
1

Abstract Interpretation

Welf Löwe
Welf.Lowe@lnu.se

2

Outline
§ Summary of Data Flow Analysis
§ Problems left open
§ Abstract interpretation idea

3

Complete Partial Order (CPO)

§ Partially ordered sets (U,) over a universe U
§ Smallest element ^ ÎU
§ Partial order relation

§ Ascending chain C=[c1,c2,…] Í U
§ Smallest element c1
§ ci-1 ci

§ Maybe finite or countable: constructor for next element ci =next([c1,c2,…, ci-1])
§ Unique largest element s of chain C=[c1,c2,…]

§ ci s (larger than all chain elements ci)
§ s called supremum s = (C)

§ Ascending chain property: any (may be countable) ascending chain
C Í U has an element ci with
§ i is finite and
§ for all elements c<i ci and
§ for all elements c>i = ci ,

then ci = (C)
§ Example: (P N, Í) and C=[Æ,{1},{1,2},{1,2,3},…], ci= {max(ci-1)+1} È ci-1

s = È(C) = N but ascending chain property does not hold

v

v

v

v
t

v

t

4

CPOs and Lattices
§ Lattice L = (U, ,)

§ any two elements a, b of U have
• an infimum (a, b) - unique largest smaller of a, b
• a supremum (a, b) - unique smallest bigger of a, b

§ unique smallest element ^ (bottom)
§ unique largest element (top)

§ A lattice L = (U, ,) defines two CPOs (U,)
§ upwards:

• a b a b = b, smallest ,̂
• If L finite heights Þ ascending chain property holds (ci =)

§ downwards:
• b a a b = b (a b = a), smallest ,
• If L finite heights Þ ascending chain property holds (ci =)̂

tu

u

tu
>

,v t
>

v , t , u

t

v

>

5

Special lattices of importance
§ Boolean Lattice over U={true, false}

§ ^= true, T= false, true false, (a,b)=a Ú b, (a,b)=a Ù b
§ Finite heights

§ Generalization: Bit Vector Lattice over U ={true, false}n

§ Finite heights if n is finite

§ Power Set Lattice P S over S (set of all subsets of a set S)
§ ^= Æ, T= S, = Í, (a,b)=a b, (a,b)=a b or the dual lattice
§ ^= S, T= Æ, = , (a,b)=a b, (a,b)=a b
§ Finite heights if S is finite

v t u

v t [u \
v ◆t \ u [

6

Functions on CPOs
§ Functions f: U ® U’ (if not indicated otherwise, we assume U = U’)
§ f monotone: x y Þ f(x) f(y) with x, y Î U
§ f continuous: f(C) = f(C) with f(C) = f([x1,x2,…]) = [f(x1),f(x2),…]

§ f continuous Þ f monotone,

§ f monotone Ù U is finite Þ f continuous
§ f monotone Ù (U,) a CPO with ascending chain property Þ f continuous
§ f monotone Ù (U, ,) a lattice with finite heights Þ f continuous

v v
t t

v
tu

2

7

Example
§ Power Set Lattice (PN, È, Ç), U=set of all subsets of Natural numbers N

§ Define a (meaningless) function:
§ f(u) = Æ u Î U finite
§ f(u) = N u Î U infinite

§ f is monotone u Í u’Þ f(u) Í f(u’), e.g.,
§ Æ Í {0} Í {0,1} Í …Þ f(Æ) Í f({0}) Í f({0,1}) Í …= ÆÍÆÍÆÍ …

§ f is not continuous f(È C) ≠ È f(C), e.g.:
§ C= [Æ, {0}, {0,1}, …]
§ f(C) = [f(Æ), f({0}), f({0,1}), …] = [Æ, Æ, Æ, …]
§ È f(C) = È [f(Æ), f({0}), f({0,1}), …] = È [Æ, Æ, Æ, …] = Æ
§ È C = È [Æ, {0}, {0,1}, …] = N
§ f(È C) = f(È [Æ, {0}, {0,1}, …]) = f(N) = N

§ Note: Power Set Lattice (PN, È, Ç) is not of finite heights and ascending
chain property does not hold

