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Towards (semi-)automatic parallelization of sequential programs

 Data dependence analysis for loops

 Some loop transformations

 Loop invariant code hoisting, loop unrolling,
loop fusion, loop interchange, loop blocking and tiling
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 Static loop parallelization

 Run-time loop parallelization

 Doacross parallelization, Inspector-executor method

 Speculative parallelization (as time permits)

 Auto-tuning (later, if time)

Foundations: Control and Data Dependence

 Consider statements S, T in a sequential program (S=T possible)

 Scope of analysis is typically a function, i.e. intra-procedural analysis

 Assume that a control flow path S … T is possible

 Can be done at arbitrary granularity (instructions, operations,
statements, compound statements, program regions)

 Relevant are only the read and write effects on memory
(i.e. on program variables) by each operation,
and the effect on control flow
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and the effect on control flow

 Control dependence S T,
if the fact whether T is executed may depend on S
(e.g. condition)

 Implies that relative execution order S T
must be preserved when restructuring the program

 Mostly obvious from nesting structure in well-structured programs,
but more tricky in arbitrary branching code (e.g. assembler code)

S: if (…) {
…

T: …
…

}

Example:

Foundations: Control and Data Dependence

 Data dependence S T,
if statement S may execute (dynamically) before T
and both may access the same memory location
and at least one of these accesses is a write

 Means that execution order ”S before T” must
be preserved when restructuring the program

 In general, only a conservative over-estimation
can be determined statically

flow dependence: (RAW, read-after-write)

S: z = … ;
…

T: … = ..z.. ;

Example:

(flow dependence)
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 flow dependence: (RAW, read-after-write)

S may write a location z that T may read

 anti dependence: (WAR, write-after-read)

S may read a location x that T may overwrites

 output dependence: (WAW, write-after-write)

both S and T may write the same location

Dependence Graph

 (Data, Control, Program) Dependence Graph:
Directed graph, consisting of all statements as vertices
and all (data, control, any) dependences as edges.
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Why Loop Optimization and Parallelization?

Loops are a promising object for program optimizations,
including automatic parallelization:

 High execution frequency

 Most computation done in (inner) loops

 Even small optimizations can have large impact
(cf. Amdahl’s Law)
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(cf. Amdahl’s Law)

 Regular, repetitive behavior

 compact description

 relatively simple to analyze statically

 Well researched
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 Move loop invariant computations out of loops

 Modify the order of iterations or parts thereof

Goals:

 Improve data access locality

 Faster execution

Loop Optimizations – General Issues
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 Faster execution

 Reduce loop control overhead

 Enhance possibilities for loop parallelization or vectorization

Only transformations that preserve the program semantics (its
input/output behavior) are admissible

 Conservative (static) criterium: preserve data dependences

 Need data dependence analysis for loops
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Data Dependence Analysis
for Loops

Christoph Kessler, IDA,
Linköpings universitet, 2014.

A more formal introduction

Data Dependence Analysis – Overview

 Important for loop optimizations, vectorization and parallelization,
instruction scheduling, data cache optimizations

 Conservative approximations to disjointness of pairs of memory accesses

 weaker than data-flow analysis

 but generalizes nicely to the level of individual array element

 Loops, loop nests
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 Iteration space

 Array subscripts in loops

 Index space

 Dependence testing methods

 Data dependence graph

 Data + control dependence graph

 Program dependence graph

Precedence relation between statements
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Data Dependence Graph

 Data dependence graph for straight-line code (”basic
block”, no branching) is always acyclic, because relative
execution order of statements is forward only.

 Data dependence graph for a loop:

 Dependence edge ST if a dependence may exist for
some pair of instances (iterations) of S, T
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some pair of instances (iterations) of S, T

 Cycles possible

 Loop-independent versus loop-carried dependences

(assuming we know statically
that arrays a and b do not intersect)

Example:

Loop Iteration Space
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Example

(assuming that we statically know that
arrays A, X, Y, Z do not intersect,
otherwise there might be further
dependences)
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Data dependence graph:
S1

S2

(Iterations unrolled)

Loop Normalization
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Dependence Distance and Direction
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Dependence Equation System
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Linear Diophantine Equations
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Dependence Testing, 1: GCD-Test
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For multidimensional arrays?

