: Linnéuniversitetet

Kalmar Viixjo.

Abstract Interpretation

Welf Lowe
Welf.Lowe@Inu.se

Outline

= Summary of Data Flow Analysis
= Problems left open
= Abstract interpretation idea

Complete Partial Order (CPO)

= Partially ordered sets (U,[C) over a universe U
= Smallest element L € U
= Partial order relation =
= Ascending chain C=[cy,c,...] € U
= Smallest element ci
" cHEc.
= Maybe finite or countable: constructor for next element ci =next([c1,c2,..., ci-1])
= Unique largest element s of chain C=[c;,c;,...]
= ¢ s (larger than all chain elements ci)
= s called supremum s =I(C)
= Ascending chain property: any (may be countable) ascending chain
C c U has an element ¢; with
= jisfinite and
= for all elements c<iCci and
= forall elements i =ci,
then ¢; =LI(C)
= Example: (%, c)and C=[J,{1},{1,2},{1,2,3},...], c;= {max(c;i))*+1} U ¢i,

s = U(C) = N but ascending chain property does not hold 3

CPOs and Lattices

= Lattice L = (ULJM)
= any two elements a, b of U have
« aninfimum ﬂ(a, b) - unique largest smaller of a, b
« asupremum|_|(a, b) - unique smallest bigger of a, b
= unique smallest element L (bottom)
= unique largest element T (top)
= A lattice L = (U, I[) defines two CPOs (U,C)
= upwards:

« aC b allb=b, smallest L,
« If L finite heights = ascending chain property holds (ci = T)

= downwards:
s bCaal |b=b(>a[|b=a), smallestT,
« If L finite heights = ascending chain property holds (ci = 1)

Special lattices of importance

= Boolean Lattice over U={true, false}
= L= true, T= false, true [false, L Ka,b)y=a v b, Xa,b)=a n b
= Finite heights

= Generalization: Bit Vector Lattice over U ={true, false}"
= Finite heights if n is finite

= Power Set Lattice @S over § (set of all subsets of a set S)
= 1=0,T=5 C=c| Kab)=alUb, Fl(a,b):aﬂb or the dual lattice
= 1=5T=@, C=2Kab)=al b, Kab)=aUb
= Finite heights if S is finite

Functions on CPOs

Functions /: U — U’ (if not indicated otherwise, we assume U=U")
Smonotone: xC y = fix) C fly) withx,y € U
feontinuous: f{L_|C) =_JAC) with AC) = A[x,x,,...]) = [fix))fx2),--.]

fcontinuous = f'monotone,

fmonotone A U is finite = f continuous
fmonotone A (U, C) a CPO with ascending chain property = fcontinuous
fmonotone A (U,LLI) a lattice with finite heights = f continuous

Example

Power Set Lattice (Q’W, U, N), U=set of all subsets of Natural numbers N\
Define a (meaningless) function:

= flu) = @<= u e U finite

= flu) = ¥ u e Uinfinite

fis monotone ucu’ = flu)y c flu’), e.g.,

" D {0} {01} c..= D) c f{0}) cAH0,1}) c .= D=DcDc ...

fis not continuous flu C) # U f(C), e.g.:

= C=[J, {0}, {0,1}, ...]
= C) = D), [{0}), f{0,1}), ...1= (9, D, D, ...]
= U0 = D), {0, f{0,1}), ...1=V [2,2,0,...]=0
" UC=U[@, {0}, {0,1},..]=N
" 0O =AY [P, {0}, {01}, ..) =AM =N
Note: Power Set Lattice (%, U, n) is not of finite heights and ascending

chain property does not hold R

Fixed Point Theorem (Knaster-Tarski)

Fixed point of a function: X with f(X) = X

For CPO (U,C) and monotone functions f: U —» U
= Minimum (or least or smallest) fixed point X exists
= Xis unique

For CPO (U, C) with smallest element L and continuous functions f: U — U
= Minimum fixed point X =|_|f"(L)
= X iteratively computable

CPO (U,CC) fulfills ascending chain property = X is computable effectively
Special cases:

= (U,C) with U finite,

= (U,LC) defined by a finite heights lattice.

