
1

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Optimization and Parallelization
of Sequential Programs

Lecture 7

Christoph Kessler, IDA,
Linköpings universitet, 2014.

Lecture 7

Christoph Kessler

IDA / PELAB
Linköping University

Sweden

Outline

Towards (semi-)automatic parallelization of sequential programs

 Data dependence analysis for loops

 Some loop transformations

 Loop invariant code hoisting, loop unrolling,
loop fusion, loop interchange, loop blocking and tiling

2 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Static loop parallelization

 Run-time loop parallelization

 Doacross parallelization, Inspector-executor method

 Speculative parallelization (as time permits)

 Auto-tuning (later, if time)

Foundations: Control and Data Dependence

 Consider statements S, T in a sequential program (S=T possible)

 Scope of analysis is typically a function, i.e. intra-procedural analysis

 Assume that a control flow path S … T is possible

 Can be done at arbitrary granularity (instructions, operations,
statements, compound statements, program regions)

 Relevant are only the read and write effects on memory
(i.e. on program variables) by each operation,
and the effect on control flow

3 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

and the effect on control flow

 Control dependence S T,
if the fact whether T is executed may depend on S
(e.g. condition)

 Implies that relative execution order S T
must be preserved when restructuring the program

 Mostly obvious from nesting structure in well-structured programs,
but more tricky in arbitrary branching code (e.g. assembler code)

S: if (…) {
…

T: …
…

}

Example:

Foundations: Control and Data Dependence

 Data dependence S T,
if statement S may execute (dynamically) before T
and both may access the same memory location
and at least one of these accesses is a write

 Means that execution order ”S before T” must
be preserved when restructuring the program

 In general, only a conservative over-estimation
can be determined statically

flow dependence: (RAW, read-after-write)

S: z = … ;
…

T: … = ..z.. ;

Example:

(flow dependence)

4 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 flow dependence: (RAW, read-after-write)

S may write a location z that T may read

 anti dependence: (WAR, write-after-read)

S may read a location x that T may overwrites

 output dependence: (WAW, write-after-write)

both S and T may write the same location

Dependence Graph

 (Data, Control, Program) Dependence Graph:
Directed graph, consisting of all statements as vertices
and all (data, control, any) dependences as edges.

5 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Why Loop Optimization and Parallelization?

Loops are a promising object for program optimizations,
including automatic parallelization:

 High execution frequency

 Most computation done in (inner) loops

 Even small optimizations can have large impact
(cf. Amdahl’s Law)

6 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

(cf. Amdahl’s Law)

 Regular, repetitive behavior

 compact description

 relatively simple to analyze statically

 Well researched

2

 Move loop invariant computations out of loops

 Modify the order of iterations or parts thereof

Goals:

 Improve data access locality

 Faster execution

Loop Optimizations – General Issues

7 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Faster execution

 Reduce loop control overhead

 Enhance possibilities for loop parallelization or vectorization

Only transformations that preserve the program semantics (its
input/output behavior) are admissible

 Conservative (static) criterium: preserve data dependences

 Need data dependence analysis for loops

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Data Dependence Analysis
for Loops

Christoph Kessler, IDA,
Linköpings universitet, 2014.

A more formal introduction

Data Dependence Analysis – Overview

 Important for loop optimizations, vectorization and parallelization,
instruction scheduling, data cache optimizations

 Conservative approximations to disjointness of pairs of memory accesses

 weaker than data-flow analysis

 but generalizes nicely to the level of individual array element

 Loops, loop nests

9 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Iteration space

 Array subscripts in loops

 Index space

 Dependence testing methods

 Data dependence graph

 Data + control dependence graph

 Program dependence graph

Precedence relation between statements

10 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Data Dependence Graph

 Data dependence graph for straight-line code (”basic
block”, no branching) is always acyclic, because relative
execution order of statements is forward only.

 Data dependence graph for a loop:

 Dependence edge ST if a dependence may exist for
some pair of instances (iterations) of S, T

11 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

some pair of instances (iterations) of S, T

 Cycles possible

 Loop-independent versus loop-carried dependences

(assuming we know statically
that arrays a and b do not intersect)

Example:

Loop Iteration Space

12 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

3

Example

(assuming that we statically know that
arrays A, X, Y, Z do not intersect,
otherwise there might be further
dependences)

13 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Data dependence graph:
S1

S2

(Iterations unrolled)

Loop Normalization

14 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Dependence Distance and Direction

15 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Dependence Equation System

16 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Linear Diophantine Equations

17 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Dependence Testing, 1: GCD-Test

18 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

4

For multidimensional arrays?