19 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Survey of Dependence Tests
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 Move loop invariant computations out of loops

 Modify the order of iterations or parts thereof

Goals:

 Improve data access locality

 Faster execution

Loop Optimizations – General Issues
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 Faster execution

 Reduce loop control overhead

 Enhance possibilities for loop parallelization or vectorization

Only transformations that preserve the program semantics (its
input/output behavior) are admissible

 Conservative (static) criterium: preserve data dependences

 Need data dependence analysis for loops

Some important loop transformations

 Loop normalization

 Loop parallelization

 Loop invariant code hoisting

 Loop interchange

 Loop fusion vs. Loop distribution / fission

 Strip-mining / loop tiling / blocking vs. Loop linearization
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 Strip-mining / loop tiling / blocking vs. Loop linearization

 Loop unrolling, unroll-and-jam

 Loop peeling

 Index set splitting, Loop unswitching

 Scalar replacement, Scalar expansion

 Later: Software pipelining

 More: Cycle shrinking, Loop skewing, ...

Loop Invariant Code Hoisting

 Move loop invariant code out of the loop

 Compilers can do this automatically if they can statically
find out what code is loop invariant

 Example:

for (i=0; i<10; i++) tmp = c / d;
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a[i] = b[i] + c / d;

tmp = c / d;

for (i=0; i<10; i++)

a[i] = b[i] + tmp;
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Loop Unrolling

 Loop unrolling

 Can be enforced with compiler options e.g. –funroll=2

 Example:

for (i=0; i<50; i++) {

a[i] = b[i];

for (i =0; i<50; i+=2) {

a[i] = b[i];Unroll
by 2:
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 Reduces loop overhead (total # comparisons, branches, increments)

 Longer loop body may enable further local optimizations
(e.g. common subexpression elimination,

register allocation, instruction scheduling,
using SIMD instructions)

 longer code

} a[i+1] = b[i+1];

}

by 2:

 Exercise: Formulate the unrolling rule for statically unknown upper loop limit

Loop Interchange (1)

 For properly nested loops
(statements in innermost loop body only)

 Example 1:

for (j=0; j<M; j++)

for (i=0; i<N; i++)

for (i=0; i<N; i++)

for (j=0; j<M; j++)
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....

j

i

 Can improve data access locality in memory hierarchy
(fewer cache misses / page faults)

a[ i ][ j ] = 0.0 ; a[ i ][ j ] = 0.0 ;

....

j

i

a[0][0]

a[N-1][0]

a[0][0] a[0][M-1]row-wise
storage of
2D-arrays
in C, Java

a[N-1][0]

old iteration order

new iteration order

Foundations:
Loop-Carried Data Dependences

 Recall: Data dependence S T,
if operation S may execute (dynamically) before operation T
and both may access the same memory location
and at least one of these accesses is a write

 In general, only a conservative over-estimation can be determined
statically.

 Data dependence ST is called loop carried by a loop L

S: z = … ;
…

T: … = ..z.. ;
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 Data dependence ST is called loop carried by a loop L
if the data dependence ST may exist for instances of S and T
in different iterations of L.

 Example:

 partial order between the operation instances resp. iterations

L: for (i=1; i<N; i++) {
Ti: … = x[ i-1 ];
Si: x[ i ] = …;

}

T1

S1

i=1

T2

S2

i=2

T3

S3

i=3

TN-1

SN-1

i=N-1

…

Iteration space:

Loop Interchange (2)

 Be careful with loop carried data dependences!

 Example 2:

for (j=1; j<M; j++)

for (i=0; i<N; i++)

a[i][j] =…a[i+1][j-1]...;

for (i=0; i<N; i++)

for (j=1; j<M; j++)

a[i][j] =…a[i+1][j-1]…;
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 Interchanging the loop headers would violate the partial iteration order
given by the data dependences

Iteration (j,i) reads
location a[i+1][j-1] that

was written in an earlier
iteration, (i-1,j+1)

j

i

Iteration (i,j) reads
location a[i+1][j-1],
that will be over-
written in a later
iteration (i+1,j-1)

i

jIteration
space:

old iteration order new iteration order

Loop Interchange (3)

 Be careful with loop-carried data dependences!