,
,

8

Fixed Point Theorem (Knaster-Tarski)
Fixed point of a function: X with f(X) = X

For CPO (U,) and monotone functions f: U ® U
§ Minimum (or least or smallest) fixed point X exists
§ X is unique

For CPO (U,) with smallest element ^ and continuous functions f: U ® U
§ Minimum fixed point X = f n(^)
§ X iteratively computable

CPO (U,) fulfills ascending chain property Þ X is computable effectively
Special cases:
§ (U,) with U finite,
§ (U,) defined by a finite heights lattice.

v

v

v

v
v

t

9

Monotone DFA Framework
§ Solution of a set of DFA equations is a fix point computation
§ Contribution of a computation A of kind K (Alloc, Add, Load,

Store, Call …) is modeled by monotone transfer function
§ fK: U ® U,
§ Set F of transfer functions is closed under composition and

(obviously) the composed functions are monotone as well
§ Contribution of predecessor computations Pre of A is

modeled by supremum of predecessor properties
(successor Succ, resp., for backward problems)

§ Existence of the smallest fix point X is guaranteed, if domain
U of analysis values P(A) completely partially ordered (U,)

§ It is efficiently computable if (U,) additionally fulfills the
ascending chain property

t

v
v

10

Monotone DFA Framework (cont’d)
§ Monotone DFA Framework: (U, , F, i)

§ (U,) a CPO of analysis values fulfilling the ascending chain
property

§ F = {fK: U ® U, fK’: U ® U, …} set of monotone transfer functions
(closed under composition, analysis problem specific)

§ i ÎU initial value (analysis problem-specific)
§ Analysis instance of a Monotone DFA Framework is given by a graph G

§ G = (N, E, n1) data flow graph of a specific program, with
§ the start node n1 ÎN

§ ((N ´ U ´ U)|N|, Vector) defines a CPO:
§ Let a=(i, xin, xout), b=(j, yin, yout), a, b Î (N ´ U ´ U)

a Triple b ⇔ i = j !"xin yin !"xout yout

§ Let m= [a1, a2, …,a|N|], n= [b1, b2, …,b|N|], m, n Î (N ´ U ´ U)|N|

m Vector n ⇔ a1
Triple b1 !"a2

Triple b2 !… !"a|N|
Triple b|N|

§ Smallest element is vector [(n1, i , ^), (n2, ^, ^), … ,(n|N|, ^, ^)]

v
v

v

v v v

v v v v

11

Monotone DFA Framework (cont’d)
§ Data flow equations define monotone functions in (N ´ U ´ U,):

Pin (A) = X ∈ Pre(A) (Pout(X))
Pout(A) = fKind(A) (Pin(A)) with fKind(A) Î F transfer function of A

§ Smallest fix point of this system of equations is efficiently computable
since
§ (N ´ U ´ U) and hence (N ´ U ´ U)|N| completely partially ordered and

fulfill the ascending chain property
§ System of equations defines monotone function in (N ´ U ´ U)|N|

§ Data flow analysis algorithm:
§ Start with the smallest element: [(n1, i , ^), (n2, ^, ^), . . .,(n|N|, ^, ^)]
§ Apply equations in any (fair) order
§ Until no Pin (A) nor Pout(A) changes

vt

12

4 DFA Equations Schemata

§ forward and must: Pin(A) = Pout(X)
Pout(A) = Pin(A) - kill (A) È gen(A)

§ backward and must: Pout(A) = Pin(X)
Pin(A) = Pout(A) - kill (A) È gen(A)

§ forward and may: Pin(A) = Pout(X)
Pout(A) = Pin(A) - kill (A) È gen(A)

§ backward and may: Pout(A) = Pin(X)
Pin(A) = Pout(A) - kill (A) È gen(A)

)(APreXÎ

Succ(A)XÎ

Succ(A)XÎ

)(APreXÎ
t

u

u

t

sup
fK (Pin(A))

3

13

Initialization
§ Assume a Power Set Lattice PS

§ Initialization with the smallest element
§ General initializations with ^ for all but start node n1:

§ may: Initialization with [(n1, i , Æ), (n2, Æ , Æ), . . .,(n|N|, Æ , Æ)] as
empty set Æ is the smallest element for each position

