R
DF00100 Advanced Compiler Construction 5’

TDDC86 Compiler Optimizations and Code Generation

o 55

ey
§

"Nos s

Instruction-Level Parallel
Processor Architectures

Instruction Scheduling

Local and Global Scheduling

Christoph Kessler, IDA,
Link3pings universitet, 2014.

R
DF00100 Advanced Compiler Construction :5" A
TDDC86 Compiler Optimizations and Code Generation .’% £
%,
"Nos s

RISC and Instruction-Level
Parallel Target Architectures

Christoph Kessler, IDA,
Link3pings universitet, 2014.

T T
§ " £ o
CISC vs. RISC Be i Instruction-Level Parallel (ILP) architectures «dbj
»"’Gx o »"’Gx o
cisc RISC Sinale-l)))
m Complex Instruction Set Computer m Reduced Instruction Set Computer Ingle-Issue: (can start at most one instruction per clock cycle)
® Memory operands for arithmetic and ® Arithmetic/logical operations only on m Simple, pipelined RISC processors
logical operations possible registers with one or multiple functional units
m M(r1+r2) € M(r1+r2) * M(r3+disp) ® addr1,r2,r1
addrt. 12 e e.g. ARM, DLX
load r3+disp, r5
mul r4, r5 . . .
store 5, r1 Multiple-lssue: (can start several instructions per clock cycle)
" M instructi . . .
anynsirue one = Few, simple instructions m Superscalar processors
= Complex instructions m Many registers, all general-purpose .
m Fow registors, not symmetric oy fogisters. o e.g. Sun SPARC, MIPS R10K, Alpha 21264, IBM Power2, Pentium
m Variable instruction size m Fixed instruction size and format m VLIW processors
® Instruction decoding (often done in ® Instruction decoding hardwired e e.g. Multiflow Trace, Cydrome Cydra-5, Intel i860,
mlcracocée)takes much silicon HP Lx, Transmeta Crusoe;
overhea most DSPs, e.g. Philips Trimedia TM32, TI ‘C6x
m Example: 80x86, 680x0 m Example: POWER, HP-PA RISC,
MIPS, ARM, SPARC m EPIC processors
o e.g. Intel Itanium family (I1A-64)
C. Kessler, IDA, Lmkopmgs universitet. 3 C. Kessler, IDA, Lmkopmgs universitet. 4

C. Kessler, IDA, Linképings universitet.

T T
. . u 4 * u . g‘v kY
Pipelined RISC Architectures Y Reservation Table, Scheduling Hazards dh
Prrgs Prrgs
m A single instruction is issued per clock cycle
m Possibly several parallel functional units / resources add: ALU | MULTLPLIER .
m Execution of different phases of subsequent instructions overlaps in time. ot ek [sagdsugq siedsusdsisdigg wrie | Reservation table
This makes them prone to: Time | ophd| opnd] b specifies required resource
o data hazards (may have to delay op until operands ready), o occupations
e control hazards (may need to flush pipeline after wrongly predicted branch), j [Davidson 1975]
o structural hazards (required resource(s) must not be occupied) 3
m Static scheduling (insert NOPs to avoid hazards)
vs. Run-time treatment by automatic hazard detection + pipeline stalling mul: ALY || MELTIELIER
tead | tead | stagd stagd stage stagd stagd stagd wiite £ mul ...
[issue [cycle[PM Decoder ALU, DMJ/ALU, Regs S vl el B G O o O
IF [I 1 IR . £+l ...
ID i 2 |IR D 1 t+2: add é
EX I 3 |IR iD, EX, 2
L 4 |IF, IDy EX, MEM; 3 s structural
MEM/EX2 Is 5 |iF ID, EX; MEM, WB, + hazard
WB time | | 6 |IR IDs EX, MEM, WB, ; at t=3

o= o=
. . g L . . g L
Instruction Scheduling (1) Re Y Instruction Scheduling (2) Re Y
| Maan&st{uctlans todtlme slots on issue units (and resources), ® Data dependences imply latency constraints
such thal no hazards occur > target-level data flow graph / data dependence graph
> Global reservation table, resource usage map
[tead |tead | AL O MULTIPLIER |wliile
bnit 1 slcl [512 | slage stage slage slage slaged stagy Lesull
Time opnd|opndf0 |1 O |1 |2 |3 bus
— t: mul R1,... o
- tead|tead| ALU | MULTIPLIER | wiile E+1: nop
anit 1 stcl | s1c2 | slagd stagd stage stage slage slige Lesoll 2 nep ... i
Time opndapnd 0 [1 [0 |1 |2 |3 |bs
£: mul ... : 6
t+4: nop ... +
t+l: add s
t42: nop ... 2 t+6: add ...,R1
3 L
te 4 latency(mul) = 6 —
s []
= =
Superscalar processor 1& /i Dual-Issue (w=2) 1& /i

