DATA FLOW ANALYSIS

Conservative approximation to global information on data flow properties
that are relevant for optimizations

→ MAY-problems vs. MUST-problems

Examples:

- Constant Propagation Analysis
 Has \textit{var} always the same constant value at this point?

- Reaching Definitions
 Which definitions of \textit{var} may be relevant for this use?

 - local (BB)
 - global (CFG) using “effects” of entire BB’s (summary info)
 forward vs. backward, iterative vs. interval-based vs. structured...
 - interprocedural

Example: Reaching Definitions (cont.)

Definition \(d \) of variable \(v \): \(d; v \leftarrow ... \)

\(d \) reaches a point \(p \) in CFG
if there is a path \(d \rightarrow^* p \) in CFG (excl. \(d, p \))
that contains no kill of \(d \) (= reassignment of \(v \))

NB: Whether a specific definition \(d \) actually reaches a specific program point \(p \) is undecidable in the formal
sense!
(program behavior may e.g. depend on run-time input)

→ conservative approximation
 MAY-REACH or MUST-REACH, depending on the application.

Background: Bitvector representation of sets

Given: Finite global set (universe) \(U \)
Any subset \(S \subseteq U \) can be represented as a bitvector \(b_S \)
with \(b_S[i] = 1 \) iff the \(i \)th element of \(U \) is in \(S \).

Example:
\(U = \{a, b, c, d, e, f, g, h\} \)
\(S = \{a, d, e\} \) has bitvector representation \(b_S = \langle 10011000 \rangle \).

If clear from the context, we simplify the notation, using \(S \) for \(b_S \):
\(S = \langle 10011000 \rangle \).

Here: Consider bitvector representation of \textit{sets of definitions}
i.e., the universe \(U \) = the set of all definitions in the program
= set of all CFG nodes (e.g. MIR statements) writing to some variable.
Example (cont.): Bitvector Representation of Definitions; \textit{GEN} sets

\begin{itemize}
 \item \textbf{Bit Definition (generated) Basic block}
 \begin{enumerate}
 \item d_1 of \textit{m} in node 1 \hspace{1cm} B1
 \item d_2 of f_0 in node 2
 \item d_3 of f_1 in node 3
 \item d_4 of i in node 4 \hspace{1cm} B3
 \item d_5 of f_2 in node 8 \hspace{1cm} B6
 \item d_6 of f_0 in node 9
 \item d_7 of f_1 in node 10
 \item d_8 of i in node 11
 \end{enumerate}

 \begin{align*}
 GEN(B1) &= \{d_1,d_2,d_3\} = \langle 11100000 \rangle \\
 GEN(B3) &= \{d_4\} = \langle 00010000 \rangle \\
 GEN(B6) &= \{d_5,d_6,d_7,d_8\} = \langle 00011111 \rangle \\
 GEN(Bi) &= \{\} = \langle 00000000 \rangle \\
 \text{for } i \neq B1, B3, B6
 \end{align*}

\end{itemize}

Example: Reaching definitions with bitvector representation

\begin{enumerate}
 \item $RDin(B) = \langle 00100010 \rangle$ \hspace{1cm} (1 = def. reaches entry of B)

 Certainly, $RDin[entry] = \langle 00000000 \rangle$

 $RDin(B)$ for $B \neq entry$?

 Effect of a node B in CFG on definitions d reaching it:

 described by 2 \textit{sets} $GEN(B)$, $KILL(B)$:

 $GEN(B) = \langle 11100000 \rangle$ \hspace{1cm} (1 if B generates this definition)

 $KILL(B) = \langle 11100010 \rangle$ \hspace{1cm} (1 if B kills this definition)

 $RDout(B) = \langle 11100000 \rangle$ \hspace{1cm} (1 = def. reaches end of B, $?=bit as in RDin(B)$