19 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Survey of Dependence Tests

20 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Loop Transformations
and Parallelization

Christoph Kessler, IDA,
Linköpings universitet, 2014.

 Move loop invariant computations out of loops

 Modify the order of iterations or parts thereof

Goals:

 Improve data access locality

 Faster execution

Loop Optimizations – General Issues

22 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Faster execution

 Reduce loop control overhead

 Enhance possibilities for loop parallelization or vectorization

Only transformations that preserve the program semantics (its
input/output behavior) are admissible

 Conservative (static) criterium: preserve data dependences

 Need data dependence analysis for loops

Some important loop transformations

 Loop normalization

 Loop parallelization

 Loop invariant code hoisting

 Loop interchange

 Loop fusion vs. Loop distribution / fission

 Strip-mining / loop tiling / blocking vs. Loop linearization

23 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Strip-mining / loop tiling / blocking vs. Loop linearization

 Loop unrolling, unroll-and-jam

 Loop peeling

 Index set splitting, Loop unswitching

 Scalar replacement, Scalar expansion

 Later: Software pipelining

 More: Cycle shrinking, Loop skewing, ...

Loop Invariant Code Hoisting

 Move loop invariant code out of the loop

 Compilers can do this automatically if they can statically
find out what code is loop invariant

 Example:

for (i=0; i<10; i++) tmp = c / d;

24 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

a[i] = b[i] + c / d;

tmp = c / d;

for (i=0; i<10; i++)

a[i] = b[i] + tmp;

5

Loop Unrolling

 Loop unrolling

 Can be enforced with compiler options e.g. –funroll=2

 Example:

for (i=0; i<50; i++) {

a[i] = b[i];

for (i =0; i<50; i+=2) {

a[i] = b[i];Unroll
by 2:

25 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Reduces loop overhead (total # comparisons, branches, increments)

 Longer loop body may enable further local optimizations
(e.g. common subexpression elimination,

register allocation, instruction scheduling,
using SIMD instructions)

 longer code

} a[i+1] = b[i+1];

}

by 2:

 Exercise: Formulate the unrolling rule for statically unknown upper loop limit

Loop Interchange (1)

 For properly nested loops
(statements in innermost loop body only)

 Example 1:

for (j=0; j<M; j++)

for (i=0; i<N; i++)

for (i=0; i<N; i++)

for (j=0; j<M; j++)

26 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

....

j

i

 Can improve data access locality in memory hierarchy
(fewer cache misses / page faults)

a[i][j] = 0.0 ; a[i][j] = 0.0 ;

....

j

i

a[0][0]

a[N-1][0]

a[0][0] a[0][M-1]row-wise
storage of
2D-arrays
in C, Java

a[N-1][0]

old iteration order

new iteration order

Foundations:
Loop-Carried Data Dependences

 Recall: Data dependence S T,
if operation S may execute (dynamically) before operation T
and both may access the same memory location
and at least one of these accesses is a write

 In general, only a conservative over-estimation can be determined
statically.

 Data dependence ST is called loop carried by a loop L

S: z = … ;
…

T: … = ..z.. ;

27 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Data dependence ST is called loop carried by a loop L
if the data dependence ST may exist for instances of S and T
in different iterations of L.

 Example:

 partial order between the operation instances resp. iterations

L: for (i=1; i<N; i++) {
Ti: … = x[i-1];
Si: x[i] = …;

}

T1

S1

i=1

T2

S2

i=2

T3

S3

i=3

TN-1

SN-1

i=N-1

…

Iteration space:

Loop Interchange (2)

 Be careful with loop carried data dependences!