 Example 3:

for (j=1; j<M; j++)

for (i=1; i<N; i++)

a[i][j] =…a[i-1][j-1]...;

OK
for (i=1; i<N; i++)

for (j=1; j<M; j++)

a[i][j] =…a[i-1][j-1]…;
j
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i

j

 Generally: Interchanging loop headers is only admissible if loop-carried
dependences have the same direction for all loops in the loop nest
(all directed along or all against the iteration order)

Iteration (j,i) reads
location a[i-1][j-1] that
was written in earlier

iteration (j-1,i-1)

j

i

Iteration (i,j) reads
location a[i-1][j-1]
that was written in

earlier iteration
(i-1,j-1)

Iteration
space:

old iteration order new iteration order

Loop Fusion

 Merge subsequent loops with same header

 Safe if neither loop carries a (backward) dependence

 Example:

for (i=0; i<N; i++)

a[ i ] = … ;

for (i= 0; i<N; i++) {

a[ i ] = … ;
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 Can improve data access locality
and reduces number of branches

for (i=0; i<N; i++)

… = … a[ i ] … ;

… = … a[ i ] … ;

}

OK –
Read of a[i] still after
write of a[i], for all i

For N sufficiently large,
a[i] will no longer be in
the cache at this time
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Loop Iteration Reordering

j-loop carries a dependence, its
iteration order must be preserved

Example:
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Loop Parallelization

j-loop carries a dependence, its
iteration order must be preserved

Example:
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Example:

Loop parallelization

Remark on Loop Parallelization

 Introducing temporary copies of arrays can remove some
antidependences to enable automatic loop parallelization

 Example:

for (i=0; i<n; i++)
a[i] = a[i] + a[i+1];
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a[i] = a[i] + a[i+1];

 The loop-carried dependence can be eliminated:

for (i=0; i<n; i++)
aold[i+1] = a[i+1];

for (i=0; i<n; i++)
a[i] = a[i] + aold[i+1];

Parallelizable loop

Parallelizable loop

Strip Mining / Loop Blocking / -Tiling
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Tiled Matrix-Matrix Multiplication (1)

 Matrix-Matrix multiplication C = A x B
here for square (n x n) matrices C, A, B, with n large (~103):

 Ci j = S k=1..n A i k B k j for all i, j = 1...n

 Standard algorithm for Matrix-Matrix multiplication
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 Standard algorithm for Matrix-Matrix multiplication
(here without the initialization of C-entries to 0):

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

C[i][j] += A[i][k] * B[k][j];

A B

i

k

k

j

Good spatial locality on A, C

Bad spatial locality on B
(many capacity misses)

Tiled Matrix-Matrix Multiplication (2)

 Block each loop by block size S
(choose S so that a block of A, B, C fit in cache together),
then interchange loops

 Code after tiling:

for (ii=0; ii<n; ii+=S)

for (jj=0; jj<n; jj+=S)

kk

ii

kk

jj
k

i k

j
k
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for (jj=0; jj<n; jj+=S)

for (kk=0; kk<n; kk+=S)

for (i=ii; i < ii+S; i++)

for (j=jj; j < jj+S; j++)

for (k=kk; k < kk+S; k++)

C[i][j] += A[i][k] * B[k][j];

Good spatial locality
for A, B and C
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Remark on Locality Transformations

 An alternative can be to change the data layout rather than
the control structure of the program

 Example: Store matrix B in transposed form,
or, if necessary, consider transposing it, which may pay off
over several subsequent computations

Finding the best layout for all multidimensional arrays is
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Finding the best layout for all multidimensional arrays is
a NP-complete optimization problem
[Mace, 1988]

 Example: Recursive array layouts that preserve locality

Morton-order layout

Hierarchically tiled arrays

 In the best case, can make computations cache-oblivious

 Performance largely independent of cache size

Loop Distribution (a.k.a. Loop Fission)

38 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Loop Fusion
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Loop Nest Flattening / Linearization
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Loop Unrolling
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Loop Unrolling with Unknown Upper Bound
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Loop Unroll-And-Jam
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Loop Peeling
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Index Set Splitting
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Loop Unswitching
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Scalar Replacement
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Scalar Expansion / Array Privatization
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9

Idiom recognition and algorithm replacement

C. Kessler: Pattern-driven
automatic parallelization.
Scientific Programming,
1996.

A. Shafiee-Sarvestani, E.
Hansson, C. Kessler:
Extensible recognition of
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Extensible recognition of
algorithmic patterns in DSP
programs for automatic
parallelization. Int. J. on
Parallel Programming, 2013.
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Limits of Static Analyzability

Outlook: Runtime Analysis and
Parallelization

Remark on static analyzability (1)

 Static dependence information is always a (safe)
overapproximation of the real (run-time) dependences

 Finding out the real ones exactly is statically undecidable!

