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Multi-Level IR

 Multi-level IR, e.g.

 AST abstract syntax tree – implicit control and data flow

 HIR high-level IR

 MIR medium-level IR

 LIR low-level IR, symbolic registers

 VLIR very low-level IR, target specific, target registers

 Standard form and possibly also SSA (static single assignment) form
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 Standard form and possibly also SSA (static single assignment) form

 Open form (tree, graph) and/or closed (linearized, flattened) form

 For expressions: Trees vs DAGs (directed acyclic graphs)

 Translation by lowering

 Analysis / Optimization engines can work on
the most appropriate level of abstraction

 Clean separation of compiler phases,
somewhat easier to extend and debug

 Framework gets larger and slower

Example: WHIRL
(Open64 Compiler)C, C++ F95

Very High WHIRL
(AST)

front-ends
(GCC)

High WHIRL

Mid WHIRL

VHO
standalone inliner

IPA (interprocedural analysis)
PREOPT
LNO (Loop nest optimizer)

WOPT (global optimizer,

Lower aggregates
Un-nest calls …

Lower arrays
Lower complex numbers
Lower HL control flow
Lower bit-fields …
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Mid WHIRL

CGIR

Very Low WHIRL

Low WHIRL

WOPT (global optimizer,
uses internally an SSA IR)

RVI1 (register variable
identification)

RVI2

CG

CG

Lower intrinsic ops to calls
All data mapped to segments
Lower loads/stores to final form
Expose code sequences for

constants, addresses
Expose #(gp) addr. for globals
…

code generation, including
scheduling, profiling support,
predication, SW speculation
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AST, Symbol table
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Hierarchical symbol table

follows nesting of scopes

1

2

3

1

globals (Level 0)

locals, level 1

AST Example: Open64 VH-WHIRL
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Symbol table

 Some typical fields in a symbol table entry

Field Name Field Type Meaning

name char * the symbol’s identifier

sclass enum { STATIC, ...} storage class

size int size in bytes

type struct type * source language data type
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type struct type * source language data type

basetype struct type * source-lang. type of elements of a
constructed type

machtype enum { ... } machine type corresponding to
source type (or element type if
constructed type)

basereg char * base register to compute address

disp int displacement to address on stack

reg char * name of register containing the
symbol’s value
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HIR - high-level intermediate representation

 A (linearized) control flow graph,
but level of abstraction close to AST

 loop structures and bounds explicit

 array subscripts explicit

 suitable for data dependence analysis

for v = v1 by v2 to v3 do
a[i] = 2

endfor

11 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

and loop transformation / parallelization

 artificial entry node for the procedure

 assignments var = expr

 unassigned expressions, e.g. conditionals

 function calls
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Generating a CFG from AST

 Straightforward for structured programming languages

 Traverse AST and compose control flow graph recursively

 As in syntax-directed translation, but separate pass

 Stitching points: single entry, single exit point of control;
symbolic labels for linearization
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CFG ( stmt1; stmt2 ) =

CFG ( while (expr) stmt ) =

CFG(expr)

CFG(stmt)CFG(stmt1)

CFG(stmt2)

entry

exit

{
b = a + 1;
while (b>0)

b = b / 3;
print(b);
}

Creating a CFG from AST (2)

 Traverse AST
recursively,
compose CFG

 Example:
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HIR/MIR/LIR Example

 HIR:
for v = v1 by v2 to v3 do

a[i] = 2
endfor

 MIR:
v = v1

 LIR:
s2 = s1

assuming that v2
is positive

symbolic registers
allocated: v in s2, v1

in s1, i in s9 ...