 Example: $RDin(B) = \langle 10001101 \rangle$ and effect of B as above

 $\implies RDout(B) = \langle 11101001 \rangle$

\end{enumerate}

Example (cont.): Bitvector Representation of Definitions; \textit{KILL} sets

\begin{itemize}
 \item \textbf{Bit Definition (generated) Basic block}
 \begin{enumerate}
 \item d_1 of \textit{m} in node 1 \hspace{1cm} B1
 \item d_2 of f_0 in node 2
 \item d_3 of f_1 in node 3
 \item d_4 of i in node 4 \hspace{1cm} B3
 \item d_5 of f_2 in node 8 \hspace{1cm} B6
 \item d_6 of f_0 in node 9
 \item d_7 of f_1 in node 10
 \item d_8 of i in node 11
 \end{enumerate}

 \begin{align*}
 KILL(B1) &= \{d_1,d_2,d_3,d_4\} = \langle 11100110 \rangle \\
 KILL(B3) &= \{d_4,d_5\} = \langle 00010001 \rangle \\
 KILL(B6) &= \{d_2,d_3,d_4,d_5,d_6,d_7,d_8\} = \langle 01111111 \rangle \\
 KILL(Bi) &= \{\} = \langle 00000000 \rangle \\
 \text{for } i \neq B1, B3, B6
 \end{align*}

\end{itemize}

Flow functions — Effect of a basic block B on any $RDin(B)$:

\begin{itemize}
 \item \textbf{Set equation:}$RDout(B) = GEN(B) \cup (RDin(B) \setminus KILL(B)) \hspace{1cm} \forall B$
 \item \textbf{Bitvector equation:}$RDout(B) = GEN(B) \lor (RDin(B) \land \neg KILL(B)) \hspace{1cm} \forall B$
\end{itemize}

Effect of joining control flow paths:

\begin{itemize}
 \item \textbf{Set equation:}$RDin(B) = \bigcup_{P \in \text{Pred}(B)} RDin(P) \hspace{1cm} \forall B$ (for MUST-REACH: \subseteq)
 \item \textbf{Bitvector equation:}$RDin(B) = \bigvee_{P \in \text{Pred}(B)} RDin(P) \hspace{1cm} \forall B$ (for MUST-REACH: \land)
\end{itemize}

Reaching Definitions is a forward flow problem:

- BB flow functions specify outgoing property as function of ingoing
- Information propagates through CFG in direction from \textit{entry} towards \textit{exit}
Iterative computation of Reaching Definitions

Algorithm: (Fixed-point iteration)

- For MAY-Reach we initialize
 \[RDin(\text{entry}) = \{\} = (00000000), \]
 \[RDin(B) = \{\} = (00000000) \]
 for all other \(B \)

- Iterate,
 applying the equations
to \(RDin(B) \), \(RDout(B) \) for all \(B \)
until no more changes occur.

Example: see whiteboard

Why does this work?

Example (cont.): Iterative computation of Reaching Definitions

Second iteration:

\[
\begin{align*}
RDin(\text{entry}) &= (00000000) \\
RDout(\text{entry}) &= (00000000) \\
RDin(B1) &= (00000000) \\
RDout(B1) &= (11100000) \\
RDin(B2) &= (11100000) \\
RDout(B2) &= (11100000) \\
RDin(B3) &= (11100000) \\
RDout(B3) &= (11110000) \\
RDin(B4) &= (11111000) \\
RDout(B4) &= (11110000) \\
RDin(B5) &= (11111100) \\
RDout(B5) &= (11110000) \\
RDin(B6) &= (11110000) \\
RDout(B6) &= (10011111) \\
RDin(\text{exit}) &= (11111000) \\
RDout(\text{exit}) &= (11111000)
\end{align*}
\]

Example (cont.): Iterative computation of Reaching Definitions

Third iteration:

\[
\begin{align*}
RDin(\text{entry}) &= (00000000) \\
RDout(\text{entry}) &= (00000000) \\
RDin(B1) &= (00000000) \\
RDout(B1) &= (11100000) \\
RDin(B2) &= (11100000) \\
RDout(B2) &= (11100000) \\
RDin(B3) &= (11100000) \\
RDout(B3) &= (11110000) \\
RDin(B4) &= (11111000) \\
RDout(B4) &= (11110000) \\
RDin(B5) &= (11111100) \\
RDout(B5) &= (11110000) \\
RDin(B6) &= (11110000) \\
RDout(B6) &= (10001111) \\
RDin(\text{exit}) &= (11111100) \\
RDout(\text{exit}) &= (11111100)
\end{align*}
\]

No more change — done!
Why does this work?