® Run-time scheduling by instruction dispatcher
e convenient (sequential instruction stream — as usual)
o limited look-ahead buffer to analyze dependences, reorder instr.
e high silicon overhead, high energy consumption

m Example: Motorola MC 88110

2-way, in-order issue
T-cache
1

superscalar

place 1 place 2 DISPATCHER

buffer (2 instructions)

C. Kessler, IDA, Linkspings universitet.

m Example (1):
Linear code “mul R1,...; add ...,R2” expands to

fss0o fsaue tead [tead | tead [tead || ALU | MULTIPLLER | wiite | wiite
o | stol | atc2 | atcl | arc? | [stage]stage] stogd stage stage tagel tosalt st
Tire oprd|opnd| opndl oprnd |0 |1 |0 |1 (2 |3 |bu |bus
o
1
2
3
i N SO I N N I =, S I
No data dependence s
L)
7
C. Kessler, IDA, Linkopings universitet. 10

e e
§ YN
Dual-Ilssue (w=2) Re o VLIW (Very Long Instruction Word) architecturégké

m Example (2):
Linear code “mul R1,...; add ...,R1” expands to

fssoe fssoe read | toad [read [wead || A LU | MULTIPLIER [wite|write
it 1{imit2) sicd |aic2 [stcl | sic2 |[etagd stagd stage] stagd stage stagd el esalt
Time opnd| opnd|eprd|epnd(|0 |1 [0 |1 2 |3 [bus [bus
o
: N
2
3
+ |
Data dependence! s
&
7
C. Kessler, IDA, Linkdpings universitet. 11

m Multiple slots for instructions in long instruction-word
o Direct control of functional units and resources — low decoding OH
m Compiler (or assembler-level programmer)
must determine the schedule statically
e independence, unit availability, packing into long instruction words

o Challenging! But the compiler has more information on the program
than an on-line scheduler with a limited lookahead window.

e Silicon- and |
energy-efficient

REGISTER FILE

|
;aM \; ; S}IF;
AA 4

PC
\5 addi NOP

-.>U

load NOP

C. Kessler, IDA, Linkspings universitet.

Y

,,m.u%
g‘) %,
5 K
s

Clustered VLIW processor

m E.g., TIC62x, C64x DSP processors
B Register classes
m Parallel execution constrained by operand residence

| Data bus
Register File A Register File B
u \v
Unit A, Unit B,
ad v ad \4

C. Kessler, IDA, Linkspings universitet. 13

Y

,,m.u%
g‘) %,
5 K
s

EPIC architectures

m Based on VLIW
m Compiler groups instructions to LIW’s (bundles, fetch units)
m Compiler takes care of resource and latency constraints

m Compiler marks sequences of independent instructions as
instruction groups by inserting delimiters (stop bits)

® Dynamic scheduler assigns resources and reloads new
bundles as required

C. Kessler, IDA, Linkspings universitet. 14

—r
SRLY
EPIC Example: Instruction format for Tl 'C62x «dbj

‘Program cache / Program memory

H Texas Instruments rogtioroas]| mgmmngomy |
DSP processor series
TMS320C60%x e N N e S

Data cache / Data memory

m 1 fetch packet (a very long instruction word) has 8 slots

e may contain up to 8 instruction groups (issue packets)
to be executed in sequence

e Instruction groups are marked by chaining bits.
» Up to 8 instructions in an instruction group
e Instructions within an instruction group must use disjoint
resources (basically, different functional units)
m Example: 3issue groups {A||B||IC }; {D|IE||F };{G|H}
A M B i c B o B[E Il ¥ Pl o i ®]

C. Kessler, IDA, Linkdpings universitet

EPIC Example: Intel IA-64 (Itanium) fjb;

m Constraints on bundle contents and placement of delimiters
for instruction groups: 24 templates

LT [mmld] [m[L]1] [mlm]F] [m[B[B] [M]M]B]
RN RN s QMG MEE JNE |
(MOl MM] (m[F[1] [m[i]B] [B]B[B] [M[F]B]
0N i QI [IE BEIEE RVEE

Instruction types:

Functional units:
\m/\ 1 /\F/\e/

An implementation of the
IA-64 instruction set interface
is the Itanium processor series.