(adapted from Muchnick’97)
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v = v1
t2 = v2
t3 = v3

L1: if v > t3 goto L2
t4 = addr a
t5 = 4 * i
t6 = t4 + t5
*t6 = 2
v = v + t2
goto L1

L2:

s2 = s1
s4 = s3
s6 = s5

L1: if s2 > s6 goto L2
s7 = addr a
s8 = 4 * s9
s10 = s7 + s8
[s10] = 2
s2 = s2 + s4
goto L1

L2:

Example with SSA-LIR

 LIR:
s2 = s1

(adapted from Muchnick’97)

s21 = s1
s4 = s3
s6 = s5

s22 = f ( s21, s23 )

B1

B2

s2 is assigned (written, defined)
multiple times in the program text
(i.e., multiple static assignments)
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s2 = s1
s4 = s3
s6 = s5

L1: if s2 > s6 goto L2
s7 = addr a
s8 = 4 * s9
s10 = s7 + s8
[s10] = 2
s2 = s2 + s4
goto L1

L2:

s22 = f ( s21, s23 )
s22 > s6 ?

s7 = addr a
s8 = 4 * s9
s10 = s7 + s8
[s10] = 2
s23 = s22 + s4

Y N

B2

B3
After introducing one

version of s2 for each
static definition and explicit

merger ops for different
reaching versions (phi

nodes, f): Static single
assignment (SSA) form

SSA-Form vs. Standard Form of IR

 SSA form makes data flow (esp., def-use chains) explicit

 Certain program analyses and transformations are easier to
implement or more efficient on SSA-representation

 (Up to now) SSA is not suitable for code generation

 Requires transformation back to standard form

 Comes later…
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 Comes later…
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MIR – medium-level intermediate representation

 “language independent”

 control flow reduced to simple branches, call, return

 variable accesses still in terms of symbol table names

 explicit code for procedure / block entry / exit

 suitable for most optimizations
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 suitable for most optimizations

 basis for code generation
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HIRMIR (1): Flattening the expressions

By a postorder traversal of each expression tree in the CFG:

 Decompose the nodes of the expression trees (operators, ...)
into simple operations (ADD, SUB, MUL, ...)

 Infer the types of operands and results (language semantics)

 annotate each operation by its (result) type
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 insert explicit conversion operations where necessary

 Flatten each expression tree (= partial order of evaluation)
to a sequence of operations (= total order of evaluation)
using temporary variables t1, t2, ... to keep track of data flow

 This is static scheduling!
May have an impact on space / time requirements

HIRMIR (2): Lowering Array References (1)

 HIR:
t1 = a [ i, j+2 ]

 the Lvalue of a [ i, j+2 ] is
(on a 32-bit architecture)

(addr a) + 4 * ( i * 20 + j + 2 )
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 MIR:
t1 = j + 2
t2 = i * 20
t3 = t1 + t2
t4 = 4 * t3
t5 = addr a
t6 = t5 + t4
t7 = *t6

HIRMIR (2): Flattening the control flow graph

 Depth-first search of the control flow graph

 Topological ordering of the operations, starting with entry
node

 at conditional branches:
one exit fall-through, other exit branch to a label

 Basic blocks = maximum-length subsequences of
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 Basic blocks = maximum-length subsequences of
statements containing no branch nor join of control flow

 Basic block graph obtained from CFG by merging
statements in a basic block to a single node

Control flow graph

 Nodes: primitive operations
(e.g., quadruples)

 Edges: control flow transitions

 Example:

1: ( JEQZ, 5, 0, 0 )

2: ( ASGN, 2, 0, A )

1: ( JEQZ, 5, 0, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )
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2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )
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Basic block

 A basic block is a sequence of textually consecutive
operations (e.g. MIR operations, LIR operations, quadruples)
that contains no branches (except perhaps its last operation)
and no branch targets (except perhaps its first operation).

 Always executed in same order from entry to exit

 A.k.a. straight-line code 1: ( JEQZ, 5, 0, 0 ) B1
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 A.k.a. straight-line code 1: ( JEQZ, 5, 0, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

B1

B2

B3

B4

Basic block graph

 Nodes: basic blocks

 Edges: control flow transitions

1: ( JEQZ, 5, 0, 0 )

2: ( ASGN, 2, 0, A )

1: ( JEQZ, 5, 0, 0 )

2: ( ASGN, 2, 0, A )

3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

B1

B2

B3
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3: ( ADD A, 3, B )

4: ( JUMP, 7, 0, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

5: ( ASGN, 23, 0, A )

6: ( SUB A, 1, B )

7: ( MUL, A, B, C )

8: ( ADD, C, 1, A )

9: ( JNEZ, B, 2, 0 )