Underlying theory:
- Posets, least upper bounds, semilattices, lattices
- Monotone flow functions
- Data flow analysis framework
- Meet-over-all-paths
- Convergence theorems for iterative data flow analysis

Posets

A relation \(\subseteq \) on a set \(L \) defines a partial order on \(L \) if, for all \(x, y \) and \(z \) in \(L \),
1. \(x \subseteq x \) (reflexive),
2. If \(x \subseteq y \) and \(y \subseteq x \) then \(x = y \) (antisymmetric), and
3. If \(x \subseteq y \) and \(y \subseteq z \) then \(x \subseteq z \) (transitive).

The pair \((L, \subseteq)\) is called a poset or partially ordered set.

Notation: \(x \subseteq y \) iff \(x \subsetneq y \).

Example: \(L = 2^S \) for a set \(S \), \(\subseteq = \supseteq \)
Interpretation in data flow analysis: \(x \subseteq y \) means "\(x \) is not more precise than \(y \)"

Least upper bound, greatest lower bound

A greatest lower bound (glb) of any two elements \(x, y \in L \) is an element \(g \in L \) such that
1. \(g \subseteq x \),
2. \(g \subseteq y \), and
3. for any \(z \in L \) with \(z \subseteq x \) and \(z \subseteq y \), \(z \subseteq g \).

Example: For \((2^S, \supseteq)\), glb is set union \((\cup)\).

Analogously: Least upper bound (lub).

A poset \((L, \subseteq)\) where any two elements in \(L \) have a greatest lower bound in \(L \) (i.e., closedness under glb) is a necessary condition for a semilattice.

Semilattice

A semilattice \((L, \sqcap)\) consists of a set \(L \) and a binary meet operator \(\sqcap \) such that for all \(x, y \in L \),
1. \(x \sqcap x = x \) (meet is idempotent),
2. \(x \sqcap y = y \sqcap x \) (meet is commutative),
3. \(x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z \) (meet is associative),

and there is a top element \(\top \in L \) such that
4. for all \(x \in L \), \(\top \sqcap x = x \).

Optionally, a semilattice may also have a bottom element \(\bot \in L \) with for all \(x \in L \), \(\bot \sqcup x = \bot \).

Example 1: \((2^S, \cup)\) is a semilattice with \(\top = \{\} \) and \(\bot = S \).
Example 2: \((2^S, \cap)\) is a semilattice with \(\top = S \) and \(\bot = \{\} \).
Semilattice and partial order

A semilattice \((L, \sqcap)\) implicitly defines a partial order \(\sqsubseteq\) where, for all \(x, y \in L\),
\[x \sqsubseteq y \iff x \sqcap y = x. \]
The glb is just the \(\sqcap\) operator.

Example 1: \((2^x, \cup)\) implicitly defines partial order \(\subseteq\).
Example 2: \((2^x, \cap)\) implicitly defines partial order \(\subseteq\).

Note: \(\bot \not\subseteq x \not\subseteq \top\) for all \(x \not\subseteq \top\), \(x \not\subseteq \bot\).

Interpretation: \(\top\) is most precise information, \(\bot\) is most imprecise information.

Example: Bitvector Lattice

Bitvector lattice: \(L = BV^3\), \(\sqcap = \) union/bitwise OR, \(\sqcup = \) interse./bitwise AND

Partial order \(\sqsubseteq\):
\[x \sqsubseteq y \iff x \sqcap y = x \]
(transitive, antisymmetric, reflexive)
for all \(x\): \(\bot \not\subseteq x \subseteq \top\)

meet \(x \sqcap y\): follow paths in \(L\) from \(x, y\) downwards until they meet
(greatest lower bound w.r.t. \(\sqsubseteq\))

join \(x \sqcup y\): follow paths in \(L\) from \(x, y\) upwards until they join
(least upper bound w.r.t. \(\sqsubseteq\))

Lattice \((L, \sqcap, \sqcup)\)

- set \(L\) of values
- meet operation \(\sqcap\), join operation \(\sqcup\) where
 - (1) for all \(x, y \in L\) ex. unique \(z, w \in L\): \(x \sqcap y = z, x \sqcup y = w\) (closedness)
 - (2) for all \(x, y \in L\): \(x \sqcap y = y \sqcap x, x \sqcup y = y \sqcup x\) (commutativity)
 - (3) for all \(x, y, z \in L\): \((x \sqcap y) \sqcap z = x \sqcap (y \sqcap z), (x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)\) (associativity)
 - (4) there are two unique elements of \(L\):
 \[\top \text{ “top”: } \forall x \in L, x \sqcup \top = \top \]
 \[\bot \text{ “bottom”: } \forall x \in L, x \sqcap \bot = \bot \]
 - (5) often also distributivity of \(\sqcap, \sqcup\) given