M = Memory (on M unit)

| =Integer (on| unit)

F = Floatingpoint (on F unit)

B =Branch (on B unit)

A = supertype of | and M

LX = uses 2 bundle slots, uses | and B units
c.xes NOP can replace anything, uses no unit

m A DAG with a greedy and an optimal schedule

) @

m1][12]nor] mim3] 12
@ @ @ M3 | M4 [No] M4 | M5 | F6

M5 Fe [Noi

used templates: used templates:

MI;1 / MMI; / MFI; M;MI/ MMF;

Adapted from: S. Haga, R. Barua: EPIC Instruction
Scheduling based on Optimal Approaches.

C. Kessler, IDA, Linképings universitet. 17

Example: Local scheduling for I1A-64 fj@ A Generic ILP-Architecture Model fj@

for Retargetable Code Optimization

B [ssue width w
w-way in-order superscalar or size of longest instruction group

H w issue units

- EEE O] L]
resources
functional units, internal buses, ...

| [nstruction set /
for each instruction y in /, specify its
- syntax: mnemonic, parameters, types
- semantics: (tree)pattern in terms of IR operations, latency
- resource requirements: reservation table, issue unit(s)

m Formal specification in xADML [Bednarski’06]
(register sets etc. not considered here)

C. Kessler, IDA, Linkspings universitet. 18

s,
DF00100 Advanced Compiler Construction :5" A
TDDC86 Compiler Optimizations and Code Generation -1 jg’
,
o px

Instruction Scheduling

BT
: : N
Instruction Scheduling by t:g
"os e’
Generic Resource model: Reservation table fe| FTTETETER
imize: ti : Y P Tv: Lt e
Optimize: time, space, energy §+1; i‘g; R :
Local Scheduling pE e :
(f. Basic blocks / DAGs) t+4: nop
m Data dependences £46: add ...,RL

-> Topological sorting
o List Scheduling (diverse heuristics)
m Optimal Scheduling

Local Instruction Scheduling

Christoph Kessler, IDA,
Linkopings universitet, 2014.

Overview (Exhaustive search, DP, B&B, CLP, ILP)
Global Scheduling
m Code motion, Branch delay slot filling
m Trace scheduling, Region scheduling, ...
m Cyclic scheduling for loops (Software pipelining)
There exist retargetable schedulers
Christoph Kessler, IDA, and scheduler generators, e.g. for GCC since 2003
LinkBpings universitet, 2014. C. Kessler, IDA, Linkopings universitet. 20
DF00100 Advanced Compiler Constructi $ W%%“x "ﬁ?ﬂ
lvance: ompliler Construction . . . - - N <]
TDDC86 Compiler Optimizations and Code Generation %q% ‘j optlm Izatlon prObIems in Iocal SChed u I I ng a‘a,%ws\«;g

MRIS — minimum register need instruction scheduling
+ Spilling (store/reload) takes additional time
+ Power consumption in embedded procs. increases with # mem. accesses
+ Superscalar processors with shadow registers and register renaming
— compiler-generated spill code cannot be eliminated at run time

— NP-complete [Sethi'75

MTIS = minimum time instruction scheduling

+ hiding pipeline delays

+ exploiting instruction—level parallelism (for superscalar/VLIW)

— NP—complete [Garey/Johnson'79, Gross’'83, Lawler et al’87

RCMTIS - register—constrained minimum time instruction scheduling

SMRTIS - simultaneous minimization of space and time

C. Kessler, IDA, Linképings universitet. 22

(a) based on postorder traversal of the DAG

Special case: tree: space-opt. schedule in linear time [Sethi, Uliman '70]
Special case: vector tree (node size attribute): space-opt. O(logn) [Rauber'90)

Special case: series-par. DAG: space-opt. schedule in pol. time L(;:}Jttler '81]