B3

B4

LIR – low-level intermediate representation

 in GCC: Register-transfer language (RTL)

 usually architecture dependent

 e.g. equivalents of target instructions + addressing modes
for IR operations

 variable accesses in terms of target memory addresses
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MIRLIR: Lowering Variable Accesses

Seen earlier:

 HIR:
t1 = a [ i, j+2 ]

 the Lvalue of a [ i, j+2 ] is
(on a 32-bit architecture)

 Memory layout:

 Local variables relative to
procedure frame pointer fp

 j at fp – 4

 i at fp – 8

 a at fp – 216
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(on a 32-bit architecture)

(addr a) + 4 * ( i * 20 + j + 2 )

 MIR:
t1 = j + 2
t2 = i * 20
t3 = t1 + t2
t4 = 4 * t3
t5 = addr a
t6 = t5 + t4
t7 = *t6

 LIR:
r1 = [fp – 4]
r2 = r1 + 2
r3 = [fp – 8]
r4 = r3 * 20
r5 = r4 + r2
r6 = 4 * r5
r7 = fp – 216
f1 = [r7 + r6]

Example: The LCC-IR

 LIR – DAGs (Fraser, Hanson ’95)
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MIRLIR: Storage Binding

 mapping variables (symbol table items) to addresses

 (virtual) register allocation

 procedure frame layout implies addressing of formal
parameters and local variables relative to frame pointer fp,
and parameter passing (call sequences)

 for accesses, generate Load and Store operations
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 for accesses, generate Load and Store operations

 further lowering of the program representation

MIRLIR translation example

MIR:

a = a * 2

b = a + c [ 1 ]

LIR, bound to
storage locations:

r1 = [gp+8] // Load
r2 = r1 * 2
[gp+8] = r2 // store
r3 = [gp+8]
r4 = [fp – 56]

LIR, bound to
symbolic registers:

s1 = s1 * 2

s2 = [fp – 56]
s3 = s1 + s2
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r4 = [fp – 56]
r5 = r3 + r4
[fp – 20] = r5

s3 = s1 + s2

Storage layout:
Global variable a addressed relative
to global pointer gp
local variables b, c relative to fp

MIRLIR: Procedure call sequence (0)
[Muchnick 5.6]

Call preparation (LIR code)

Call instruction (LIR)

CALLER

CALLEE

MIR
Call
operation
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Return instruction (LIR)

Procedure prologue (LIR)

Procedure epilogue (LIR)

Cleanup after return

MIRLIR: Procedure call sequence (1)
[Muchnick 5.6]

MIR call instruction assembles arguments
and transfers control to callee:

 evaluate each argument (reference vs. value param.) and

 push it on the stack, or
write it to a parameter register
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write it to a parameter register

 determine code address of the callee
(mostly, compile-time or link-time constant)

 store caller-save registers (usually, push on the stack)

 save return address (usually in a register)
and branch to code entry of callee.

MIRLIR: Procedure call sequence (2)

Procedure prologue

executed on entry to the procedure

 save old frame pointer fp

 old stack pointer sp becomes new frame pointer fp

 determine new sp (creating space for local variables)
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 determine new sp (creating space for local variables)

 save callee-save registers

MIRLIR: Procedure call sequence (3)

Procedure epilogue

executed at return from procedure

 restore callee-save registers

 put return value (if existing) in appropriate place (reg/stack)

 restore old values for sp and fp
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 restore old values for sp and fp

 branch to return address

Caller cleans up upon return:

 restore caller-save registers

 use the return value (if applicable)
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Elimination (CSE)

E.g., at MIRLIR Lowering

From Trees to DAGs:
Local CSE
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Local CSE on MIR produces a MIR DAG

1. c = a

2. b = a + 1

3. c = 2 * a

4. d = – c

5. c = a + 1

negd : add

39 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

5. c = a + 1

6. c = b + a

7. d = 2 * a

8. b = c ac :2 1

addb :mul
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Flattening 3:
From LIR to VLIR
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LIRVLIR: Instruction selection

 LIR has often a lower level of abstraction than most target
machine instructions (esp., CISC, or DSP-MAC).

 One-to-one translation LIR-operation to equivalent target
instruction(s) (“macro expansion”) cannot make use of more
sophisticated instructions

 Pattern matching necessary!
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 Pattern matching necessary!