Lattices: Monotonicity, Height; Termination

\(f : L \rightarrow L\)

is monotone iff \(\forall x, y \in L\): \(x \sqsubseteq y \Rightarrow f(x) \sqsubseteq f(y)\)

Example:
\(f : BV^3 \rightarrow BV^3\) with \(f((x_1x_2x_3)) = (x_1.1x_3)\) for all \(x_1, x_2, x_3 \in BV\) is monotone.
\(g : BV^1 \rightarrow BV^1\) with \(g(0) = 1\) and \(g(1) = 0\) is not monotone.

Height of \((L, \sqcap, \sqcup)\)
\[= \text{ length of longest strictly ascending chain in } L \]
\[= \max. n: \exists x_1, x_2, \ldots, x_n \in L \text{ with } \bot = x_1 \sqsubseteq x_2 \sqsubseteq \ldots \sqsubseteq x_n = \top \]

Example:
Height of \(BV^3\) is 4.

Finite height + Monotonicity \(\Rightarrow\) Termination of the fixed-point iteration
Flow functions

Flow functions specify the **effect** of a programming language construct as a mapping $L \rightarrow L$.

E.g., in Reaching Definitions:

- BB_B_1 generates d_1, d_2, d_3, kills d_1, d_2, d_3, d_6, d_7:

 $F_{B_1}(\langle x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \rangle) = \langle 111 x_4 x_5 00 x_8 \rangle$

- $F_{B_1}(\langle x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \rangle) = \langle x_1 x_2 x_3 1 x_4 x_5 0 \rangle$

- $F_{B_6}(\langle x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 \rangle) = \langle x_1 0001111 \rangle$

- $F_{B_j} = id$ for all $j \notin \{1, 3, 6\}$

Flow functions must be monotone.

(otherwise the fixed-point iteration algorithm could oscillate)

Fixed points

Fixed point of a function $f : L \rightarrow L$ is a $z \in L$ with $f(z) = z$

- Solution to a set of data flow equations

 - In general not unique!

 Example:

 $f : BV \rightarrow BV$ with $f(0) = 0$ and $f(1) = 1$

 has 2 fixed points: 0 and 1.

Reaching definitions (see above):

iterate until $f(RDin(B)) = RDin(B) \forall B$

where $f = \text{composition of all flow functions and equations}$.

The ideal solution

Ideal solution (IDEAL) to the data flow equations (for forward problems):

- begin with initial information $Init$ at **entry**

- apply composition of flow functions along all **really** possible paths from **entry** to each CFG node B

 and compose these results by the meet operator:

$IDEAL(B) = \bigcap_{p \in \text{Paths}(B)} F_p(Init)$

similarly for backward problems

Meet over all paths (MOP)

Meet-over-all-paths (MOP) solution to data flow equations (for forward problems):

- begin with initial information $Init$ at **entry**

- apply composition of flow functions along **all** possible paths from **entry** to each CFG node B

 and compose these results by the meet operator:

$MOP(B) = \bigcap_{p \in \text{Paths}(B)} F_p(Init)$

similarly for backward problems
MOP vs. IDEAL

A solution in is **safe** if $in(B) \subseteq IDEAL[B] \forall B$
A solution in is **incorrect** if $in(B) \not\subseteq IDEAL[B]$ for some B

BUT: **IDEAL** is statically undecidable!

The exact subset of the paths really taken at run time is not statically known. E.g., an else branch or loop may never be executed.

IDEAL(B) = Meet over all paths to B possibly taken at run time
NEVER(B) = Meet over all remaining paths to B (never executed)

The most precise solution is **IDEAL**(B), but **MOP**(B) = **IDEAL**(B) \text{\inter} NEVER(B), i.e., **MOP**(B) \not\subseteq IDEAL(B).

MOP is the best solution that we could compute statically.