§ must: Initialization with [(n1, i , S), (n2, S, S), . . .,(n|N|, S, S)] as universe
of values S is the smallest element for each position in the inverse
lattice

§ Special (problem specific) initializations i :
§ forward: [(n1, i , ^), . . .], the general initialization (Æ or S) is not

defined before the start node
§ backward: [. . . , (ne, ^, i)], the general initialization (Æ or S) is not

defined after the end node

14

Example I
§ Property P: x = 1 guaranteed?
§ Universe Boolean, CPO Boolean Lattice
§ Transfer functions: true, false, id

§ Statement A: fA = true
§ Statement B: fB = false
§ Statement C: fC = id i.e. does not change

§ Let PA , PB , PC , PN be values of P
after statements A,B,C, (Pout) and
Let PA , PB , PC , PN be values of P
before statements A,B,C, (Pin)

§ Forward – must problem
§ it holds PN = PA Ù PB Ù PC

§ Begin with PA,B,C,N = true before statements (assumption x = 1)
§ Initialization PM = false before statement M is x ¹ 1
§ Iteration leads to fixed point PN = false

§ x := 1-x more difficult:
§ Obviously, a naive transfer function not is not monotone
§ Conservative transfer function: f = false
§ Conservatively, x = 1 is not guaranteed any more by analysis in some cases where we

(as humans) could see it holds

M: x := 0

A: x := 1 B: x := 0 C: y := 0

N: y := 0

15

Example II
§ Property P: x = 1 possible?
§ Universe Boolean, CPO Boolean Lattice
§ Transfer functions identical
§ Forward – may problem

§ PN = PAÚPB ÚPC

§ Begin with PA,B,C,N = false (assumption x ¹ 1)
§ Initialization PM = false
§ Iteration leads to fixed point PN = true

§ Generalization:
§ Compute properties of several (all) variables in each step
§ Property: are variables equal to a specific constant or are variables actually

compile time constants at a certain program point
§ Universe: Bit vector with a vector element for each variable
§ CPO induced by bit vector lattice

M: x := 0

A: x := 1 B: x := 0 C: y := 0

N: y := 0

16

What does Data Flow Analysis?

M: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

17

Path Graph
§ For nodes n Î N of G=(N, E) define path graph G’(n)=(N’, E’)

§ For every path P ending in n:
n' Î P Û n' Î N'

§ (n', n'') Î E' Û (n', n'') Î P

§ The path graph acyclic by definition
§ Since the set of paths to a node n in G is possibly countable

(iff G contains loops) the graph G’(n) is in general not finite

18

Example: Path Graph

M: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

M: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

M: x := 0 M: x := 0

N: y := 0 N: y := 0

M: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

M: x := 0 M: x := 0

N: y := 0 N: y := 0

M: x := 0

A: x := 1

N: y := 0

M: x := 0

A: x := 1

N: y := 0

M: x := 0

A: x := 1

N: y := 0

...

A: x := 1

M: x := 0

N: y := 0

M: x := 0

B: x := 0

N: y := 0

4

19

MFP and MOP
For a monotone DFA problem (set of equations) DFE = (U, , F, i) and G
§ Define: Minimum Fixed Point MFP is computed by iteratively applying F

beginning with the smallest element in U
Let DFE’(n) = (U, , F, i) and G’(n) (same equations as DFE, applied to path

graphs)
§ Define: Meet Over all Paths MOP of DFE in (any arbitrary) node n is the

minimum fix point MFP of DFE’(n) in node n.
§ MFP is equivalent with MOP, if f are distributive over in U,
§ MFP is a conservative approximation of the MOP otherwise
Attention:
§ It is not decidable if a path is actually executable
§ Hence, MOP is already conservative approximation of the actual analysis

result since some path may be not executable in any program run
§ MOP ¹ MOEP (meet over all executable paths)

v

v

t

20

Example for MFP(G) ¹ MOP(G)

z := 0

x := 1
y := 0

z := x+y

x := 0
y :=1

z := 0

x := 1
y := 0

z := x+y

x := 0
y := 1

z := 0

G G'