 Example 2:

for (j=1; j<M; j++)

for (i=0; i<N; i++)

a[i][j] =…a[i+1][j-1]...;

for (i=0; i<N; i++)

for (j=1; j<M; j++)

a[i][j] =…a[i+1][j-1]…;

28 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Interchanging the loop headers would violate the partial iteration order
given by the data dependences

Iteration (j,i) reads
location a[i+1][j-1] that

was written in an earlier
iteration, (i-1,j+1)

j

i

Iteration (i,j) reads
location a[i+1][j-1],
that will be over-
written in a later
iteration (i+1,j-1)

i

jIteration
space:

old iteration order new iteration order

Loop Interchange (3)

 Be careful with loop-carried data dependences!

 Example 3:

for (j=1; j<M; j++)

for (i=1; i<N; i++)

a[i][j] =…a[i-1][j-1]...;

OK
for (i=1; i<N; i++)

for (j=1; j<M; j++)

a[i][j] =…a[i-1][j-1]…;
j

29 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

i

j

 Generally: Interchanging loop headers is only admissible if loop-carried
dependences have the same direction for all loops in the loop nest
(all directed along or all against the iteration order)

Iteration (j,i) reads
location a[i-1][j-1] that
was written in earlier

iteration (j-1,i-1)

j

i

Iteration (i,j) reads
location a[i-1][j-1]
that was written in

earlier iteration
(i-1,j-1)

Iteration
space:

old iteration order new iteration order

Loop Fusion

 Merge subsequent loops with same header

 Safe if neither loop carries a (backward) dependence

 Example:

for (i=0; i<N; i++)

a[i] = … ;

for (i= 0; i<N; i++) {

a[i] = … ;

30 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Can improve data access locality
and reduces number of branches

for (i=0; i<N; i++)

… = … a[i] … ;

… = … a[i] … ;

}

OK –
Read of a[i] still after
write of a[i], for all i

For N sufficiently large,
a[i] will no longer be in
the cache at this time

6

Loop Iteration Reordering

j-loop carries a dependence, its
iteration order must be preserved

Example:

31 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Loop Parallelization

j-loop carries a dependence, its
iteration order must be preserved

Example:

32 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Example:

Loop parallelization

Remark on Loop Parallelization

 Introducing temporary copies of arrays can remove some
antidependences to enable automatic loop parallelization

 Example:

for (i=0; i<n; i++)
a[i] = a[i] + a[i+1];

33 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

a[i] = a[i] + a[i+1];

 The loop-carried dependence can be eliminated:

for (i=0; i<n; i++)
aold[i+1] = a[i+1];

for (i=0; i<n; i++)
a[i] = a[i] + aold[i+1];

Parallelizable loop

Parallelizable loop

Strip Mining / Loop Blocking / -Tiling

34 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Tiled Matrix-Matrix Multiplication (1)

 Matrix-Matrix multiplication C = A x B
here for square (n x n) matrices C, A, B, with n large (~103):

 Ci j = S k=1..n A i k B k j for all i, j = 1...n

 Standard algorithm for Matrix-Matrix multiplication

35 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Standard algorithm for Matrix-Matrix multiplication
(here without the initialization of C-entries to 0):

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

C[i][j] += A[i][k] * B[k][j];

A B

i

k

k

j

Good spatial locality on A, C

Bad spatial locality on B
(many capacity misses)

Tiled Matrix-Matrix Multiplication (2)

 Block each loop by block size S
(choose S so that a block of A, B, C fit in cache together),
then interchange loops

 Code after tiling:

for (ii=0; ii<n; ii+=S)

for (jj=0; jj<n; jj+=S)

kk

ii

kk

jj
k

i k

j
k

36 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

for (jj=0; jj<n; jj+=S)

for (kk=0; kk<n; kk+=S)

for (i=ii; i < ii+S; i++)

for (j=jj; j < jj+S; j++)

for (k=kk; k < kk+S; k++)

C[i][j] += A[i][k] * B[k][j];

Good spatial locality
for A, B and C

7

Remark on Locality Transformations

 An alternative can be to change the data layout rather than
the control structure of the program

 Example: Store matrix B in transposed form,
or, if necessary, consider transposing it, which may pay off
over several subsequent computations

Finding the best layout for all multidimensional arrays is

37 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Finding the best layout for all multidimensional arrays is
a NP-complete optimization problem
[Mace, 1988]

 Example: Recursive array layouts that preserve locality

Morton-order layout

Hierarchically tiled arrays

 In the best case, can make computations cache-oblivious

 Performance largely independent of cache size

Loop Distribution (a.k.a. Loop Fission)

