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Complete Partial Order (CPO)

= Partially ordered sets (U,[C) over a universe U
= Smallest element L € U
= Partial order relation =
= Ascending chain C=[cy,c,...] € U
= Smallest element ci
" cHEc.
= Maybe finite or countable: constructor for next element ci =next([c1,c2,..., ci-1])
= Unique largest element s of chain C=[c;,c;,...]
= ¢ s (larger than all chain elements ci)
= s called supremum s =I(C)
= Ascending chain property: any (may be countable) ascending chain
C c U has an element ¢; with
= jisfinite and
= for all elements c<iCci and
= forall elements i =ci,
then ¢; =LI(C)
= Example: (%, c)and C=[J,{1},{1,2},{1,2,3},... ], c;= {max(c;i))*+1} U ¢i,

s = U(C) = N but ascending chain property does not hold 3

CPOs and Lattices

= Lattice L = (ULJM)
= any two elements a, b of U have
« aninfimum ﬂ(a, b) - unique largest smaller of a, b
« asupremum|_|(a, b) - unique smallest bigger of a, b
= unique smallest element L (bottom)
= unique largest element T (top)
= A lattice L = (U, I[) defines two CPOs (U,C)
= upwards:

« aC b allb=b, smallest L,
« If L finite heights = ascending chain property holds (ci = T)

= downwards:
s bCaal |b=b(>a[|b=a), smallestT,
« If L finite heights = ascending chain property holds (ci = 1)

Special lattices of importance

= Boolean Lattice over U={true, false}
= L= true, T= false, true [ false, L Ka,b)y=a v b, Xa,b)=a n b
= Finite heights

= Generalization: Bit Vector Lattice over U ={true, false}"
= Finite heights if n is finite

= Power Set Lattice @S over § (set of all subsets of a set S)
= 1=0,T=5 C=c| Kab)=alUb, Fl(a,b):aﬂb or the dual lattice
= 1=5T=@, C=2Kab)=al b, Kab)=aUb
= Finite heights if S is finite

Functions on CPOs

Functions /: U — U’ (if not indicated otherwise, we assume U=U")
Smonotone: xC y = fix) C fly) withx,y € U
feontinuous: f{L_|C) =_JAC) with AC) = A[x,x,,...]) = [fix))fx2),--.]

fcontinuous = f'monotone,

fmonotone A U is finite = f continuous
fmonotone A (U, C) a CPO with ascending chain property = fcontinuous
fmonotone A (U,LLI) a lattice with finite heights = f continuous




Example

Power Set Lattice (Q’W, U, N), U=set of all subsets of Natural numbers N\
Define a (meaningless) function:

= flu) = @<= u e U finite

= flu) = ¥ u e Uinfinite

fis monotone ucu’ = flu)y c flu’), e.g.,

" D {0} {01} c..= D) c f{0}) cAH0,1}) c .= D=DcDc ...

fis not continuous flu C) # U f(C), e.g.:

= C=[J, {0}, {0,1}, ...]
= C) = D), [{0}), f{0,1}), ...1= (9, D, D, ...]
= U0 = D), {0, f{0,1}), ...1=V [2,2,0,...]=0
" UC=U[@, {0}, {0,1},..]=N
" 0O =AY [P, {0}, {01}, ..) =AM =N
Note: Power Set Lattice (%, U, n) is not of finite heights and ascending

chain property does not hold R

Fixed Point Theorem (Knaster-Tarski)

Fixed point of a function: X with f(X) = X

For CPO (U,C) and monotone functions f: U —» U
= Minimum (or least or smallest) fixed point X exists
= Xis unique

For CPO (U, C) with smallest element L and continuous functions f: U — U
= Minimum fixed point X =|_|f"(L)
= X iteratively computable

CPO (U,CC) fulfills ascending chain property = X is computable effectively
Special cases:

= (U,C) with U finite,

= (U,LC) defined by a finite heights lattice.