General DAG, contiguous schedules (< 2") y 2

e Random dfs [K., Paul, Rauber '91]
e Enumeration with DC strategy [K., Rauber '93/'95] i

5

;»""’ e, g\-"” e,
MRIS: Space-optimal scheduling 5;% l:? Example: Topological Sorting (0) %% l:;

(b) based on topological sorting of the DAG — general schedules (< n!)
e space-optimal (enumeration + dynamic programming) [K. '96]

(c) based on finding instruction lineages in the DAG
o heuristic method by [Govindarajan et al. '00]

—» see separate lecture on MRIS

C. Kessler, IDA, Linképings universitet. 23

Given:
Data flow graph of a basic block

@ ot yet considered (a directed acyclic graph, DAG)

. Data ready (zero-indegree set)
O Already scheduled, still alive
o Already scheduled, no longer referenced

C. Kessler, IDA, Linkspings universitet. 24

SO v
& %, & %,
. . g L . . g L
Example: Topological Sorting (1) Re o/ Example: Topological Sorting (2) Re o/
"os e’ "os e’
. Not yet considered . Not yet considered
. Data ready (zero-indegree set) . Data ready (zero-indegree set)
(O Already scheduled, still alive (O Already scheduled, still alive
O Already scheduled, no longer referenced O Already scheduled, no longer referenced
a a b
C. Kessler, IDA, Linkopings universitet. 25 C. Kessler, IDA, Linkopings universitet. 26
A u,.,,%%\ A w%%\
Example: Topological Sorting (3) f t:g Example: Topological Sorting (4) k¥ t}é
Mo st Mo st
. Not yet considered . Not yet considered
. Data ready (zero-indegree set) . Data ready (zero-indegree set)
O Already scheduled, still alive O Already scheduled, still alive
o Already scheduled, no longer referenced o Already scheduled, no longer referenced
a b d abd and so on...
C. Kessler, IDA, Lmkomngs universitet. 27 C. Kessler, IDA, Lmkomngs universitet. 2&
A u,.,,%%\ A w%%\
List scheduling = Topological sorting be o Topological Sorting and Scheduling be o
Mo st Mo st
DAG G % top_sort(Set z, int[] INDEG, int t) m Construct schedule incrementally
~ A A0 /(1 <n) in topological (= causal) order
u B » H » : :
z 2 X % select arbitrary node ve =; ® "Appending” instructions to partial code sequence:
v X X
¢ * >" /I implicitly remove all edges (v,u) Vu: clos.e l,‘,lp In,t%rget schedule reservation table
i INDEG(u) — 1 where 3(u1) (as in "Tetris”)
Pt ~] u) — 1 where 3(vu . .)
o & o Scheduled(z) INDEG (u) = { INDEG(u) elsewhere e |dea: Find optimal target-schedule by enumerating
/| update zero-indegree set: all topological sortings ...
l select v 22— {v} U {new leaves) » Beware of scheduling anomalies
DAG G . = {u: INDEG(u1) = 0} with complex reservation tables!
. Y S[t] «v;

top sort(Z, INDEG’, i +1);
else output S[1:»] fi

/ "scheduled(7) Call zop_sort(zo, INDEGy, 1)
° & © © © produces a schedule in S[1 : 7]

[K. / Bednarski / Eriksson 2007]

C. Kessler, IDA, Linképings universitet. 29

c. Kess\d ie) O "O O 30

TR
Greedy List Scheduling for VLIW (1) (3

A greedy heuristic for list scheduling
fills in one step as many slots in a VLIW word as possible
with ready instructions of the zeroindegree set.

TR
Greedy List Scheduling for VLIW (2) (3

A greedy heuristic for list scheduling
fills in one step as many slots in a VLIW word as possible
with ready instructions of the zeroindegree set.

-

” (Firop .

m List Scheduling Heuristics
o Deepest Level First (a.k.a. highest level first etc.)

