
DF00100 Compiler Labs: Part 1 - LLVM IR
August Ernstsson (based on previous material by Erik Hansson)

1. LLVM
LLVM (https://llvm.org) stands for low level virtual machine and is an
unlimited register machine. Register values can only be set once, and has a type.
LLVM has three equivalent forms of intermediate representations (IR): assembly
form, in-memory representation, and on-disk bitcode.

This part of the labs focus on how to work with the IR of LLVM.

1.1 Installation

We prefer to install LLVM from source code. We will also use the Clang front-
end. The following steps are done on Linux, using git and CMake, but LLVM
may also work on Mac or Windows, see the documentation.

Clone the LLVM source (Clang is now included in the repository) into
LLVM_DIR (placeholder for your repository path, put it wherever you like)
and configure and build LLVM + Clang.

It is recommended to check out a stable branch, e.g. version 10, but the exact
version is not important (note it in your report).

(Optional) Add LLVM_DIR/build/bin/ to your PATH, but be careful of
conflicts with existing installations of e.g. clang.

1.2 First step

Compile it using Clang:

git clone https://github.com/llvm/llvm-project.git
cd LLVM_DIR
git checkout release/10.x
mkdir build
cd build
cmake -G "Unix Makefiles" -DLLVM_ENABLE_PROJECTS="clang" ../llvm
make

#include <stdio.h>

int main()
{
 printf("Hello World\n");
}

https://llvm.org
https://github.com/llvm/llvm-project.git

This will produce native code, which you can then run (./test).

To generate LLVM IR, in assembly form, run clang as below which will produce
test.ll.

Now run the same command but with optimization flag (-O3) and compare the
output. Compile other input programs, with and with out optimization, for
example:

And compare the IR code.

1.3 A simple pass

Write a simple pass that calculates how many calls there are to the printf()
function. Output can for example be something like:

See http://llvm.org/docs/WritingAnLLVMPass.html or https://llvm.org/docs/
WritingAnLLVMNewPMPass.html, for a good introduction about how to get
started writing passes. There are different approaches to build and register
passes in LLVM, but find one that works for you and describe your approach in
the report.

To convert test.ll to bitcode format, run llvm-as as below which produces
test.bc.

What will your pass report if printf() is called inside a for loop?

1.4 Exercise 1

Rewrite your printf calculation pass so it handles loops. At least if the number
of times the loop body will execute can be determined statically, and the loops
are perfectly nested. Example:

LLVM_DIR/build/bin/clang -o test test.c

LLVM_DIR/build/bin/clang test.c -S -emit-llvm

int main()
{
 int x = 0;
 return x++;
}

main:
 printf(): 12 calls
foo:
 printf(): 23 calls

LLVM_DIR/build/bin/llvm-as test.ll

http://llvm.org/docs/WritingAnLLVMPass.html
https://llvm.org/docs/WritingAnLLVMNewPMPass.html
https://llvm.org/docs/WritingAnLLVMNewPMPass.html

Feel free to run/use already existing passes that may be useful, for example:

• mem2reg

• indvars

• loop-rotate

1.5 Exercise 2a

Write a pass (or a set of passes) that recognizes the vector init (initialization of
a vector with a constant), example:

The pass should report: Matched computation, operand, size etc.

Optionally you may replace matched loops by an equivalent function call or
perform some other transformation of your choice, e.g. unrolling or
parallelization.

1.6 Exercise 2b (optional, gives bonus points in the
exam)

Write a pass that recognizes dot product calculation,

where a and b are vectors with elements a0, ..., an respectively b0, ..., bn. The
corresponding C code could look like:

for (int i = 2; i < 4; i++)
{
 printf("Hello World\n");
}

for (int i = 0; i < 5; i++)
 v [i] = 42;

double dotproduct(double *x, double *y, int size)
{
 double result = 0;

 for (int i = 0; i < size; i++)
 {
 result += x[i] * y[i];
 }

 return result;
}

Also consider implementations with double for-loops:

Example of things that should not be matched:

and

The pass should report: Matched computation, operand, size etc. Alternatively,
replace matched loops by an equivalent function call.

1.7 What should be in your report

• Strategy for solving the problems.

• Results of your tests, with comments.

• Well commented source code for your LLVM passes.

• Test programs, in C and LLVM assembly. Do not forget to write which
built in passes you used (mem2reg etc.) and if you used any
optimizations. Their invocation order is interesting as well.

• See lab intro slides for further information.

Also write which version of LLVM you used and which platform you used. If you
downloaded LLVM via git, please write the branch/commit ID/tag you used.

Also include a brief discussion part where you take up any problems you had
and what you found most interesting with the lab.

for(int i=.., .., ..)
 for(int j=.., .., ..)
 a[i] += b[i][j] * c[j];

s = s + a[i] * b[j]

s = t + a[i] * b[i]

	1. LLVM