Fixed point solutions of the dataflow equations

Goal: find the maximum fixed point (MFP) solution
(maximal w.r.t. information, i.e., also w.r.t. \subseteq, and still safe)

Theorem [Kildall’73]

If all flow functions distributive over \sqcap, \sqcup

i.e., $\forall x,y$, $f(x \sqcap y) = f(x) \sqcap f(y)$ and $f(x \sqcup y) = f(x) \sqcup f(y)$,

\Rightarrow iterative DFA computes MFP, and MFP = **MOP**

Theorem [Kam/Ullman’75]

If all flow functions monotone but not necessarily distributive

\Rightarrow iterative DFA computes MFP but not necessarily the MOP solution

Iterative Data Flow Analysis [Kildall’73]

given: CFG $G = (N,E)$, Lattice (L,\sqcap,\sqcup)

dataflow equations

\[
in(B) = \begin{cases}
\text{Init} & \text{for } B = \text{entry} \\
\bigcap_{P \in \text{Pred}(B)} out(P) & \text{otherwise}
\end{cases}
\]

\[
out(B) = F_B(in(B))
\]

or, by substitution,

\[
in(B) = \begin{cases}
\text{Init} & \text{for } B = \text{entry} \\
\bigcap_{P \in \text{Pred}(B)} F_P(in(P)) & \text{otherwise}
\end{cases}
\]

\text{Init} is usually \top (for \sqcap) or \bot (for \sqcup)

Iterative DFA: Worklist algorithm (1)

- Implements the fixed-point algorithm above
- Maintain a **worklist** of blocks B whose predecessors’ in values have changed in the last iteration
- worklist contains initially all BB’s (except entry)
- iterate applying the dataflow equations until no more changes occur

Observation: maximal effect on forwarding information
if BB’s in worklist are processed in topological order

\Rightarrow start with reverse postorder
\Rightarrow queue as worklist
$\Rightarrow A + 2$ iterations for a (sub-)CFG with A back edges [Hecht/Ullman’75]
Iterative DFA: Worklist algorithm (2)

```
Worklist_it \( N, \text{entry} \), \( F \), \( DFin \), \( Init \)
Set\(<\text{Node}> N; \)
Node \( \text{entry} \); \nFunctions \( F : \text{Node} \times L \rightarrow L \); \nFunction \( DFin : \text{Node} \rightarrow L \); \n\( \text{L Init} : \text{L} \) is the (semi-)lattice \( \{ L \text{ totaleffect}, \text{effectP} \}; \)
List\(<\text{Node}> W \leftarrow N \setminus \{ \text{entry} \}; \)
\( DFin[\text{entry}] \leftarrow \text{Init}; \)
for each \( B \in N \) do
  \( DFin(B) \leftarrow \top; \)
  \( \) 
 repeat \n  \( B \leftarrow W.\text{delete_first_element}(); \)
  \( \text{totaleffect} \leftarrow \top; \)
  for each \( P \in \text{Pred}(B) \) do
    \( \text{effectP} \leftarrow F(P, DFin(P)); \)
    \( \text{totaleffect} \leftarrow \text{totaleffect} \sqcap \text{effectP}; \)
    if \( DFin(B) \neq \text{totaleffect} \) then
      \( DFin(B) \leftarrow \text{totaleffect}; \)
      \( W \leftarrow W \cup \text{Succ}(B); \)
  until \( W = \emptyset; \)
return \( DFin; \)
```

Survey of some data flow problems

classified by:
- information to be computed
- direction of information flow: forward / backward / bidirectional
- lattices used, meanings attached to lattice elements etc.

Reaching Definitions
forward, bitvector (1 bit per definition of a variable)

Available Expressions
forward, bitvector (1 bit per definition of an expression)

Live Variables
backward, bitvector (1 bit per use of a variable)

Survey of some data flow problems (cont.)

Upwards Exposed Uses
backward, bitvector (1 bit per use of a variable)

Copy-Propagation Analysis
forward, bitvector (1 bit per copy assignment)

Constant-Propagation Analysis
forward, \(ICP^m \) (or similar)
1 lattice value per def., symbolic execution

Partial Redundancy Analysis
[Morel,Renvoise’81] bidirectional, bitvector (1 bit per expression computation)
[Knoop/Rüthing/Steffen’92] “Lazy Code Motion”

Available Expressions

An expression, say \(x+y \), is \textit{available} at a point \(p \) if:
(1) \textit{every} path from the \textit{entry} node to \(p \) evaluates \(x+y \), and
(2) after the last evaluation prior to reaching \(p \),
there are no subsequent assignments to \(x \) or \(y \).