LIR / VLIR: Register Allocation

 Example for a SPARC-specific VLIR

int a, b, c, d;

c = a + b;

d = c + 1;

ldw a, r1

ldw b, r2

add r1, r2, r3

stw r3, addr c

add r1, r2, r3

add r3, 1, r4
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ldw addr c, r3

add r3, 1, r4

stw r4, addr d

There is a lot to
be gained by
good register

allocation!
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On LIR/VLIR: Global register allocation

 Register allocation

 determine what values to keep in a register

 “symbolic registers”, “virtual registers”

 Register assignment

 assign virtual to physical registers
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 assign virtual to physical registers

 Two values cannot be mapped to the same register if they
are alive simultaneously, i.e. their live ranges overlap
(depends on schedule).

On LIR/VLIR: Instruction scheduling

 reorders the instructions (LIR/VLIR)
(subject to precedence constraints given by dependences)
to minimize

 space requirements (# registers)

 time requirements (# CPU cycles)

 power consumption
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 power consumption

 ...

Remarks on IR design (1) [Cooper’02]

AST? DAGs? Call graph? Control flow graph? Program dep. graph? SSA? ...

 Level of abstraction is critical for implementation cost and opportunities:

 representation chosen affects the entire compiler

Example 1: Addressing for arrays and aggregates (structs)

source level AST: hides entire address computation A[i+1][j]
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 source level AST: hides entire address computation A[i+1][j]

 pointer formulation: may hide critical knowledge (bounds)

 low-level code: may make it hard to see the reference

 “best” representation depends on how it is used

 for dependence-based transformations: source-level IR (AST, HIR)

 for fast execution: pointer formulation (MIR, LIR)

 for optimizing address computation: low-level repr. (LIR, VLIR, target)

Remarks on IR Design (2)

Example 2: Representation for comparison&branch

 fundamentally, 3 different operations:

 Compare  convert result to boolean  branch

combined in different ways by processor architects

 “best” representation may depend on target machine
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 “best” representation may depend on target machine

 r7 = (x < y) cmp x y (sets CC) r7 = (x < y)
br r7, L12 brLT L12 [r7] br L12

  design problem for a retargetable compiler

Summary

 Multi-level IR

 Translation by lowering

 Program analyses and transformations can work on
the most appropriate level of abstraction

 Clean separation of compiler phases
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 Compiler framework gets larger and slower

HIR SSA-HIR

AST

MIR

LIR

VLIR (target code)

SSA-MIR

SSA-LIR

Lowering:

Gradual loss of
source-level
information

Increasingly target
dependent

DF00100 Advanced Compiler Construction
TDDC86 Compiler Optimizations and Code Generation

APPENDIX – For Self-Study

Compiler Frameworks

Christoph Kessler, IDA,
Linköpings universitet, 2014.

Compiler Frameworks

A (non-exhaustive) survey

with a focus on open-source frameworks
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LCC (Little C Compiler)

 Dragon-book style C compiler implementation in C

 Very small (20K Loc), well documented, well tested, widely used

 Open source: http://www.cs.princeton.edu/software/lcc

 Textbook A retargetable C compiler [Fraser, Hanson 1995]
contains complete source code

 One-pass compiler, fast

 C frontend (hand-crafted scanner and recursive descent parser)
with own C preprocessor
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with own C preprocessor

 Low-level IR

 Basic-block graph containing DAGs of quadruples

 No AST

 Interface to IBURG code generator generator

 Example code generators for MIPS, SPARC, Alpha, x86 processors

 Tree pattern matching + dynamic programming

 Few optimizations only

 local common subexpr. elimination, constant folding

 Good choice for source-to-target compiling if a prototype is needed soon

GCC 4.x

 Gnu Compiler Collection (earlier: Gnu C Compiler)

 Compilers for C, C++, Fortran, Java, Objective-C, Ada …

 sometimes with own extensions, e.g. Gnu-C

 Open-source, developed since 1985

 Very large

 3 IR formats (all language independent)

 GENERIC: tree representation for whole function (also statements)

 GIMPLE (simple version of GENERIC for optimizations)
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 GIMPLE (simple version of GENERIC for optimizations)
based on trees but expressions in quadruple form.
High-level, low-level and SSA-low-level form.