Constant propagation: value vector: (x,y,z) Î {0,1,unknown}3

(u,u,u)
(u,u,0)

(u,u,0)
(1,0,0)

(u,u,0)
(0,1,0)

(u,u,0)
(u,u,u) z := x+y

(u,u,u)
(u,u,0)

(u,u,u)
(u,u,0)

(u,u,0)
(1,0,0)

(u,u,0)
(0,1,0)

(1,0,0) (0,1,0)

(1,0,1) (0,1,1)

21

Errors due to our DFA Method
§ Call Graphs:

§ Nodes – Procedures, Edges – calls
§ Only a conservative approximation of actually possible calls, some

calls represented in the call graph might never occur in any program
run

§ Allows impossible paths like
call ® procedure ® another call

§ Data flow graph of a procedure:
§ Nodes – Statements (Expressions), Edges – (initial or essential)

dependencies between them
§ Application of a monotone DFA framework computes MFP not MOP

22

Outline
§ Summary of Data Flow Analysis
§ Problems left open
§ Abstract interpretation idea

23

Problems left open
§ How to derive the transfer functions for a DFA
§ How to make sure they compute the intended result, i.e.,

§ MOP approximates the intended question, and
§ MOP MFP?v

24

Example: Reaching Definitions (Must)
§ Which set of definitions (assignments) reaches (is valid in) a node A?
§ Data flow values:

§ Subset of all definition (assignment) nodes {A1... AN}
§ Implementation: bit-vector [{false, true}1 ... {false, true}N] where each position

indicates if a node is in the subset
§ Forward, Must
§ Schema: RDin(A) = RDout(X)

RDout(A) = RDin(A) - killRD(A) È genRD(A)
§ Assume A contains assignment x:=expr, then

§ genRD (A) ={A} and
§ killRD (A) = {A’ | A’ contains assignment x:=expr’}
§ otherwise genRD (A) = killRD (A) = Æ
§ can be pre-calculated by checking the variables assigned in each node

§ Initialization:
§ No definition reaches the start node:, i.e., RDin(A1) = Æ, but
§ All definitions are assumed to reach each program point RDin(Ai>1)={A1... AN}

!
)(APreXÎ

5

26

MFP (only definitions of x)M: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

RDin(M) = Æ Ç RDout(N) = Æ
RDout(M) = RDin(M) - {M,A,B}È{M} = {M}
RDin(A) = RDout(M) = {M}
RDout(A) = RDin(A) - {M,A,B}È{A} = {A}
RDin(B) = RDout(M) = {M}
RDout(B) = RDin(B) - {M,A,B} È{B} = {B}
RDin(C) = RDout(M) = {M}
RDout(C) = RDin(C) = {M}
RDin(N) = RDout(A) Ç RDout(B) Ç RDout(C) = Æ
RDout(N) = RDin(N) = Æ

27

Example: Run (for x)M: x := 0

A: x := 1 B: x := 0

N: y := 0

C: y := 0

RDin(M) = Æ = Æ
RDout(M) = RDin(M) - {M,A,B}È{M} = {M}
RDin(A) = RDout(M) = {M}
RDout(A) = RDin(A) - {M,A,B} È {A} = {A}
RDin(N) = RDout(A) = {A}
RDout(N) = RDin(N) = {A}
RDin(M) = RDout(N) = {A}
RDout(M) = RDin(M) - {M,A,B}È{M} = {M}
RDin(C) = RDout(M) = {M}
RDout(C) = RDin(C) = {M}
RDin(N) = RDout(C) = {M}
RDout(N) = RDin(N) = {M}

28

Problem left open
§ How to make sure RD computes the correct result?

§ As intended by the problem
§ Exact result or a conservative approximation

§ Actually, in the example program and the specific run RD behaves
correctly:
§ Static analysis: RDout(N) = Æ
§ Example run: RDout(N) = {A}, RDout(N) = {M}
§ {A} Æ and {M} Æ

• Recall that RD was a must problem, ascending on the downwards CPO induced
by the lattice power set lattice

• Hence relation is the inverse set inclusion ⊇ on the label sets

§ How does this generalize?
§ For all runs, all programs, and for all dataflow problems
§ We cannot test all (countable) paths of all (countable) programs and all

(infinitely many) possible dataflow problems

v v

v

29

Outline
§ Summary of Data Flow Analysis
§ Problems left open
§ Abstract interpretation idea

30

Abstract Interpretation
§ Relates semantics of a programming language to an

abstract analysis semantics
§ Allows to compute or prove correct data flow equations

(transfer functions)
§ Define abstraction of the execution semantics wrt. analysis problem
§ Define abstraction of execution traces to program points (in general,

finite many contexts for each program point)
§ Prove that they are abstractions indeed.