Monotone DFA Framework

Solution of a set of DFA equations is a fix point computation
Contribution of a computation 4 of kind K (Alloc, Add, Load,
Store, Call ...) is modeled by monotone transfer function

= U->U,

= Set F of transfer functions is closed under composition and

(obviously) the composed functions are monotone as well

Contribution of predecessor computations Pre of 4 is
modeled by supremum |_| of predecessor properties
(successor Succ, resp., for backward problems)

Existence of the smallest fix point X is guaranteed, if domain
U of analysis values P(4) completely partially ordered (U,C)
It is efficiently computable if (U, C) additionally fulfills the
ascending chain property

Monotone DFA Framework (cont’d)

= Monotone DFA Framework: (U,C, F, 1)
= (U, C)a CPO of analysis values fulfilling the ascending chain
property
= F={fxx U> U, fx: U— U, ..} set of monotone transfer functions
(closed under composition, analysis problem specific)
= ¢ eU initial value (analysis problem-specific)
= Analysis instance of a Monotone DFA Framework is given by a graph G
= G =(N, E, n") data flow graph of a specific program, with
= the start node n' eN
= (N x Ux UV, Cyeetor) defines a CPO:
= Leta=(, xi Xou) b=(, Vi You). @, b € (Nx Ux U)
a Cipe b © 1=/ AXin & Yin A Xour E Your
Let m=[d', d?,a™), n=[b", b?,bM), m, n € (Nx Ux U)M
mCvector 1 © a'Eripie ' A > Erripie b2 A ... A al™ E gy bV
Smallest element is vector [(n', ¢, L), (n% L, 1), ... (N, L, 1)]

10

Monotone DFA Framework (cont’d)

Data flow equations define monotone functions in (N x Ux U, C):
Py (A) = || ve precay (Pou(X))
PoudA) = fxinac) (Pin(A)) With fxinacs) € F transfer function of 4

Smallest fix point of this system of equations is efficiently computable
since

= (Nx Ux U)and hence (N x U x U)M completely partially ordered and
fulfill the ascending chain property

= System of equations defines monotone function in (N x U x U)IM
Data flow analysis algorithm:

= Start with the smallest element: [(n', ¢, L), (n%, L, 1), .. .,(n!M, L, 1)]

= Apply equations in any (fair) order

= Until no P, (4) nor P,,(A) changes

4 DFA Equations Schemata

= forward and must: Piu(d) = |_| Pou(X)
XePre(4)
PouA) = Pin(A) - kill (4) © gen(A4)
= backward and must: Pou(d) = |_| Pin(X)
X ESuce(d)
Pid) = PoulA) - kill (4) © gen(A)
= forward and may: Pu(d) = |_| Poul(X)

_X ePre (A4)
PouA) = Pin(A) - kill (4) © gen(A4)

= backward and may: Pou(d) =XESmL‘(A) Pin(X)
Pi(d) = Pou(A) - kill (4) L gen(A4)

Initialization

= Assume a Power Set Lattice P°
= |Initialization with the smallest element

= General initializations with L for all but start node n':
= may: Initialization with [(n', 1, @), (n*, D ,D),.. .0, T, D)) as
empty set & is the smallest element for each position
= must: Initialization with [(n', ¢, S), (1% S, S),(n'™, S, S)] as universe
of values S is the smallest element for each position in the inverse
lattice
= Special (problem specific) initializations ::
= forward: [(n', ¢, L),...], the general initialization (& or S) is not
defined before the start node
= backward: [..., (n, L,)], the general initialization (& or S) is not
defined after the end node

Example |

= Property P: x=1 guaranteed?
= Universe Boolean, CPO Boolean Lattice
= Transfer functions: true, false, id
= Statement 4: fi = true
= Statement B: fs = false
= Statement C: fc =id i.e. does not change
= Let P4, P, Pc, Py be values of P
after statements 4,B,C, (Pou) and
Let 1, [f’s, ke, (?v be values of P
before statements 4,B,C, (Pin)
= Forward — must problem
= itholds 2v=PiA PsA Pc
= Begin with Bi.s.c.v = true before statements (assumption x = 1)
= Initialization 2y = false before statement M is x # 1
= lteration leads to fixed point Pv = false
= x:= l-x more difficult:
= Obviously, a naive transfer function not is not monotone
= Conservative transfer function: /= false
= Conservatively, x =1 is not guaranteed any more by analysis in some cases where we
(as humans) could see it holds

14

Example Il

= Property P: x =1 possible?
= Universe Boolean, CPO Boolean Lattice
= Transfer functions identical
= Forward — may problem
= Pv=Pav PsvPc
= Begin with Lss.cn = false (assumption x = 1)
= Initialization Py = false
= |teration leads to fixed point Py = true
= Generalization:
= Compute properties of several (all) variables in each step
= Property: are variables equal to a specific constant or are variables actually
compile time constants at a certain program point
= Universe: Bit vector with a vector element for each variable
= CPO induced by bit vector lattice

What does Data Flow Analysis?