38 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Loop Fusion

39 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Loop Nest Flattening / Linearization

40 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Loop Unrolling

41 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Loop Unrolling with Unknown Upper Bound

42 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

8

Loop Unroll-And-Jam

43 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Loop Peeling

44 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Index Set Splitting

45 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Loop Unswitching

46 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Scalar Replacement

47 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Scalar Expansion / Array Privatization

48 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

9

Idiom recognition and algorithm replacement

C. Kessler: Pattern-driven
automatic parallelization.
Scientific Programming,
1996.

A. Shafiee-Sarvestani, E.
Hansson, C. Kessler:
Extensible recognition of

49 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Extensible recognition of
algorithmic patterns in DSP
programs for automatic
parallelization. Int. J. on
Parallel Programming, 2013.

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Concluding Remarks

Christoph Kessler, IDA,
Linköpings universitet, 2014.

Limits of Static Analyzability

Outlook: Runtime Analysis and
Parallelization

Remark on static analyzability (1)

 Static dependence information is always a (safe)
overapproximation of the real (run-time) dependences

 Finding out the real ones exactly is statically undecidable!

 If in doubt, a dependence must be assumed
 may prevent some optimizations or parallelization

 One main reason for imprecision is aliasing, i.e. the program

51 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 One main reason for imprecision is aliasing, i.e. the program
may have several ways to refer to the same memory location

 Example: Pointer aliasing
void mergesort (int* a, int n)
{ …

mergesort (a, n/2);
mergesort (a + n/2, n-n/2);
…

}

How could a static analysis
tool (e.g., compiler) know
that the two recursive
calls read and write
disjoint subarrays of a?

Remark on static analyzability (2)

 Static dependence information is always a (safe)
overapproximation of the real (run-time) dependences

 Finding out the latter exactly is statically undecidable!

 If in doubt, a dependence must be assumed
 may prevent some optimizations or parallelization

 Another reason for imprecision are statically unknown values

52 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Another reason for imprecision are statically unknown values
that imply whether a dependence exists or not

 Example: Unknown dependence distance
// value of K statically unknown
for (i=0; i<N; i++)
{ …

S: a[i] = a[i] + a[K];
…

}

Loop-carried dependence
if K < N.
Otherwise, the loop is
parallelizable.

Outlook: Runtime Parallelization

53 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Run-Time Parallelization

Christoph Kessler, IDA,
Linköpings universitet, 2014.

Run-Time Parallelization

10

Goal of run-time parallelization

 Typical target: irregular loops

for (i=0; i<n; i++)
a[i] = f (a[g(i)], a[h(i)], ...);

 Array index expressions g, h... depend on run-time data

Iterations cannot be statically proved independent

55 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Iterations cannot be statically proved independent
(and not either dependent with distance +1)

 Principle:
At runtime, inspect g, h ... to find out the real dependences
and compute a schedule for partially parallel execution

 Can also be combined with speculative parallelization

Overview

 Run-time parallelization of irregular loops

 DOACROSS parallelization

 Inspector-Executor Technique (shared memory)

 Inspector-Executor Technique (message passing) *

 Privatizing DOALL Test *

56 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Privatizing DOALL Test *

 Speculative run-time parallelization of irregular loops *

 LRPD Test *

 General Thread-Level Speculation

 Hardware support *

* = not covered in this course. See the references.

DOACROSS Parallelization

 Useful if loop-carried dependence distances are unknown, but often > 1

 Allow independent subsequent loop iterations to overlap

 Bilateral synchronization between really-dependent iterations

Example:

for (i=0; i<n; i++)
a[i] = f (a[g(i)], ...);

57 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

sh float aold[n];
sh flag done[n]; // flag (semaphore) array
forall i in 0..n-1 { // spawn n threads, one per iteration

done[n] = 0;
aold[i] = a[i]; // create a copy

}
forall i in 0..n-1 { // spawn n threads, one per iteration

if (g(i) < i) wait until done[g(i)]);
a[i] = f (a[g(i)], ...);
set(done[i]);

else
a[i] = f (aold[g(i)], ...); set done[i];

}

Inspector-Executor Technique (1)

 Compiler generates 2 pieces of customized code for such loops:

 Inspector

 calculates values of index expression
by simulating whole loop execution

 typically, based on sequential version of the source loop
(some computations could be left out)

58 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

(some computations could be left out)

 computes implicitly the real iteration dependence graph

 computes a parallel schedule as (greedy) wavefront traversal of the
iteration dependence graph in topological order

all iterations in same wavefront are independent

schedule depth = #wavefronts = critical path length

 Executor

 follows this schedule to execute the loop

Inspector-Executor Technique (2)

 Source loop:

for (i=0; i<n; i++)
a[i] = f (a[g(i)], a[h(i)], ...);

 Inspector:

int wf[n]; // wavefront indices
int depth = 0;

59 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

int depth = 0;
for (i=0; i<n; i++)

wf[i] = 0; // init.
for (i=0; i<n; i++) {

wf[i] = max (wf[g(i)], wf[h(i)], ...) + 1;
depth = max (depth, wf[i]);

}

 Inspector considers only flow dependences (RAW),
anti- and output dependences to be preserved by executor

Inspector-Executor Technique (3)

 Example:

for (i=0; i<n; i++)
a[i] = ... a[g(i)] ...;

 Executor:

i 0 1 2 3 4 5

g(i) 2 0 2 1 1 0

wf[i] 0 1 0 2 2 1

g(i)<i ? no yes no yes yes yes

60 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

float aold[n]; // buffer array
aold[1:n] = a[1:n];
for (w=0; w<depth; w++)

forall (i, 0, n, #) if (wf[i] == w) {
a1 = (g(i) < i)? a[g(i)] : aold[g(i)];
... // similarly, a2 for h etc.
a[i] = f (a1, a2, ...);

}

22

1

00 2

1 5

3 4

iteration (flow) dependence graph

11

Inspector-Executor Technique (4)

Problem: Inspector remains sequential – no speedup

Solution approaches:

 Re-use schedule over subsequent iterations of an outer loop
if access pattern does not change

 amortizes inspector overhead across repeated executions

Parallelize the inspector using doacross parallelization

61 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Parallelize the inspector using doacross parallelization
[Saltz,Mirchandaney’91]

 Parallelize the inspector using sectioning [Leung/Zahorjan’91]

 compute processor-local wavefronts in parallel, concatenate

 trade-off schedule quality (depth) vs. inspector speed

 Parallelize the inspector using bootstrapping [Leung/Z.’91]

 Start with suboptimal schedule by sectioning,
use this to execute the inspector refined schedule

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Thread-Level Speculation

Christoph Kessler, IDA,
Linköpings universitet, 2014.

Speculatively parallel execution

 For automatic parallelization of sequential code where
dependences are hard to analyze statically

 Works on a task graph

 constructed implicitly and dynamically

 Speculate on:

 control flow, data independence, synchronization, values

63 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 control flow, data independence, synchronization, values
We focus on thread-level speculation (TLS) for CMP/MT processors.
Speculative instruction-level parallelism is not considered here.

 Task:

 statically: Connected, single-entry subgraph of the control-
flow graph

Basic blocks, loop bodies, loops, or entire functions

 dynamically: Contiguous fragment of dynamic instruction
stream within static task region, entered at static task entry

TLS Example

64 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

Exploiting module-level
speculative parallelism
(across function calls)

Data dependence problem in TLS

65 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

Speculatively parallel execution of tasks

 Speculation on inter-task control flow

 After having assigned a task,
predict its successor task and start it speculatively

 Speculation on data independence

 For inter-task memory data (flow) dependences

conservatively: await write (memory synchronization, message)

66 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

conservatively: await write (memory synchronization, message)

speculatively: hope for independence and continue (execute the
load)

 Roll-back of speculative results on mis-speculation (expensive)

 When starting speculation, state must be buffered

 Squash an offending task and all its successors, restart

 Commit speculative results when speculation resolved to correct

 Task is retired

12

Selecting Tasks for Speculation

 Small tasks:

 too much overhead (task startup, task retirement)

 low parallelism degree

 Large tasks:

 higher misspeculation probability

higher rollback cost

67 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 higher rollback cost

 many speculations ongoing in parallel may saturate the
resources

 Load balancing issues

 avoid large variation in task sizes

 Traversal of the program’s control flow graph (CFG)

 Heuristics for task size, control and data dep. speculation

TLS Implementations

 Software-only speculation

 for loops [Rauchwerger, Padua ’94, ’95]

 ...