Monotone DFA Framework

Solution of a set of DFA equations is a fix point computation
Contribution of a computation 4 of kind K (Alloc, Add, Load,
Store, Call ...) is modeled by monotone transfer function

= U->U,

= Set F of transfer functions is closed under composition and

(obviously) the composed functions are monotone as well

Contribution of predecessor computations Pre of 4 is
modeled by supremum |_| of predecessor properties
(successor Succ, resp., for backward problems)

Existence of the smallest fix point X is guaranteed, if domain
U of analysis values P(4) completely partially ordered (U,C)
It is efficiently computable if (U, C) additionally fulfills the
ascending chain property

Monotone DFA Framework (cont’d)

= Monotone DFA Framework: (U,C, F, 1)
= (U, C)a CPO of analysis values fulfilling the ascending chain
property
= F={fxx U> U, fx: U— U, ..} set of monotone transfer functions
(closed under composition, analysis problem specific)
= ¢ eU initial value (analysis problem-specific)
= Analysis instance of a Monotone DFA Framework is given by a graph G
= G =(N, E, n") data flow graph of a specific program, with
= the start node n' eN
= (N x Ux UV, Cyeetor) defines a CPO:
= Leta=(, xi Xou) b=(, Vi You). @, b € (Nx Ux U)
a Cipe b © 1=/ AXin & Yin A Xour E Your
Let m=[d', d?, ....a™), n=[b", b?, ....bM), m, n € (Nx Ux U)M
mCvector 1 © a'Eripie ' A > Erripie b2 A ... A al™ E gy bV
Smallest element is vector [(n', ¢, L), (n% L, 1), ... (N, L, 1)]
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Monotone DFA Framework (cont’d)

Data flow equations define monotone functions in (N x Ux U, C):
Py (A) = || ve precay (Pou(X))
PoudA) = fxinac) (Pin(A)) With fxinacs) € F transfer function of 4

Smallest fix point of this system of equations is efficiently computable
since

= (Nx Ux U)and hence (N x U x U)M completely partially ordered and
fulfill the ascending chain property

= System of equations defines monotone function in (N x U x U)IM
Data flow analysis algorithm:

= Start with the smallest element: [(n', ¢, L), (n%, L, 1), .. .,(n!M, L, 1)]

= Apply equations in any (fair) order

= Until no P, (4) nor P,,(A) changes

4 DFA Equations Schemata

= forward and must:  Piu(d) = |_| Pou(X)
XePre(4)
PouA) = Pin(A) - kill (4) © gen(A4)
= backward and must: Pou(d) = |_| Pin(X)
X ESuce(d)
Pid) = PoulA) - kill (4) © gen(A)
= forward and may:  Pu(d) = |_| Poul(X)

_X ePre (A4)
PouA) = Pin(A) - kill (4) © gen(A4)

= backward and may: Pou(d) =XESmL‘(A) Pin(X)
Pi(d) = Pou(A) - kill (4) L gen(A4)




Initialization

= Assume a Power Set Lattice P°
= |Initialization with the smallest element

= General initializations with L for all but start node n':
= may: Initialization with [(n', 1, @), (n*, D ,D),.. .0, T, D)) as
empty set & is the smallest element for each position
= must: Initialization with [(n', ¢, S), (1% S, S), . . ..(n'™, S, S)] as universe
of values S is the smallest element for each position in the inverse
lattice
= Special (problem specific) initializations ::
= forward: [(n', ¢, L),...], the general initialization (& or S) is not
defined before the start node
= backward: [..., (n, L, )], the general initialization (& or S) is not
defined after the end node

Example |

= Property P: x=1 guaranteed?
= Universe Boolean, CPO Boolean Lattice
= Transfer functions: true, false, id
= Statement 4: fi = true
= Statement B: fs = false
= Statement C: fc =id i.e. does not change
= Let P4, P, Pc, Py be values of P
after statements 4,B,C, (Pou) and
Let 1, [f’s, ke, (?v be values of P
before statements 4,B,C, (Pin)
= Forward — must problem
= itholds 2v=PiA PsA Pc
= Begin with Bi.s.c.v = true before statements (assumption x = 1)
= Initialization 2y = false before statement M is x # 1
= lteration leads to fixed point Pv = false
= x:= l-x more difficult:
= Obviously, a naive transfer function not is not monotone
= Conservative transfer function: /= false
= Conservatively, x =1 is not guaranteed any more by analysis in some cases where we
(as humans) could see it holds
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Example Il

= Property P: x =1 possible?
= Universe Boolean, CPO Boolean Lattice
= Transfer functions identical
= Forward — may problem
= Pv=Pav PsvPc
= Begin with Lss.cn = false (assumption x = 1)
= Initialization Py = false
= |teration leads to fixed point Py = true
= Generalization:
= Compute properties of several (all) variables in each step
= Property: are variables equal to a specific constant or are variables actually
compile time constants at a certain program point
= Universe: Bit vector with a vector element for each variable
= CPO induced by bit vector lattice

What does Data Flow Analysis?