Path Graph

= Fornodes n € N of G=(N, E) define path graph G’(n)=(N’", E”)
= For every path IT ending in n:
nellen' e N
= (n,n"ye E'&(n,n"yell
= The path graph acyclic by definition
= Since the set of paths to a node » in G is possibly countable
(iff G contains loops) the graph G’(n) is in general not finite

Example: Path Graph

MFP and MOP

For a monotone DFA problem (set of equations) DFE = (U,C, F, 1) and G

= Define: Minimum Fixed Point MFP is computed by iteratively applying ¥
beginning with the smallest element in U

Let DFEh’(n)) = (U, C F, 1)and G'(n) (same equations as DFE, applied to path
graphs

= Define: Meet Over all Paths M/OP of DFE in (any arbitrary) node » is the
minimum fix point MFP of DFE’(n) in node n.

= MFP is equivalent with MOP, if fare distributive over | |in U,

= MFP is a conservative approximation of the MOP otherwise

Attention:

= |tis not decidable if a path is actually executable

= Hence, MOP is already conservative approximation of the actual analysis
result since some path may be not executable in any program run

= MOP # MOEP (meet over all executable paths)

Example for MFP(G) # MOP(G)

Constant propagation: value vector: (x,y,z) € {0,1,unknown}3

20

Errors due to our DFA Method

= Call Graphs:
= Nodes — Procedures, Edges — calls
= Only a conservative approximation of actually possible calls, some
calls represented in the call graph might never occur in any program
run
= Allows impossible paths like
call — procedure — another call
= Data flow graph of a procedure:
= Nodes — Statements (Expressions), Edges — (initial or essential)
dependencies between them
= Application of a monotone DFA framework computes MFP not MOP

21

Outline

= Problems left open
= Abstract interpretation idea

22

Problems left open

= How to derive the transfer functions for a DFA

= How to make sure they compute the intended result, i.e.,
= MOP approximates the intended question, and
= MOPC MFP?

23

Example: Reaching Definitions (Must)

= Which set of definitions (assignments) reaches (is valid in) a node 4?
= Data flow values:
= Subset of all definition (assignment) nodes {4.... Av}

= Implementation: bit-vector [{false, true}1 ... {false, true}n] where each position
indicates if a node is in the subset

= Forward, Must
= Schema: RD;,(4) = EDM RD,,.(X)
RD,,,(A) = R, () - hillp(4) O genpol4)
= Assume 4 contains assignment x : =expr, then
= genrp(A) ={4} and
= killo(4)= {4’ | A’ contains assignment x : =expr"’ }
= otherwise genrn (4) = killrp (4) = &
= can be pre-calculated by checking the variables assigned in each node
= Initialization:
= No definition reaches the start node:, i.e., RDi(A1) =3, but
= All definitions are assumed to reach each program point RDin(Ai=1)={A.... AN}
24

MFP (only definitions of x)

RD;(M) =D N RDyu(N) =90

RD (M) =RDiy(M) - {M,A,B}u{M} = {M}
RD;,(4) = RD (M) ={M}
RDyu(4) =RD(A) - {M,4,B}u{d} ={4}
RD;(B) = RDou(M) ={M}
RDyu(B) =RD;y(B) - {M,4,B} U{B} ={B}
RD;(C) = RDou(M) ={M}
RDyu(C) =RD;(C) ={M}
RD;,(N) = RDou(A) N RDoul(B) N RDou(C) = &
RD o N) = RDy(N) =90