 Hardware-based speculation

68 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

 Hardware-based speculation

 Typically, integrated in cache coherence protocols

 Used with multithreaded processors / chip multiprocessors
for automatic parallelization of sequential legacy code

 If source code available, compiler may help e.g. with
identifying suitable threads

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Questions?

Christoph Kessler, IDA,
Linköpings universitet, 2014.

Some references on Dependence Analysis,
Loop optimizations and Transformations

 H. Zima, B. Chapman: Supercompilers for Parallel and Vector
Computers. Addison-Wesley / ACM press, 1990.

 M. Wolfe: High-Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

 R. Allen, K. Kennedy: Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2002.

70 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Architectures. Morgan Kaufmann, 2002.

Idiom recognition and algorithm replacement:

 C. Kessler: Pattern-driven automatic parallelization. Scientific
Programming 5:251-274, 1996.

 A. Shafiee-Sarvestani, E. Hansson, C. Kessler: Extensible
recognition of algorithmic patterns in DSP programs for
automatic paral-lelization. Int. J. on Parallel Programming,
2013.

Some references on run-time parallelization

 R. Cytron: Doacross: Beyond vectorization for multiprocessors. Proc. ICPP-1986

 D. Chen, J. Torrellas, P. Yew: An Efficient Algorithm for the Run-time Parallelization of DO-
ACROSS Loops, Proc. IEEE Supercomputing Conf., Nov. 2004, IEEE CS Press, pp. 518-527

 R. Mirchandaney, J. Saltz, R. M. Smith, D. M. Nicol, K. Crowley: Principles of run-time support
for parallel processors, Proc. ACM Int. Conf. on Supercomputing, July 1988, pp. 140-152.

 J. Saltz and K. Crowley and R. Mirchandaney and H. Berryman: Runtime Scheduling and
Execution of Loops on Message Passing Machines, Journal on Parallel and Distr. Computing
8 (1990): 303-312.

71 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

8 (1990): 303-312.

 J. Saltz, R. Mirchandaney: The preprocessed doacross loop. Proc. ICPP-1991 Int. Conf. on
Parallel Processing.

 S. Leung, J. Zahorjan: Improving the performance of run-time parallelization. Proc. ACM
PPoPP-1993, pp. 83-91.

 Lawrence Rauchwerger, David Padua: The Privatizing DOALL Test: A Run-Time Technique
for DOALL Loop Identification and Array Privatization. Proc. ACM Int. Conf. on
Supercomputing, July 1994, pp. 33-45.

 Lawrence Rauchwerger, David Padua: The LRPD Test: Speculative Run-Time Parallelization
of Loops with Privatization and Reduction Parallelization. Proc. ACM SIGPLAN PLDI-95,
1995, pp. 218-232.

Some references on speculative execution /
parallelization

 T. Vijaykumar, G. Sohi: Task Selection for a Multiscalar Processor.
Proc. MICRO-31, Dec. 1998.

 J. Martinez, J. Torrellas: Speculative Locks for Concurrent Execution of Critical
Sections in Shared-Memory Multiprocessors. Proc. WMPI at ISCA, 2001.

 F. Warg and P. Stenström: Limits on speculative module-level parallelism in
imperative and object-oriented programs on CMP platforms. Pr. IEEE PACT 2001.

 P. Marcuello and A. Gonzalez: Thread-spawning schemes for speculative
multithreading. Proc. HPCA-8, 2002.

72 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

multithreading. Proc. HPCA-8, 2002.

 J. Steffan et al.: Improving value communication for thread-level speculation.
HPCA-8, 2002.

 M. Cintra, J. Torrellas: Eliminating squashes through learning cross-thread
violations in speculative parallelization for multiprocessors. HPCA-8, 2002.

 Fredrik Warg and Per Stenström: Improving speculative thread-level parallelism
through module run-length prediction. Proc. IPDPS 2003.

 F. Warg: Techniques for Reducing Thread-Level Speculation Overhead in Chip
Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

 T. Ohsawa et al.: Pinot: Speculative multi-threading processor architecture
exploiting parallelism over a wide range of granularities. Proc. MICRO-38, 2005.