§ Idea even generalizes to other than dataflow analyses, as
well (e.g., control flow analysis)

31

Program Traces
§ Each program run is defined by a trace tr Î Labels*
§ Traces are defined by the programming language

semantics, e.g.,
§ tr[stats; stat] = tr[stats] Å tr[stat]
§ tr[assign] := label(assign)
§ tr[if expr then stats1 else stats2] :=

eval[expr] = true ? tr[stats1] : tr[stats2]
§ tr[while expr do stats od] :=

eval[expr] = true ? tr[stats] Å tr[while … od] : ε

§ For instance, actual reaching definitions RDact is a mapping
RDact: Tr ® P Labels

i.e., for each trace (tr) a subset of definitions (Í P Labels)
reaches the end point of that trace

6

Analysis Execution Semantics
§ Non-standard semantics: actually expected analysis results

are defined for traces as an abstraction of the program’s
execution semantics wrt. the analysis problem

§ Standard semantics: a program’s execution semantics is
defined by the semantics of each programming (or
intermediate) language computation kind K (Alloc, Add,
Load, Store, Call …) and their composition in the program

§ There are only finitely many such kinds

32 33

RDact (Non-Standard) Semantics
§ Given a program G = (N, E, n1)
§ RDact : Tr ® P Labels

§ Basis for recursive definitions: empty trace
§ no definition reaches the end of the empty trace
§ RDact(ε) := Æ

§ Analysis execution semantics of tr Å label (trace tr expanded by the
next dynamic step label)
§ recursively defined on analysis execution semantics of trace tr and

analysis execution semantics of the static programming language
construct of step label

§ RDact(tr Å label : S) :=
if (S = “x:=expr”) // computation kind is assignment to x

RDact(tr) -{l |(l : x:=expr’) ÎN} È {label}
else // any other computation kind

RDact(tr)

34

Observation
§ Traces and semantics analysis values define a CPO (U,)

§ Universe U defined by Tr® P Labels

§ Partial order : elements are ordered iff
• same program G, hence Labels, and same traces
• subset of P Labels

§ Smallest element ε® Æ
§ Universe U is not finite
§ Even if the non-standard semantics (e.g., analysis function
RDact) is monotone, it is in general not continuous as
universe not finite since Tr(G) is not

§ Then a solution to the analysis problem may exist, but
cannot computed iteratively by applying the analysis
function on the smallest element to fix point
§ Non-terminating program runs
§ Infinitely many different inputs

v

v

35

Solution

§ Define an abstraction a of traces and analysis values to
guarantee termination, e.g., by making universe finite

§ Perform an abstract analysis on the abstraction of traces/values

§ Define a inverse concretization function g to map results back to
the semantic domain of the programming language semantics

§ a and g should form a so called adjunction, or Galois connection:
a(X) £ YÛ X Í g(Y)
§ Mind the different domains of a and g
§ Consequently, there are different partial order relations

§ Í on non-standard execution semantics domain, and

§ £ on abstract analysis domain,

§ Showing that abstraction and concretization form a Galois
connection is one of our proof obligations to prove the analysis
correct

Galois Connections

Countable Execution CPO (U, Í) Finite Abstraction CPO (U’, £)

a

g

a(X)

g(Y) Y

X

a(X) £ YÛ X Í g(Y)

£Í

37

How to define the analysis?