Path Graph

= Fornodes n € N of G=(N, E) define path graph G’(n)=(N’", E”)
= For every path IT ending in n:
nellen' e N
= (n,n"ye E'&(n,n"yell
= The path graph acyclic by definition
= Since the set of paths to a node » in G is possibly countable
(iff G contains loops) the graph G’(n) is in general not finite

Example: Path Graph




MFP and MOP

For a monotone DFA problem (set of equations) DFE = (U,C, F, 1) and G

= Define: Minimum Fixed Point MFP is computed by iteratively applying ¥
beginning with the smallest element in U

Let DFEh’(n)) = (U, C F, 1)and G'(n) (same equations as DFE, applied to path
graphs

= Define: Meet Over all Paths M/OP of DFE in (any arbitrary) node » is the
minimum fix point MFP of DFE’(n) in node n.

= MFP is equivalent with MOP, if fare distributive over | |in U,

= MFP is a conservative approximation of the MOP otherwise

Attention:

= |tis not decidable if a path is actually executable

= Hence, MOP is already conservative approximation of the actual analysis
result since some path may be not executable in any program run

= MOP # MOEP (meet over all executable paths)

Example for MFP(G) # MOP(G)

Constant propagation: value vector: (x,y,z) € {0,1,unknown}3
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Errors due to our DFA Method

= Call Graphs:
= Nodes — Procedures, Edges — calls
= Only a conservative approximation of actually possible calls, some
calls represented in the call graph might never occur in any program
run
= Allows impossible paths like
call — procedure — another call
= Data flow graph of a procedure:
= Nodes — Statements (Expressions), Edges — (initial or essential)
dependencies between them
= Application of a monotone DFA framework computes MFP not MOP

21

Outline

= Problems left open
= Abstract interpretation idea
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Problems left open

= How to derive the transfer functions for a DFA

= How to make sure they compute the intended result, i.e.,
= MOP approximates the intended question, and
= MOPC MFP?
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Example: Reaching Definitions (Must)

= Which set of definitions (assignments) reaches (is valid in) a node 4?
= Data flow values:
= Subset of all definition (assignment) nodes {4.... Av}

= Implementation: bit-vector [{false, true}1 ... {false, true}n] where each position
indicates if a node is in the subset

= Forward, Must
= Schema: RD;,(4) = EDM RD,,.(X)
RD,,,(A) = R, () - hillp(4) O genpol4)
= Assume 4 contains assignment x : =expr, then
= genrp(A) ={4} and
= killo(4)= {4’ | A’ contains assignment x : =expr"’ }
= otherwise genrn (4) = killrp (4) = &
= can be pre-calculated by checking the variables assigned in each node
= Initialization:
= No definition reaches the start node:, i.e., RDi(A1) =3, but
= All definitions are assumed to reach each program point RDin(Ai=1)={A.... AN}
24




MFP (only definitions of x)

RD;(M) =D N RDyu(N) =90

RD (M) =RDiy(M) - {M,A,B}u{M} = {M}
RD;,(4) = RD (M) ={M}
RDyu(4) =RD(A) - {M,4,B}u{d} ={4}
RD;(B) = RDou(M) ={M}
RDyu(B) =RD;y(B) - {M,4,B} U{B} ={B}
RD;(C) = RDou(M) ={M}
RDyu(C) =RD;(C) ={M}
RD;,(N) = RDou(A) N RDoul(B) N RDou(C) = &
RD o N) = RDy(N) =90
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Problem left open

How to make sure RD computes the correct result?
= Asintended by the problem
= Exact result or a conservative approximation
Actually, in the example program and the specific run RD behaves
correctly:
= Static analysis: RDou(N) =
= Example run: RDou(N) = {A}, RDou(N) = {M}
= ACPand (MIC D
* Recall that RD was a must problem, ascending on the downwards CPO induced
by the lattice power set lattice
* Hence [relation is the inverse set inclusion 2 on the label sets
How does this generalize?
= For all runs, all programs, and for all dataflow problems
= We cannot test all (countable) paths of all (countable) programs and all
(infinitely many) possible dataflow problems
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Abstract Interpretation