» Select, among ready instructions, one with longest
accumulated latency on a path towards any dependence
sink (root node)

» Forward vs Backward scheduling

m Critical Path Scheduling

e Detect a critical path (longest accumulated latency)
in the DAG, schedule its nodes - partial schedule,
and remove them from the DAG.

o Repeat until DAG is empty,
splicing in new nodes between scheduled ones as
appropriate, or inserting fresh time slots where needed

DAG G L REGISTER FILE d .
/ . ¢ * Not optimal! [@
f °)addi : : : (optimal) greedy schedule: (non-optimal) greedy schedule:
;) addi NoP load NOP t IntFlt-Unit | IntMem-Unit t IntFIt-Unit | IntMem-Unit
Jol 1 | FltOp FltLd 1 | FIitOp IntOp
[1ona scheduled(z) 2 | IntOp IntLd 2| — IntLd
°© @™ © o 0° 3| — FltLd
C. Kessler, IDA, Linkopings universitet. 31 C. Kessler, IDA, Linkopings universitet. 32
= p—
= = = DF00100 Advanced Compiler Construction f
Local SChedu"ng HeurIStlcs éﬂbﬁ TDDC86 Compiler Optimizations and Code Generation ab;

Global Instruction Scheduling

Christoph Kessler, IDA,
Linkopings universitet, 2014.

a""fmuﬂ\
m Delayed Branch
e Effect of conditional branch on program counter is delayed

e 1 or more instructions after a branch instruction are always executed,
independent of the condition outcome

» SPARC, HP PA-RISC: 1 delay slot
» TI'C62x: 5 delay slots

m Scheduling: Fill delay slots with useful instruction if there is one,
otherwise with NOP

m Heuristic for finding candidate instructions:

1. Instructions from same basic block that are not control dependent on
the branch and that the condition is not data dependent of

2. Instructions from most likely branch target basic block for speculative
execution

e See e.g. [Muchnick Ch. 17.1.1] for further details

C. Kessler, IDA, Linkspings universitet. 33
]] TR Remark: Hardware Support TR
Scheduling Branch Instructions ‘jbg for Branch Delay Slot Filling ’jbf

C. Kessler, IDA, Linkspings universitet. 35

Nullification feature (SPARC) for conditional branch delay slots
in one branch direction

o activated by setting a bit in the instruction opcode

e delay slot instruction executed only if a conditional branch is taken
treated as NOP if not taken.

e not applicable to “branch always”: fixed delay slot

C. Kessler, IDA, Linkspings universitet. 36

Trace Scheduling
developed for VLIW architectures [Fisher'81] [Ellis'85]

e idea: enlarge the scope of local scheduling to traces
trace = acyclic path of basic blocks in the CFG

track execution frequencies for BB’s/traces (e.g., profiling)

e idea: make the most frequent trace fast:

+ virtually merge BB’s in the most frequent trace
schedule trace as one BB, e.g. by greedy VLIW list scheduling

+ insert compensation code in less frequent side traces for correctness
— accept slowdown for side traces
— program lenght may grow (worst case: exponentially)

+ continue same procedure with next frequent trace

S

e
¢

Trace Scheduling (2)

%‘g"h 4 w“‘;

5| ENTRY

Traces in a control flow graph,

numbered in order of decreasing
execution frequency

A trace ends at a backward branch
or at a join point with another trace
of higher execution frequency

(which thus was constructed earlier))

m Insertion of compensation code
e Case: When moving an instruction i2 to a predecessor
block B in the trace T (e.g., to fill a branch delay slot)

T: T:
B B

C. Kessler, IDA, Linképings universitet. 37 C. Kessler, IDA, Linképings universitet. 38
_ _
Trace Scheduling (3) ;]bg Trace Scheduling (4) ;]he

m Insertion of compensation code

e Case: When moving an instruction i1 to a successor block
of Bin the trace T

T: T:
B B:

D
£ =

® Summary of cases:

Code reordering with insertion of compensation code
Hoisting an assignment
Interchanage assianment and label

Interchange assignment and label

Moving assignments across conditional branches
Moving a branch

interchange branches

C. Kessler, IDA, Linképings universitet. 41

-) -
C.Kessler, IDA, Linkopings universitet. 39 C.Kessler, IDA Linképings universitet. 40
—e —e
Trace Scheduling (5) ‘jbg Region Scheduling ‘jbg

[Gupta/Soffa’90]
Idea: avoid idle cycles caused by regions with insufficient parallelism
Program region = one or several BB’s that require the same control condition

Repeatedly apply a set of local code transformations:
e loop unrolling
e moving instructions from BB’s with excessive parallelism
into BB’s with insufficient parallelism
e merging of regions
to balance the degree of parallelism