 If in doubt, a dependence must be assumed
 may prevent some optimizations or parallelization

 One main reason for imprecision is aliasing, i.e. the program
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 One main reason for imprecision is aliasing, i.e. the program
may have several ways to refer to the same memory location

 Example: Pointer aliasing
void mergesort ( int* a, int n )
{ …

mergesort ( a, n/2 );
mergesort ( a + n/2, n-n/2 );
…

}

How could a static analysis
tool (e.g., compiler) know
that the two recursive
calls read and write
disjoint subarrays of a?

Remark on static analyzability (2)

 Static dependence information is always a (safe)
overapproximation of the real (run-time) dependences

 Finding out the latter exactly is statically undecidable!

 If in doubt, a dependence must be assumed
 may prevent some optimizations or parallelization

 Another reason for imprecision are statically unknown values
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 Another reason for imprecision are statically unknown values
that imply whether a dependence exists or not

 Example: Unknown dependence distance
// value of K statically unknown
for ( i=0; i<N; i++ )
{ …

S: a[i] = a[i] + a[K];
…

}

Loop-carried dependence
if K < N.
Otherwise, the loop is
parallelizable.

Outlook: Runtime Parallelization

53 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Run-Time Parallelization

Christoph Kessler, IDA,
Linköpings universitet, 2014.

Run-Time Parallelization
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Goal of run-time parallelization

 Typical target: irregular loops

for ( i=0; i<n; i++)
a[i] = f ( a[ g(i) ], a[ h(i) ], ... );

 Array index expressions g, h... depend on run-time data

Iterations cannot be statically proved independent
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 Iterations cannot be statically proved independent
(and not either dependent with distance +1)

 Principle:
At runtime, inspect g, h ... to find out the real dependences
and compute a schedule for partially parallel execution

 Can also be combined with speculative parallelization

Overview

 Run-time parallelization of irregular loops

 DOACROSS parallelization

 Inspector-Executor Technique (shared memory)

 Inspector-Executor Technique (message passing) *

 Privatizing DOALL Test *
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 Privatizing DOALL Test *

 Speculative run-time parallelization of irregular loops *

 LRPD Test *

 General Thread-Level Speculation

 Hardware support *

* = not covered in this course. See the references.

DOACROSS Parallelization

 Useful if loop-carried dependence distances are unknown, but often > 1

 Allow independent subsequent loop iterations to overlap

 Bilateral synchronization between really-dependent iterations

Example:

for ( i=0; i<n; i++)
a[i] = f ( a[ g(i) ], ... );
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sh float aold[n];
sh flag done[n]; // flag (semaphore) array
forall i in 0..n-1 { // spawn n threads, one per iteration

done[n] = 0;
aold[i] = a[i]; // create a copy

}
forall i in 0..n-1 { // spawn n threads, one per iteration

if (g(i) < i) wait until done[ g(i) ] );
a[i] = f ( a[ g(i) ], ... );
set( done[i] );

else
a[i] = f ( aold[ g(i) ], ... ); set done[i];

}

Inspector-Executor Technique (1)

 Compiler generates 2 pieces of customized code for such loops:

 Inspector

 calculates values of index expression
by simulating whole loop execution

 typically, based on sequential version of the source loop
(some computations could be left out)
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(some computations could be left out)

 computes implicitly the real iteration dependence graph

 computes a parallel schedule as (greedy) wavefront traversal of the
iteration dependence graph in topological order

all iterations in same wavefront are independent

schedule depth = #wavefronts = critical path length

 Executor

 follows this schedule to execute the loop

Inspector-Executor Technique (2)

 Source loop:

for ( i=0; i<n; i++)
a[i] = f ( a[ g(i) ], a[ h(i) ], ... );

 Inspector:

int wf[n]; // wavefront indices
int depth = 0;
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int depth = 0;
for (i=0; i<n; i++)

wf[i] = 0; // init.
for (i=0; i<n; i++) {

wf[i] = max ( wf[ g(i) ], wf[ h(i) ], ... ) + 1;
depth = max ( depth, wf[i] );

}

 Inspector considers only flow dependences (RAW),
anti- and output dependences to be preserved by executor

Inspector-Executor Technique (3)

 Example:

for (i=0; i<n; i++)
a[i] = ... a[ g(i) ] ...;

 Executor:

i 0 1 2 3 4 5

g(i) 2 0 2 1 1 0

wf[i] 0 1 0 2 2 1

g(i)<i ? no yes no yes yes yes
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float aold[n]; // buffer array
aold[1:n] = a[1:n];
for (w=0; w<depth; w++)

forall (i, 0, n, #) if (wf[i] == w) {
a1 = (g(i) < i)? a[g(i)] : aold[g(i)];
... // similarly, a2 for h etc.
a[i] = f ( a1, a2, ... );