Relates semantics of a programming language to an
abstract analysis semantics
Allows to compute or prove correct data flow equations
(transfer functions)
= Define abstraction of the execution semantics wrt. analysis problem
= Define abstraction of execution traces to program points (in general,
finite many contexts for each program point)
= Prove that they are abstractions indeed.
Idea even generalizes to other than dataflow analyses, as
well (e.g., control flow analysis)
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RDiy(M) =0 =0

= Abstract interpretation idea

RD (M) =RDy(M) - {M,A,ByU{M} = {M}
RD;(A) = RD (M) = (M}
RDpu(A) =RDi(A) - {M,A,B} U {4} = {4}
RD;(N) = RDu(A) = {4}
RDuN)  =RDy(N) =14
RD;(M) = RDpu(N) = {4}
RD (M) =RD;(M) - {M,A,ByU{M} = {M}
RD;(C) = RD (M) = {M}
RDu(C) =RD;(C) = {M}
RD;(N) = RDu(C) = {M}
RD u(N) = RD;(N) = {M}
Outline
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Program Traces

= Each program run is defined by a trace € Labels*
= Traces are defined by the programming language
semantics, e.g.,
= fr{stats; stat] = #f[stats] ® #fstat]
trlassign] := label(assign)

tr[if expr then stats; else stats,]:=
evallexpr] = true ? tr{stats,] : tr{stats,]

trlwhile expr do stats od]:=
evallexpr] = true ? tr[stats] ® #rfwhile .. od]:¢€

= Forinstance, actual reaching definitions RD,., is a mapping
RD i Tr — (PLabels
i.e., for each trace () a subset of definitions (< PLabels)
reaches the end point of that trace

31




Analysis Execution Semantics

= Non-standard semantics: actually expected analysis results
are defined for traces as an abstraction of the program’s
execution semantics wrt. the analysis problem

= Standard semantics: a program’s execution semantics is
defined by the semantics of each programming (or
intermediate) language computation kind K (Alloc, Add,
Load, Store, Call ...) and their composition in the program

= There are only finitely many such kinds

32

RD,., (Non-Standard) Semantics

Given a program G = (N, E, n')
RD,; : Tr — @Labels
Basis for recursive definitions: empty trace
= no definition reaches the end of the empty trace
= RDac(g) = &
Analysis execution semantics of 1+ @ label (trace tr expanded by the
next dynamic step label)

recursively defined on analysis execution semantics of trace # and
analysis execution semantics of the static programming language
construct of step label
RlDHLé[}/ @ label : S),;=
if (S="x:=expr”) /I computation kind is assignment to x
RDac(tr) {1 |( 1 : x:=expr’) € N} U {label}
else /I"any other computation kind
RDac(tr)
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Observation

= Traces and semantics analysis values define a CPO (U,C)
= Universe U defined by 7r — @Labels
= Partial order C: elements are ordered iff
+ same program G, hence Labels, and same traces
* subset of @Lakis
= Smallest element e &
Universe U is not finite
= Even if the non-standard semantics (e.g., analysis function
RD,) is monotone, it is in general not continuous as
universe not finite since 7Tr#(G) is not
= Then a solution to the analysis problem may exist, but
cannot computed iteratively by applying the analysis
function on the smallest element to fix point
= Non-terminating program runs
= Infinitely many different inputs
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Solution

Define an abstraction a. of traces and analysis values to
guarantee termination, e.g., by making universe finite
Perform an abstract analysis on the abstraction of traces/values
Define a inverse concretization function y to map results back to
the semantic domain of the programming language semantics
o and y should form a so called adjunction, or Galois connection:
aX) <Y Xy
Mind the different domains of o and y
Consequently, there are different partial order relations
< on non-standard execution semantics domain, and

= <on abstract analysis domain,
Showing that abstraction and concretization form a Galois
connection is one of our proof obligations to prove the analysis
correct
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Galois Connections

a(X) <Y Xcy(Y)

Countable Execution CPO (U, ©) Finite Abstraction CPO (U’, <)

How to define the analysis?