26

Problem left open

How to make sure RD computes the correct result?
= Asintended by the problem
= Exact result or a conservative approximation
Actually, in the example program and the specific run RD behaves
correctly:
= Static analysis: RDou(N) =
= Example run: RDou(N) = {A}, RDou(N) = {M}
= ACPand (MIC D
* Recall that RD was a must problem, ascending on the downwards CPO induced
by the lattice power set lattice
* Hence [relation is the inverse set inclusion 2 on the label sets
How does this generalize?
= For all runs, all programs, and for all dataflow problems
= We cannot test all (countable) paths of all (countable) programs and all
(infinitely many) possible dataflow problems

28

Abstract Interpretation

Relates semantics of a programming language to an
abstract analysis semantics
Allows to compute or prove correct data flow equations
(transfer functions)
= Define abstraction of the execution semantics wrt. analysis problem
= Define abstraction of execution traces to program points (in general,
finite many contexts for each program point)
= Prove that they are abstractions indeed.
Idea even generalizes to other than dataflow analyses, as
well (e.g., control flow analysis)

30

RDiy(M) =0 =0

= Abstract interpretation idea

RD (M) =RDy(M) - {M,A,ByU{M} = {M}
RD;(A) = RD (M) = (M}
RDpu(A) =RDi(A) - {M,A,B} U {4} = {4}
RD;(N) = RDu(A) = {4}
RDuN) =RDy(N) =14
RD;(M) = RDpu(N) = {4}
RD (M) =RD;(M) - {M,A,ByU{M} = {M}
RD;(C) = RD (M) = {M}
RDu(C) =RD;(C) = {M}
RD;(N) = RDu(C) = {M}
RD u(N) = RD;(N) = {M}
Outline

29

Program Traces

= Each program run is defined by a trace € Labels*
= Traces are defined by the programming language
semantics, e.g.,
= fr{stats; stat] = #f[stats] ® #fstat]
trlassign] := label(assign)

tr[if expr then stats; else stats,]:=
evallexpr] = true ? tr{stats,] : tr{stats,]

trlwhile expr do stats od]:=
evallexpr] = true ? tr[stats] ® #rfwhile .. od]:¢€

= Forinstance, actual reaching definitions RD,., is a mapping
RD i Tr — (PLabels
i.e., for each trace () a subset of definitions (< PLabels)
reaches the end point of that trace

31

Analysis Execution Semantics

= Non-standard semantics: actually expected analysis results
are defined for traces as an abstraction of the program’s
execution semantics wrt. the analysis problem

= Standard semantics: a program’s execution semantics is
defined by the semantics of each programming (or
intermediate) language computation kind K (Alloc, Add,
Load, Store, Call ...) and their composition in the program

= There are only finitely many such kinds

32

RD,., (Non-Standard) Semantics

Given a program G = (N, E, n')
RD,; : Tr — @Labels
Basis for recursive definitions: empty trace
= no definition reaches the end of the empty trace
= RDac(g) = &
Analysis execution semantics of 1+ @ label (trace tr expanded by the
next dynamic step label)

recursively defined on analysis execution semantics of trace # and
analysis execution semantics of the static programming language
construct of step label
RlDHLé[}/ @ label : S),;=
if (S="x:=expr”) /I computation kind is assignment to x
RDac(tr) {1 |(1 : x:=expr’) € N} U {label}
else /I"any other computation kind
RDac(tr)

33

Observation

= Traces and semantics analysis values define a CPO (U,C)
= Universe U defined by 7r — @Labels
= Partial order C: elements are ordered iff
+ same program G, hence Labels, and same traces
* subset of @Lakis
= Smallest element e &
Universe U is not finite
= Even if the non-standard semantics (e.g., analysis function
RD,) is monotone, it is in general not continuous as
universe not finite since 7Tr#(G) is not
= Then a solution to the analysis problem may exist, but
cannot computed iteratively by applying the analysis
function on the smallest element to fix point
= Non-terminating program runs
= Infinitely many different inputs

34

Solution

Define an abstraction a. of traces and analysis values to
guarantee termination, e.g., by making universe finite
Perform an abstract analysis on the abstraction of traces/values
Define a inverse concretization function y to map results back to
the semantic domain of the programming language semantics
o and y should form a so called adjunction, or Galois connection:
aX) <Y Xy
Mind the different domains of o and y
Consequently, there are different partial order relations
< on non-standard execution semantics domain, and

= <on abstract analysis domain,
Showing that abstraction and concretization form a Galois
connection is one of our proof obligations to prove the analysis
correct

35

Galois Connections

a(X) <Y Xcy(Y)

Countable Execution CPO (U, ©) Finite Abstraction CPO (U’, <)

How to define the analysis?