 RTL (Register Transfer Language, low-level, Lisp-like) (the traditional GCC-IR)
only word-sized data types; stack explicit; statement scope

 Many optimizations

 Many target architectures

 Version 4.x (since ~2004) has strong support for retargetable code generation

 Machine description in .md file

 Reservation tables for instruction scheduler generation

 Good choice if one has the time to get into the framework

Open64 / ORC Open Research Compiler

 Based on SGI Pro-64 Compiler for MIPS processor, written in C++,
went open source in 2000

 Several tracks of development (Open64, ORC, …)

 For Intel Itanium (IA-64) and x86 (IA-32) processors.
Also retargeted to x86-64, Ceva DSP, Tensilica, XScale, ARM …
”simple to retarget” (?)

 Languages: C, C++, Fortran95 (uses GCC as frontend),
OpenMP and UPC (for parallel programming)
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OpenMP and UPC (for parallel programming)

 Industrial strength, with contributions from Intel, Pathscale, …

 Open source: www.open64.net, ipf-orc.sourceforge.net

 6-layer IR:

 WHIRL (VH, H, M, L, VL) – 5 levels of abstraction

All levels semantically equivalent

Each level a lower level subset of the higher form

 and target-specific very low-level CGIR

 Many optimizations, many third-party contributed components

Open64 WHIRL C, C++ F95

Very High WHIRL
(AST)

front-ends
(GCC)

High WHIRL

Mid WHIRL

VHO
standalone inliner

IPA (interprocedural analysis)
PREOPT
LNO (Loop nest optimizer)

WOPT (global optimizer,

Lower aggregates
Un-nest calls …

Lower arrays
Lower complex numbers
Lower HL control flow
Lower bit-fields …
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Mid WHIRL

CGIR

Very Low WHIRL

Low WHIRL

WOPT (global optimizer,
uses internally an SSA IR)

RVI1 (register variable
identification)

RVI2

CG

CG

Lower intrinsic ops to calls
All data mapped to segments
Lower loads/stores to final form
Expose code sequences for

constants, addresses
Expose #(gp) addr. for globals
…

code generation, including
scheduling, profiling support,
predication, SW speculation

LLVM (llvm.org)

 LLVM (Univ. of Illinois at Urbana Champaign)

 ”Low-level virtual machine”

 Front-ends (Clang, GCC) for C, C++, Objective-C, Fortran, …

 One IR level: a LIR + SSA-LIR,

 linearized form, printable, shippable, but target-dependent,

 ”LLVM instruction set”
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 ”LLVM instruction set”

 compiles to many target platforms

x86, Itanium, ARM, Alpha, SPARC, PowerPC, Cell SPE, …

And to low-level C

 Link-time interprocedural analysis and optimization framework
for whole-program analysis

 JIT support available for x86, PowerPC

 Open source

VEX Compiler

 VEX: ”VLIW EXample”

 Generic clustered VLIW Architecture and Instruction Set

 From the book by Fisher, Faraboschi, Young:
Embedded Computing, Morgan Kaufmann 2005

 www.vliw.org/book

 Developed at HP Research

54 TDDC86 Compiler Optimizations and Code GenerationC. Kessler, IDA, Linköpings universitet.

 Based on the compiler for HP/ST Lx (ST200 DSP)

 Compiler, Libraries, Simulator and Tools
available in binary form from HP for non-commercial use

 IR not accessible, but CFGs and DAGs can be dumped or visualized

 Transformations controllable by options and/or #pragmas

 Scalar optimizations, loop unrolling, prefetching, function inlining, …

 Global scheduling (esp., trace scheduling),
but no software pipelining
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DF00100 Advanced Compiler Construction
TDDC86 Compiler Optimizations and Code Generation

CoSy

Christoph Kessler, IDA,
Linköpings universitet, 2014.