Take (any) abstract analysis F function abstracting (i.e.,
gives larger results than) a. e Actey: U — U’ where Act is
the actual analysis execution semantics function
Analysis terminates if (U’, <) a CPO and F monotone

= May require widening of abstract results
Analysis is conservative if Act is monotone and

(o, v) @ Galois connection

Then conservative approximation computable by fixed point
iteration and it holds for the minimum fix points MFP:
a(MFP(Act)) < MFP(a. ® Act ® y) < MFP(F)
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Reaching Definitions (o)

Let 77, be the set of all traces ending with program point label
Triave={ tr @ label | labele Label A tr ® label is an admissible trace of G}
We abstract a set 7r,,,, P with that program point label € Label
o P — Label
A(Tr1apet) = label
Concrete and abstract analysis value domains @ are the same:

= Let RDuc(tr ® label) € P be the set of definitions reaching label

= Let RD(label) € P! be the set of reaching definitions analyzed for label
We abstract the analysis execution semantics of the trace tr € Triu.:
RD(tr) with the abstract analysis results RD(label) of the program point
label
o @Luhel_> PLuhel
(RDqe (1r)) = RD(label) iff tr € Triape
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Reaching Definitions (y)

= Conversely, we concretize each program point label with the
set of all traces ending in label
= The concretization function on labels is

y: Label —» @™
y(label) = Triaper

= Consequently, we concretize the abstract analysis results
RD(label) of a program point label by assuming it holds for
any of the traces € Tripe:
y: PLabel _ (PLabel
Y(RD(label)) =V tr € Trigpe : RD(tr) = RD(label)
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RD Analysis Semantics

Given a program G = (N, E, n')
RD : Label — P*abe's
Basis for recursive definitions:
= Empty trace abstraction: starting point of the program '
= no definition reaches n'
* RDin(n'):=Q
Analysis semantics at label which is conservative for o. ¢ RD,, ® y
= recursively defined on analysis semantics of abstraction of predecessor
traces 1, i.e., predecessor labels:
RDin(label - S) := Mp e Pre(tavel) RDou(p)
= analysis abstraction of the execution semantics of the static programming
language construct of step /abel (transfer function)
RDoulabel : S) =
if (§="“x:=expr”)
RDin(lable) -{1 |(1: x:=expr’) € N} U {label}
else
RDin(label)
40

Correctness of Analysis Abstraction

Use structural induction over all programs

Compare execution semantics and analysis semantics

(transfer functions) of program constructs

Basis:

= Claim holds for the empty trace: each program’ s starting point is

abstracted correctly: RD,, (n') = @, Rd,.(€) = @

= Step:
= Given a trace 1 @ label and its abstraction label

Provided RD;,(label : S) is a correct abstraction of RD,.(tr)

Then RD,,(label : S) is a correct abstraction of RD,.(tr @ label):

V tr € y(label): 0(RDqe(Y(RDin(label)))) € RD g (label)

Distinguish cases of each program construct and transfer function

Here trivial as RD,., and RD are identical (and monotone)

In general “widening” necessary to make transfer function monotone
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RD Proof of Correctness

= To show (i): (a, y) is a Galois connection
= To show (ii): o ® RD,.e vy is abstracted with RD i.e.,
o ®RD,;®y<RD
= Proof (sketch): for each node n of G
= By our definition of y, y(label)=Tr,. corresponds to path
graph of G in n = (label:S)
= By our definition of RDy, o ® RDye;® vin @ node n is MFP
of RD of path graph of Ginn

= MFP of RD of path graph of Gin nis MOP of Ginn
= MOP < MFP of RD
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General Proof Obligations

= To show (i): (c, y) is a Galois connection

= To show (ii): o ® Act e y is abstracted with Fi.e.,
oeActeysF

= Proof (sketch): for each node n of G

By our definition of v, y(label)= Tr . Of corresponds to

path graph of G in n = (label:S)

By our definition of Aczand F, o. @ Acte y(n) < F(n) in

every node n (sufficient to show this for every fx(n))

Then o e Acte yin a node n is MFP of F of path graph of

Ginn

MFP of F of path graph of G in nis MOP of Ginn

MOP < MFP of F “




