
August Ernstsson (based on existing material by Erik Hansson)

Advanced 
Compiler 
Construction
Labs 2021

LLVM Overview
• Low Level Virtual Machine – LLVM

• http://llvm.org

• Modern module-based compiler infrastructure

• Open Source

• Written in C++ (mainly) and also a lot of custom definition formats

• Started 2000 at University of Illinois at Urbana–Champaign by Chris Lattner and Vikram Adve.

• In 2005 Lattner got hired by Apple to work with LLVM.

• Clang: C/C++ language (and dialects) front-end for LLVM.

• LLVM and Clang are popular and successful, used extensively in industry and for academic
research.

http://llvm.org

About Me
• Final-year PhD student at LiU.

• Course assistant in DF00100, helping with lab supervision.

• Research interests in high-level parallel programming, esp. with the skeleton
programming approach.

• Head developer/maintainer of the SkePU C++ template framework.

• https://skepu.github.io

• SkePU uses a custom source-to-source ”pre-compiler” based on the Clang
library, using C++ AST traversal and analysis.

• I have experience with Clang, but not as much with the rest of LLVM, e.g. backend
stuff. We will learn together!

https://skepu.github.io

About the Labs
• Work with the LLVM frameworks at different levels

• IR analysis

• Back-end code generation

• Relatively free-form lab format

• Required programming: light

• Encourages experimentation. Try your own ideas and extensions

• Requires a lot of reading: LLVM documentation and source/sample code.

• Written reports each for part 1 and part 2

• Document your work and your results. (More info later)

LLVM Getting Started
• In Linux, using git and CMake:

• Clone LLVM source (Clang is now included in the repository) into LLVM_DIR

• git clone https://github.com/llvm/llvm-project.git

• cd LLVM_DIR
git checkout release/10.x
mkdir build
cd build
cmake -G "Unix Makefiles" -DLLVM_ENABLE_PROJECTS="clang" ../llvm
make

• (Optional) Add LLVM_DIR/build/bin/ to your PATH

• LLVM may also work on Mac or Windows, see documentation.

Part 1 — LLVM IR

LLVM First Try
• Write a small C program

• Compile and run

• LLVM_DIR/build/bin/clang -o test test.c
./test

• Very similar to GCC

• LLVM IR

• LLVM_DIR/build/bin/clang test.c -S -emit-llvm

• This produces test.ll — investigate the output yourself!

• Convert to ”bitcode”: LLVM_DIR/build/bin/llvm-as test.ll

• Produces test.bc

LLVM Passes
• A pass can perform analysis or transformations on LLVM IR.

• Simple example from LLVM documentation

• https://llvm.org/docs/WritingAnLLVMPass.html  
https://llvm.org/docs/WritingAnLLVMNewPMPass.html

• Lab ”exercise 0”:

• For each function call in a program, print out its name.

http://llvm.org/docs/WritingAnLLVMPass.html
https://llvm.org/docs/WritingAnLLVMNewPMPass.html

Part 1, Exercise 1
• Write a simple pass that calculates how many calls there are to the printf()

function.

• Output can e.g. be something like:

• main: 
 printf(): 2 calls 
foo: 
 printf(): 23 calls

• It should handle simple loops with static iteration counts.
for (int i = 2; i < 4 ; i++)
{
printf("Hello LLVM + CLANG!\n”);

}

Part 1, Exercise 2a
• Write a pass or set of passes that recognizes a vector init (initialization of an

array with a constant value)

• Example:

• The pass should report

• Matched computation, operand size, etc.

• Alternatively replace matched loops by an equivalent function call.

for (int i = 0; i < 5; ++i)
{
v[i] = 42;

}

Part 1, Exercise 2b
• Optional — with bonus points in the exam.

• Write a pass or set of passes that recognizes a dot product computation.

• See further details in the lab instructions.

Part 2 — LLVM Back-end

Adding an instruction to LLVM
• In this assignment, you will add a theoretical instruction to the Sparc target.

• Create an add-instruction that takes three operands:

• addthree a,b,c,d

• This instruction should match the computation d = a + b + c where

• a,b,c are all integers located in registers,

• a,b,c are all floats located in registers,

• a,b are integers in registers, and c is an immediate value.

Part 2 — Hints
• You can compile your example program to sparc assembly like this:

• LLVM_DIR/build/bin/clang -O2 -S -emit-llvm foo.c
LLVM_DIR/build/bin/llvm-as foo.ll
LLVM_DIR/build/bin/llc --march=sparc --mcpu=generic --asm-verbose foo.bc

• Study foo.s to see the result.

• Declare your variables to be volatile:

• volatile int x;

Written Reports — Requirements
• Your written report should contain the following:

• Strategy and approach for solving the problems.

• Results of your tests, with comments.

• Implementation source code, commented where necessary.

• Test programs, in C and LLVM assembly.

• Also include invocation details, such as which passes were used and in which order.

• Note which LLVM version was used and where you obtained it.

• Some discussion around your results and your experiences.

• Send reports to august.ernstsson@liu.se

• Deadline information on course webpage.

mailto:august.ernstsson@liu.se

General Hints
• LLVM and Clang are large projects with a lot of different contributors.

• Documentation quality varies a lot.

• Many tutorials available on LLVM.org and elsewhere.

• May be out-of-date!

http://LLVM.org