A commercial compiler framework

www.ace.nl

Traditional Compiler Structure

 Traditional compiler model: sequential process

 Improvement: Pipelining
(by files/modules, classes, functions)

Lexer Parser
Semant.
Analysis

Optimizer
Code
generator

text codetokens tree IR IR
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(by files/modules, classes, functions)

 More modern compiler model with shared symbol table and IR:

Lexer Parser
Semant.
Analysis

Optimizer
Code
generator

text code

Symbol table

Intermediate representation (IR)
Data fetch/store

Coordination
data flow

A CoSy Compiler with
Repository-Architecture

Parser

Semantic
analysis

Optimizer

Transformation
“Engines”
(compiler tasks,
phases)
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Lexer

Codegen

“Blackboard architecture”
Common
intermediate representation
repository

Engine

 Modular compiler building block

 Performs a well-defined task

 Focus on algorithms, not compiler configuration

 Parameters are handles on the underlying common IR repository
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 Parameters are handles on the underlying common IR repository

 Execution may be in a separate process or as subroutine call -
the engine writer does not know!

 View of an engine class:
the part of the common IR repository that it can access
(scope set by access rights: read, write, create)

 Examples: Analyzers, Lowerers, Optimizers, Translators, Support

Composite Engines in CoSy

 Built from simple engines or from other composite engines
by combining engines in interaction schemes
(Loop, Pipeline, Fork, Parallel, Speculative, ...)

 Described in EDL (Engine Description Language)

 View defined by the joint effect of constituent engines

 A compiler is nothing more than a large composite engine
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 A compiler is nothing more than a large composite engine

ENGINE CLASS compiler (IN u: mirUNIT) {
PIPELINE

frontend (u)
optimizer (u)
backend (u)

}

Optimizer
II

Parser

Optimizer
I

Logical view

Generated Factory

A CoSy Compiler
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60

Generated
access layer

Generated Factory Logical view
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Example for CoSy EDL
(Engine Description Language)

 Component classes (engine class)

 Component instances (engines)

 Basic components
are implemented in C

 Interaction schemes (cf. skeletons)
form complex connectors
 SEQUENTIAL

ENGINE CLASS optimizer ( procedure p )
{

ControlFlowAnalyser cfa;
CommonSubExprEliminator cse;
LoopVariableSimplifier lvs;

PIPELINE cfa(p); cse(p); lvs(p);
}

ENGINE CLASS compiler ( file f )
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 SEQUENTIAL

 PIPELINE

 DATAPARALLEL

 SPECULATIVE

 EDL can embed automatically
 Single-call-components into

pipes

 p<> means a stream of p-items

 EDL can map their protocols to
each other (p vs p<>)

ENGINE CLASS compiler ( file f )
{ ….

Token token;
Module m;
PIPELINE // lexer takes file, delivers token stream:

lexer( IN f, OUT token<> );
// Parser delivers a module

parser( IN token<>, OUT m );
sema( m );
decompose( m, p<> );
// here comes a stream of procedures
// from the module

optimizer( p<> );
backend( p<> );

}

Evaluation of CoSy

 The outer call layers of the compiler are generated from view description
specifications

 Adapter, coordination, communication, encapsulation

 Sequential and parallel implementation can be exchanged

 There is also a non-commercial prototype
[Martin Alt: On Parallel Compilation. PhD thesis, 1997, Univ.
Saarbrücken]
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Saarbrücken]

 Access layer to the repository must be efficient
(solved by generation of macros)

 Because of views, a CoSy-compiler is very simply extensible

 That's why it is expensive

 Reconfiguration of a compiler within an hour

Source-to-Source compiler frameworks

 Cetus

 C / OpenMP source-to-source compiler written in Java.

 Open source

 ROSE

 C++ source-to-source compiler
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 C++ source-to-source compiler

 Open source

 Tools and generators

 TXL source-to-source transformation system

 ANTLR frontend generator
...

More frameworks (mostly historical) …

 Some influential frameworks of the 1990s
...some of them still active today

 SUIF Stanford university intermediate format,
suif.stanford.edu

 Trimaran (for instruction-level parallel processors)
www.trimaran.org
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 Polaris (Fortran) UIUC

 Jikes RVM (Java) IBM

 Soot (Java)

 GMD Toolbox / Cocolab Cocktail™ compiler generation
tool suite

 and many others …

 And many more for the embedded domain …