We say that a basic block \textit{kills} expression \(x+y \)
if it \textit{may} assign \(x \) or \(y \), and does not subsequently recompute \(x+y \).
Live Variables

A variable is **live** at a program point \(p \) if there is a path from \(p \) to any use of \(v \) that does not contain a definition of \(v \).

Flow problem: backward, bitvector (1 bit per use of a variable)

Upwards Exposed Uses

A use \(u \) of a variable \(v \) is **upwards exposed** at a program point \(p \) if there is a path from \(p \) to \(u \) that does not contain a definition of \(v \).

Flow problem: backward, bitvector (1 bit per use of a variable)

Copy Propagation Analysis

A copy statement \(x \leftarrow y \) assigns variable \(y \) to \(v \).

Can we safely replace all occurrences of \(x \) by \(y \), in order to eliminate the copy statement and variable \(x \) completely?

Flow problem: forward, bitvector (1 bit per copy assignment)

Constant Propagation Analysis

Flow problem: forward analysis, using \(ICP^m \) (or similar)

(1 lattice value per definition, symbolic execution)

\[ICP: \]

\[x \leftarrow \text{const} \]

\[\text{false} \leftarrow -2 \leftarrow -1 \leftarrow 0 \leftarrow 1 \leftarrow 2 \leftarrow \text{true} \]

(undefined)

(not a constant)
Partial Redundancy Elimination

bidirectional, bitvector: 1 bit per expression computation

[Morel, Renvoise'81] bidirectional, bitvector (1 bit per expression computation)
[Knoop/Rüthing/Steffen'92] “Lazy Code Motion”
[Dhamdhere'02] “PRE made easy”

Web Construction Example

5 webs (sets of intersecting DU-chains):

\{
\{ (x, (B2, 1)) \},
\{ (x, (B3, 1)), (B5, 1) \}
\}
\{ (y, (B4, 1)) \}
\{ (z, (B5, 1)) \}
\{ (x, (B6, 2)), (B6, 1) \}
\{ (z, (B6, 1)) \}

sparse representation of dataflow information about variables:

- DU-chain connects a definition to all uses it may reach
- UD-chain connects a use to all definitions that may reach it

implemented as lists

Web for a variable \(v \)

= maximal union of intersecting DU-chains for \(v \)

useful in global register allocation (count as one live range)

DU, UD chains are implicitly given in SSA form (→).

Structural Dataflow Analysis — Example: Reaching Definitions

\(GEN[R] = \{ d \} \)
\(KILL[R] = \{ d ; d, \text{ defines } a \} \)
\(RDout[R] = GEN[R] \cup (RDim[R] \setminus KILL[R]) \)
\(GEN[R] = GEN[R2] \cup (GEN[R1] \setminus KILL[R2]) \)
\(KILL[R] = KILL[R2] \cup (KILL[S1] \setminus GEN[R2]) \)
\(RDim[R1] = RDim[R] \)
\(RDim[R2] = RDout[R2] \)
\(RDout[R] = RDout[R2] \)
\(GEN[R] = GEN[R1] \cup GEN[R2] \)
\(KILL[R] = KILL[R1] \cup KILL[R2] \)
\(RDim[R1] = RDim[R] \)
\(RDim[R2] = RDout[R2] \)
\(RDout[R] = RDout[R1] \cup RDout[R2] \)
\(GEN[R] = GEN[R1] \)
\(KILL[R] = KILL[R1] \)
\(RDim[R1] = RDim[R] \cup GEN[R1] \)
\(RDout[R] = RDout[R1] \)
Data Flow Analysis: Summary

- Gather global information about data flow properties
- Safe under-/overestimation, depending on intended transformations
- Propagation over the CFG → iterative data flow analysis, implemented with the Worklist algorithm
- Lattice theory:
 - Monotonicity + Finite height ⇒ Termination of fixed-point iteration
- Various data flow problems and methods
- DU/UD chains, webs
- Structural dataflow analysis

Data Flow Analysis, further topics and outlook:

- Further DFA methods (interval / structural analysis)
- Array data flow analysis [Feautrier’91], [Maydan/Hennessy/Lam’91]
- DFA for pointers and heap data structures
- SSA form
- Generators for Data Flow Analyzers, e.g. Sharlit [Tjiang/Hennessy’92], PAG [Martin’98]