Heuristic measure for average degree of parallelism in a region:
instructions(region) / length of critical path(region)

C. Kessler, IDA, Linkspings universitet. 42

m Trace (see above)
e A path of basic blocks
m Superblock

e A trace with the restriction that there may be no branches into any of its
basic blocks, except the first one

m Treegions = Extended Basic Blocks

e An out-tree of basic blocks — no branch into any of its basic blocks,
except the first one

m Hyperblock

e A single-entry, multiple exit region with internal control flow.
As superblocks, but allow hammocks resolved by predication.

m All these regions are acyclic (but may be part of a cycle around)

m Traces and superblocks are "linear regions”,
while treegions and hyperblocks are "nonlinear regions”

C. Kessler, IDA, Linkspings universitet.

S5 n e
i ; P& . . P 1§
Program regions for global scheduling %%g;; Summary + Outlook: Instruction Scheduling a%§v

e usually, optimize for time (other important metrics: space, energy)
» see also lecture on energy-aware code generation

local methods
postorder traversals, forward/backward list scheduling, optimal methods|
— see also lecture on space-optimal scheduling (MRIS)

global methods
trace scheduling, percolation scheduling, region scheduling
» see also lecture on software pipelining

interferences with instruction selection, register allocation,
— phase-ordering problems
— see also lecture on integrated code generation

e interferences with data layout, exploit advanced addressing units, ...
s+ see also lecture on code generation for DSPs

C. Kessler, IDA, Linkspings universitet. 44

™
‘\f»s N

Further scheduling issues, not covered ‘jbg

Povos

creating and scheduling predicated code

speculation (with and without hardware support)
prefetching (load speculation), branch speculation, value speculation ...

run-time scheduling, profile-driven scheduling

automatic generation of instruction schedulers: finite state automata
[Proebsting/Fraser: Detecting Pipeline Hazards Quickly, POPL94],
[Bala/Rubin MICRO-28, 1995]

e.g. the new GCC scheduler [Makarov, GCC Dev. Summit 2003]

C. Kessler, IDA, Linkspings universitet. 45

ey
Generation of Instruction Schedulers ‘jbg
®m Given: Instruction set with

e reservation table for each instruction

m Set of resource-valid schedules = regular language over the alphabet of
instructions

® Scheduling instr. A after B leads to a certain pipeline state
(functional unit reservations and pending latencies of recently issued
instructions)

m Scheduling A in pipeline state q leads to new pipeline state g’

® - Finite automaton ("Mdller automaton”) of all possible pipeline states
and (appending) scheduling transitions

o Or finite transducer > gives also the time offset for next instruction

m Precompute possible states + transitions - Scheduling much faster
(table lookup instead of interpreting reservation table composition)

® Reversed automaton to allow insertions at any location
® Automata become huge! But can be optimized.

C. Kessler, IDA, Linképings universitet.

T

Recommended Reading (global scheduling) abf

Povos

m J. Fisher. Trace scheduling: A technique for global microcode
compaction. IEEE Trans. Computers, 30(7):478-490, 1981.

m Paolo Faraboschi, Joseph A. Fisher, Cliff Young:
Instruction Scheduling for Instruction Level Parallel Processors
Proceedings of the IEEE, vol. 89 no. 11, Nov. 2001

m Daniel Kastner, Sebastian Winkel:
ILP-based Instruction Scheduling for IA-64.
Proc. ACM SIGPLAN LCTES-2001, June 2001

m Sebastian Winkel. Optimal Global Instruction Scheduling for th
Itanium® Processor Architecture. Ph.D. thesis. Saarland
University, Saarbriicken, Germany, 2004. ISBN 3-937436-01-6

C. Kessler, IDA, Linképings universitet. 47

Recommended Reading (Generating .fwgi
Schedulers from Reservation Tables) >y

| T. Mdller: Employing finite automata for resource scheduling.
Proc. MICRO-26, 1993

B Proebsting, Fraser: Detecting pipeline structural hazards
quickly. Proc. ACM POPL-1994

m Bala, Rubin: Efficient instruction scheduling using finite state
automata. Proc. MICRO-28, 1995

m Eichenberger, Davidson: A reduced multi-pipeline machine
description that preserves scheduling constraints. Proc. ACM
PLDI-1996

C. Kessler, IDA, Linkspings universitet. 48