§ Take (any) abstract analysis F function abstracting (i.e.,
gives larger results than) a • Act • g : U’® U’ where Act is
the actual analysis execution semantics function

§ Analysis terminates if (U’, £) a CPO and F monotone
§ May require widening of abstract results

§ Analysis is conservative if Act is monotone and
(a, g) a Galois connection

§ Then conservative approximation computable by fixed point
iteration and it holds for the minimum fix points MFP:
a(MFP(Act)) £ MFP(a • Act • g) £ MFP(F)

7

38

Reaching Definitions (a)
§ Let Trlabel be the set of all traces ending with program point label

Trlabel={ tr Å label | labelÎLabel Ù tr Å label is an admissible trace of G}
§ We abstract a set Trlabel ÎP Tr with that program point label Î Label

a: P Tr ® Label
a(Trlabel) = label

§ Concrete and abstract analysis value domains P Label are the same:
§ Let RDact(tr Å label) Î P Label be the set of definitions reaching label
§ Let RD(label) Î P Label be the set of reaching definitions analyzed for label

§ We abstract the analysis execution semantics of the trace tr Î Trlabel :
RD(tr) with the abstract analysis results RD(label) of the program point
label
a: P Label ® P Label

a(RDact (tr)) = RD(label) iff tr ÎTrlabel

39

Reaching Definitions (g)
§ Conversely, we concretize each program point label with the

set of all traces ending in label
§ The concretization function on labels is

g: Label ® P Tr

g(label) = Trlabel

§ Consequently, we concretize the abstract analysis results
RD(label) of a program point label by assuming it holds for
any of the traces tr Î Trlabel :
g: P Label ® P Label

g(RD(label)) =∀ tr Î Trlabel : RD(tr) = RD(label)

40

RD Analysis Semantics
§ Given a program G = (N, E, n1)
§ RD : Label ® P Labels

§ Basis for recursive definitions:
§ Empty trace abstraction: starting point of the program n1

§ no definition reaches n1

§ RDin (n1) := Æ
§ Analysis semantics at label which is conservative for a • RDact • g

§ recursively defined on analysis semantics of abstraction of predecessor
traces tr , i.e., predecessor labels:
RDin(label : S) := Çp ÎPre(label) RDout(p)

§ analysis abstraction of the execution semantics of the static programming
language construct of step label (transfer function)
RDout(label : S) :=

if (S = “x:=expr”)
RDin (lable) -{l |(l : x:=expr’) ÎN} È {label}

else
RDin (label)

41

Correctness of Analysis Abstraction
§ Use structural induction over all programs
§ Compare execution semantics and analysis semantics

(transfer functions) of program constructs
§ Basis:

§ Claim holds for the empty trace: each program’s starting point is
abstracted correctly: RDin (n1) = Æ, Rdact(ε) = Æ

§ Step:
§ Given a trace tr Å label and its abstraction label
§ Provided RDin(label : S) is a correct abstraction of RDact(tr)
§ Then RDout(label : S) is a correct abstraction of RDact(tr Å label):

∀ tr Î g(label): a(RDact(g(RDin(label)))) ≤ RDout(label)
§ Distinguish cases of each program construct and transfer function
§ Here trivial as RDact and RD are identical (and monotone)
§ In general “widening” necessary to make transfer function monotone

42

RD Proof of Correctness
§ To show (i): (a, g) is a Galois connection

§ To show (ii): a • RDact• g is abstracted with RD i.e.,
a • RDact • g ≤ RD

§ Proof (sketch): for each node n of G
§ By our definition of g, g(label)=Trlabel corresponds to path

graph of G in n = (label:S)
§ By our definition of RDact, a • RDact • g in a node n is MFP

of RD of path graph of G in n
§ MFP of RD of path graph of G in n is MOP of G in n
§ MOP ≤ MFP of RD

43

General Proof Obligations
§ To show (i): (a, g) is a Galois connection

§ To show (ii): a • Act • g is abstracted with F i.e.,
a • Act • g ≤ F

§ Proof (sketch): for each node n of G
§ By our definition of g, g(label)= Trlabel of corresponds to

path graph of G in n = (label:S)
§ By our definition of Act and F, a • Act • g (n) ≤ F(n) in

every node n (sufficient to show this for every fK(n))
§ Then a • Act • g in a node n is MFP of F of path graph of

G in n
§ MFP of F of path graph of G in n is MOP of G in n
§ MOP ≤ MFP of F