Take (any) abstract analysis F function abstracting (i.e.,
gives larger results than) a. e Actey: U — U’ where Act is
the actual analysis execution semantics function
Analysis terminates if (U’, <) a CPO and F monotone

= May require widening of abstract results
Analysis is conservative if Act is monotone and

(o, v) @ Galois connection

Then conservative approximation computable by fixed point
iteration and it holds for the minimum fix points MFP:
a(MFP(Act)) < MFP(a. ® Act ® y) < MFP(F)

37

Reaching Definitions (o)

Let 77, be the set of all traces ending with program point label
Triave={ tr @ label | labele Label A tr ® label is an admissible trace of G}
We abstract a set 7r,,,, P with that program point label € Label
o P — Label
A(Tr1apet) = label
Concrete and abstract analysis value domains @ are the same:

= Let RDuc(tr ® label) € P be the set of definitions reaching label

= Let RD(label) € P! be the set of reaching definitions analyzed for label
We abstract the analysis execution semantics of the trace tr € Triu.:
RD(tr) with the abstract analysis results RD(label) of the program point
label
o @Luhel_> PLuhel
(RDqe (1r)) = RD(label) iff tr € Triape

38

Reaching Definitions (y)

= Conversely, we concretize each program point label with the
set of all traces ending in label
= The concretization function on labels is

y: Label —» @™
y(label) = Triaper

= Consequently, we concretize the abstract analysis results
RD(label) of a program point label by assuming it holds for
any of the traces € Tripe:
y: PLabel _ (PLabel
Y(RD(label)) =V tr € Trigpe : RD(tr) = RD(label)

39

RD Analysis Semantics

Given a program G = (N, E, n')
RD : Label — P*abe's
Basis for recursive definitions:
= Empty trace abstraction: starting point of the program '
= no definition reaches n'
* RDin(n'):=Q
Analysis semantics at label which is conservative for o. ¢ RD,, ® y
= recursively defined on analysis semantics of abstraction of predecessor
traces 1, i.e., predecessor labels:
RDin(label - S) := Mp e Pre(tavel) RDou(p)
= analysis abstraction of the execution semantics of the static programming
language construct of step /abel (transfer function)
RDoulabel : S) =
if (§="“x:=expr”)
RDin(lable) -{1 |(1: x:=expr’) € N} U {label}
else
RDin(label)
40

Correctness of Analysis Abstraction

Use structural induction over all programs

Compare execution semantics and analysis semantics

(transfer functions) of program constructs

Basis:

= Claim holds for the empty trace: each program’ s starting point is

abstracted correctly: RD,, (n') = @, Rd,.(€) = @

= Step:
= Given a trace 1 @ label and its abstraction label

Provided RD;,(label : S) is a correct abstraction of RD,.(tr)

Then RD,,(label : S) is a correct abstraction of RD,.(tr @ label):

V tr € y(label): 0(RDqe(Y(RDin(label)))) € RD g (label)

Distinguish cases of each program construct and transfer function

Here trivial as RD,., and RD are identical (and monotone)

In general “widening” necessary to make transfer function monotone

41

RD Proof of Correctness

= To show (i): (a, y) is a Galois connection
= To show (ii): o ® RD,.e vy is abstracted with RD i.e.,
o ®RD,;®y<RD
= Proof (sketch): for each node n of G
= By our definition of y, y(label)=Tr,. corresponds to path
graph of G in n = (label:S)
= By our definition of RDy, o ® RDye;® vin @ node n is MFP
of RD of path graph of Ginn

= MFP of RD of path graph of Gin nis MOP of Ginn
= MOP < MFP of RD

42

General Proof Obligations

= To show (i): (c, y) is a Galois connection

= To show (ii): o ® Act e y is abstracted with Fi.e.,
oeActeysF

= Proof (sketch): for each node n of G

By our definition of v, y(label)= Tr . Of corresponds to

path graph of G in n = (label:S)

By our definition of Aczand F, o. @ Acte y(n) < F(n) in

every node n (sufficient to show this for every fx(n))

Then o e Acte yin a node n is MFP of F of path graph of

Ginn

MFP of F of path graph of G in nis MOP of Ginn

MOP < MFP of F “

