different inputs

- Define an abstraction α of traces and analysis values to guarantee termination, e.g., by making universe finite
- Perform an abstract analysis on the abstraction of traces/values
- Define a inverse concretization function γ to map results back to
- the semantic domain of the programming language semantics α and γ should form a so called adjunction, or Galois connection: $\alpha(X) \leq Y \Leftrightarrow X \subseteq \gamma(Y)$ • Mind the different domains of α and γ

 - Consequently, there are different partial order relations
 - \subseteq on non-standard execution semantics domain, and
- ≤ on abstract analysis domain,
- Showing that abstraction and concretization form a Galois connection is one of our proof obligations to prove the analysis correct

Reaching Definitions (α)

- Let Tr_{label} be the set of all traces ending with program point *label* $Tr_{label} = \{ tr \oplus label \mid label \in Label \land tr \oplus label$ is an admissible trace of $G \}$
- We abstract a set $Tr_{label} \in \mathcal{P}^{Tr}$ with that program point $label \in Label$ $\alpha: \mathcal{P}^{Tr} \rightarrow Label$
- $\alpha(Tr_{label}) = label$
- Concrete and abstract analysis value domains *P*^{Label} are the same:
 Let *RD*_{act}(*tr* ⊕ *label*) ∈ *P*^{Label} be the set of definitions reaching *label*
- Let $RD(label) \in \mathcal{P}^{Label}$ be the set of reaching definitions analyzed for *label* We abstract the analysis execution semantics of the trace $tr \in Tr_{label}$:
- RD(tr) with the abstract analysis results RD(label) of the program point label $\alpha: \mathcal{P}^{Label} \rightarrow \mathcal{P}^{Label}$

 $\alpha(RD_{act}(tr)) = RD(label) iff tr \in Tr_{label}$

Reaching Definitions (γ) Conversely, we concretize each program point *label* with the set of all traces ending in *label*The concretization function on labels is γ: Label → 𝒫^{Tr} γ(*label*) = Tr_{label} Consequently, we concretize the abstract analysis results RD(*label*) of a program point *label* by assuming it holds for any of the traces tr ∈ Tr_{label}:

39

 $\gamma: \mathbb{P}^{Label} \rightarrow \mathbb{P}^{Label}$

 $\gamma(RD(label)) = \forall tr \in Tr_{label} : RD(tr) = RD(label)$

RD Analysis Semantics

- Given a program $G = (N, E, n^1)$
- $RD: Label \rightarrow \mathcal{P}^{Labels}$
- Basis for recursive definitions
- Empty trace abstraction: starting point of the program n¹
- no definition reaches n¹
- $RD_{in}(n^1) := \emptyset$
- Analysis semantics at *label* which is conservative for α *RD_{act}* γ
 recursively defined on analysis semantics of abstraction of predecessor traces *ir*, i.e., predecessor labels:
 - $RDin(label: S) := \bigcap_{p \in Pre(label)} RDout(p)$

analysis abstraction of the execution semantics of the static programming language construct of step *label* (transfer function) $RD_{scd}(label: S) :=$ if (S = "x:=expr")

 $\begin{array}{l} & \text{Source is } S := \\ & (S = "x := \exp r") \\ & \text{RDin}(lable) - \{l \mid (l : x := \exp r') \in N\} \cup \{label\} \\ & \text{Source is } S \in N\} \\ & \text{Source is } S \in N \\ & \text{Source is } S \in N\} \\ & \text{Source is } S \in N\} \\ & \text{Source is } S \in N \\ & \text{Source is } S \in N\} \\ & \text{Source is } S \in N \\ & \text{So$

RDin (label)

40

38

Correctness of Analysis Abstraction

- Use structural induction over all programs
- Compare execution semantics and analysis semantics (transfer functions) of program constructs
- Basis:
 Claim holds for the empty trace: each progra
 - Claim holds for the empty trace: each program's starting point is abstracted correctly: RD_{in}(n¹) = Ø, Rd_{aci}(ε) = Ø
- Step:
 - Given a trace $tr \oplus label$ and its abstraction label
 - Provided RD_{in}(label: S) is a correct abstraction of RD_{act}(tr)
 Then RD_{out}(label: S) is a correct abstraction of RD_{act}(tr ⊕ label):
 - $\forall tr \in \gamma(label): \alpha(RD_{act}(\gamma(RD_{in}(label)))) \leq RD_{out}(label)$
 - Distinguish cases of each program construct and transfer function
 - Here trivial as RD_{acc} and RD are identical (and monotone)
 In general "widening" necessary to make transfer function monotone

RD Proof of Correctness

- To show (i): (α, γ) is a Galois connection
- To show (ii): $\alpha \circ RD_{act} \circ \gamma$ is abstracted with *RD* i.e., $\alpha \circ RD_{act} \circ \gamma \leq RD$
- Proof (sketch): for each node *n* of *G*
 - By our definition of γ, γ(*label*)=*Tr_{label}* corresponds to path graph of *G* in *n* = (*label*:*S*)
 - By our definition of *RD_{act}*, α *RD_{act}* γ in a node *n* is *MFP* of *RD* of path graph of *G* in *n*
 - MFP of RD of path graph of G in n is MOP of G in n
 - $MOP \leq MFP$ of RD

42

General Proof Obligations

- To show (i): (α, γ) is a Galois connection
- To show (ii): $\alpha \bullet Act \bullet \gamma$ is abstracted with *F* i.e., $\alpha \bullet Act \bullet \gamma \leq F$
- Proof (sketch): for each node n of G
 - By our definition of γ, γ(*label*)= *Tr_{label}* of corresponds to path graph of *G* in *n* = (*label*:*S*)
 - By our definition of *Act* and *F*, $\alpha \bullet Act \bullet \gamma(n) \leq F(n)$ in every node *n* (sufficient to show this for every $f_K(n)$)
 - Then $\alpha \bullet Act \bullet \gamma$ in a node *n* is *MFP* of *F* of path graph of *G* in *n*
 - *MFP* of *F* of path graph of *G* in *n* is *MOP* of *G* in *n*
 - $MOP \leq MFP$ of F