
Christoph Kessler with Mattias Eriksson

DF00100
Advanced Compiler Construction

VT1 / 2010

Exercise Set 3

Exercise 3.1

In the lecture on local instruction scheduling we described the list scheduling algorithm
as a forward scheduling algorithm, that is, topological sorting in forward direction of the
dependences.

Give the pseudocode of backward list scheduling.

What is the heuristic node priority criterion in backward list scheduling that corresponds
to the deepest-level-first criterion in forward scheduling?

Exercise 3.2

Given the following basic block:

live on entry: a, b (assume for simplicity that they are in registers)

c← a + b

d← a− c

e← 2 ∗ a

f ← c

g ← a/f

live at exit: d, e, g (to be kept in registers)

Identify live ranges and draw the register interference graph. How many colors do you
need? Apply coalescing where possible to eliminate copy operations. Given a processor
with R = 3 physical registers, compute a register assignment using Chaitin’s degree< R–
heuristic and insert necessary spill code.



Exercise 3.3

Assume you have a VLIW processor with three functional units, a memory access unit
for loads (latency 4cc) and stores (latency 1cc), a multiplier for multiplications (latency
2cc), and an ALU for all other operations (latency 1cc). All units have occupation time
1 cc. Hence, load has 3 delay slots, multiplication and branch has 1 delay slot, and the
other operations have no delay slot. All multiplications must be done on the multiplier.
You can issue one long instruction word per clock cycle, each containing (at most) one
subinstruction per functional unit.

Given the following target level program representation (i.e., after instruction selection)
of the main loop of an integer dot product program, shown here as naively scheduled
pseudo-targetcode for the architecture described above:

Loop: // invariant: loop counter in symb. reg. v1
S1 v2← mult #4, v1 // integer multiplication

(nop) // multiplication delay slot
S2 v3← load 0x18f0(v2) // integer load A[i]
S3 v4← load 0x1a20(v2) // integer load B[i]

(nop) // load delay slot
(nop) // load delay slot
(nop) // load delay slot

S4 v5← mult v3, v4 // integer multiplication
(nop) // multiplication delay slot

S5 v6← add v6, v5 // integer addition
S6 v1← add v1, #1 // integer addition
S7 v7← compare v1, #100 // integer compare to loop counter in v1
S8 branch to Loop if v7! = 0 // differ → do next of 100 iterations

(nop) // branch delay slot – even if branch is taken
Exit: // now the dot product result is in v6

(a) Draw the data dependence graph for the loop. (Hint: Do not forget anti-dependences,
loop-carried dependences and control dependences.)

(b) Suggest (any) better (in terms of execution time) schedule for a single loop iteration
than the naive schedule given above.

(c) Give the largest lower bound for the minimum initiation interval based on resource
constraints.

(d) Give the largest lower bound for the minimum initiation interval based on recurrence
constraints.

(e) Construct a modulo reservation table for the initiation interval II = 5 and construct
a modulo schedule. (Hint: Note that v1 can be overwritten by S6 as soon as S1 has
executed for 1 cycle (early operand read phase). Begin placing instructions with the
longest dependence cycle.)

Please prepare these exercises for the third lesson.