}

22

1

00 2

1 5

3 4

iteration (flow) dependence graph
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Inspector-Executor Technique (4)

Problem: Inspector remains sequential – no speedup

Solution approaches:

 Re-use schedule over subsequent iterations of an outer loop
if access pattern does not change

 amortizes inspector overhead across repeated executions

Parallelize the inspector using doacross parallelization
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 Parallelize the inspector using doacross parallelization
[Saltz,Mirchandaney’91]

 Parallelize the inspector using sectioning [Leung/Zahorjan’91]

 compute processor-local wavefronts in parallel, concatenate

 trade-off schedule quality (depth) vs. inspector speed

 Parallelize the inspector using bootstrapping [Leung/Z.’91]

 Start with suboptimal schedule by sectioning,
use this to execute the inspector refined schedule

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Thread-Level Speculation

Christoph Kessler, IDA,
Linköpings universitet, 2014.

Speculatively parallel execution

 For automatic parallelization of sequential code where
dependences are hard to analyze statically

 Works on a task graph

 constructed implicitly and dynamically

 Speculate on:

 control flow, data independence, synchronization, values
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 control flow, data independence, synchronization, values
We focus on thread-level speculation (TLS) for CMP/MT processors.
Speculative instruction-level parallelism is not considered here.

 Task:

 statically: Connected, single-entry subgraph of the control-
flow graph

Basic blocks, loop bodies, loops, or entire functions

 dynamically: Contiguous fragment of dynamic instruction
stream within static task region, entered at static task entry

TLS Example

64 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.

Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

Exploiting module-level
speculative parallelism
(across function calls)

Data dependence problem in TLS
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Source: F. Warg: Techniques for Reducing Thread-Level Speculation Overhead
in Chip Multiprocessors. PhD thesis, Chalmers TH, Gothenburg, June 2006.

Speculatively parallel execution of tasks

 Speculation on inter-task control flow

 After having assigned a task,
predict its successor task and start it speculatively

 Speculation on data independence

 For inter-task memory data (flow) dependences

conservatively: await write (memory synchronization, message)
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conservatively: await write (memory synchronization, message)

speculatively: hope for independence and continue (execute the
load)

 Roll-back of speculative results on mis-speculation (expensive)

 When starting speculation, state must be buffered

 Squash an offending task and all its successors, restart

 Commit speculative results when speculation resolved to correct

 Task is retired
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Selecting Tasks for Speculation

 Small tasks:

 too much overhead (task startup, task retirement)

 low parallelism degree

 Large tasks:

 higher misspeculation probability

higher rollback cost
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 higher rollback cost

 many speculations ongoing in parallel may saturate the
resources

 Load balancing issues

 avoid large variation in task sizes

 Traversal of the program’s control flow graph (CFG)

 Heuristics for task size, control and data dep. speculation

TLS Implementations

 Software-only speculation

 for loops [Rauchwerger, Padua ’94, ’95]

 ...

 Hardware-based speculation
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 Hardware-based speculation

 Typically, integrated in cache coherence protocols

 Used with multithreaded processors / chip multiprocessors
for automatic parallelization of sequential legacy code

 If source code available, compiler may help e.g. with
identifying suitable threads

DF00100 Advanced Compiler Construction

TDDC86 Compiler optimizations and code generation

Questions?

Christoph Kessler, IDA,
Linköpings universitet, 2014.

Some references on Dependence Analysis,
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 H. Zima, B. Chapman: Supercompilers for Parallel and Vector
Computers. Addison-Wesley / ACM press, 1990.

 M. Wolfe: High-Performance Compilers for Parallel Computing.
Addison-Wesley, 1996.

 R. Allen, K. Kennedy: Optimizing Compilers for Modern
Architectures. Morgan Kaufmann, 2002.
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Architectures. Morgan Kaufmann, 2002.
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 C. Kessler: Pattern-driven automatic parallelization. Scientific
Programming 5:251-274, 1996.
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2013.

Some references on run-time parallelization
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71 TDDD56 Multicore and GPU ProgrammingC. Kessler, IDA, Linköpings universitet.
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 Lawrence Rauchwerger, David Padua: The LRPD Test: Speculative Run-Time Parallelization
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1995, pp. 218-232.

Some references on speculative execution /
parallelization
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