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ABSTRACT digital signal processors (DSPs). Code generation for such archi-

tectures must aim at limiting the cost, for instance by decreasing

In contrast to standard compilers, generating code for DSPs can he si ¢ dul h ; b
afford spending considerable resources in time and space on op-t € size of memory modules or the power consumption, or by an

timizations. Generating efficient code for irregular architectures effg:ient uti_lizatiog of registers_. Vi | suborobl Th
requires an integrated method that optimizes simultaneously for in- ef‘era"”g code con3|§ts In so vmgl several subpro emsh. d Ie
struction selection, instruction scheduling, and register allocation. ,mOSt |mpor_tant ones are |nst_ruct|on selection, instruction schedul-
We describe a method for fully integrated optimal code genera- ing and register aIIo_catlon. Firsta frc_mt-end translgte asource pro-
tion based on dynamic programming. We introduce the concept of gram to arintermedlate Representatl_c(rR). In_structlo_n selection
residence classeand space profileswhich allows us to describe ~ MaPS IR nodes into semantically equivalent instruction of the target
and optimize for irregular register and memory structures. In order processor.lnstruqtlon schedulingeorders instructions, preserving
to obtain a retargetable framework we introduce a structured archi- data c_jepende_nCI_eS, to make the. program execute more efficiently.
tecture description language, ADML, which is based on XML. We Each instruction is mapped to a time slot V\_/hen it is to be executed.
implemented a prototype of such a retargetable system for optimal _Reglste_r aIIocatlomnaps values c_orrespondlng to IR nodes to phys-
code generation. Results for variants of the TI C62x show that our '8! registers. An efficient mapping decreases the number of (slow)
method can produce optimal solutions to small but nontrivial prop- MEMOrY aCCESSES by keeping frequently used values in registers.

lem instances with a reasonable amount of time and space. The state of the art in production c_ompilers "?‘dOP‘S a phase-based
approach where each subproblem is solved independently. How-

ever, most important subproblems of code generation are strongly

Categones and SUbJeCt DeSCI’IptOI‘S interdependent, and this interdependence is particularly strong in

D.3.4 [Programming language$: Processors-eode generation the case of irregular processor architectures. In fact, techniques ap-
plied in compilers for general purpose processors do not produce
General Terms expected performance for irregular architectures. This is due to the

fact that hardware irregularities in data paths, multi-bank memory
organization and heterogeneous register sets impose intricate con-
straints on the applicability of special combinations of instructions
Keywords such as multiply and accumulate in the same clock cycle, depend-
ing on the location of operands and results, which in turn depend
on the current scheduling situation. Hence, the main problems in
code generation, namely instruction selection, instruction schedul-
ing, and register allocation, can generally not be optimally solved in

1. INTRODUCTION subsequent separate compiler optimization phases but must be con-

Today’s market of communication and consumer electronic sys- sidered simultaneously in an integrated optimization framework.
tems is growing continuously. Such systems are mainly embed- We consider an integrated framework that deals with instruction
ded and require specialized, high performance processors such aselection, scheduling, and register allocation simultaneously. Of
course this increases the complexity of the problem. However, DSP
software industry is willing to spend a considerable amount of time
and space on optimization for critical program parts.

In previous work we introduced a dynamic programming method
for an integrated code generator to produce, for a regular processor
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that corresponds to forest pattern matching.
In this work we focus on optimality on the basic block level. We

The converse case of a single IR operation corresponding to mul-
tiple target instructions requires either lowering the IR or schedul-

also discuss the generalization to extended basic blocks [12]. Aning on the target level only, rather than on the IR level, if we do

extension to global code generation is planned.

Furthermore we introduce ADML, a structured architecture de-
scription language based on XML that we developed to make our
framework retargetable.

We report first results for variants of the Tl C62x that show that
our method can produce an optimal solution to small but nontrivial

not want to compromise optimality by fixing a (prescheduled) se-
guence of subsequent target instructions for an IR operation.

A target instructiory may actually require time slots on several
functional units.

2.2.3 Target-level scheduling

problem instances with a reasonable amount of time and space. The A target-schedulés a mapping of the time slots i{ U, ..., Us}

method is intended for the final, aggressively optimizing produc-

xNp to instructions such that; ; denotes the instruction starting

tion run of the compiler. It can also be used to assess the quality of execution on unit’; at time slotj. Where no instruction is started

faster heuristics. For instance, we could experimentally prove that
the heuristically optimized code given by Leupers [10, Chap. 4] is
indeed optimal.

2. FUNDAMENTALS

2.1 Modeling the target processor

We assume that we are given a superscalar or VLIW-like proces-
sor with f functional unitsUu, ..., Us.

Theunit occupation time; of a functional unit; is the number
of clock cycles thatU; is occupied with executing an instruction
before a new instruction can be issuedfo

Thelatency/; of a unitU; is the number of clock cycles taken
by an instruction orU; before the result is available. We assume
thato,» S &

Theissue widthw is the maximum number of instructions that

on U; at time sloty, s;,; is defined adNOR If an instructions;, ;
produces a value that is used by an instructipry., it must hold
j' > j+ 4. Also, it must holdj" > j"" + o; wheres; ;i is the
latest instruction issued td;: befores; ;. Finally, it must hold
|{Si”,j’ # NUP, 1 S 7:” S f}| S w.

For a given IR-schedul§ and a given instruction selectidn,
an optimal target-schedulecan be determined in linear time by
a greedy method that just imitates the behavior of the target pro-
cessor’s instruction dispatcher when exposed to the instruction se-
quence given by (S).

The execution time-(s) of a target-schedule is the number of
clock cycles required for executing that is,

7(s) =max{j + & : si; # NOP}.
]

A target scheduls is time-optimalif it takes not more time that

may be issued in the same clock cycle. For a single-issue processorany other target schedule for the DAG.

we havew = 1, while most superscalar processors and all VLIW
architectures are multi-issue architectures, thatis, 1.

2.2 Basic terminology
In the following, we focus on code generation for basic blocks

2.2.4 Register allocation

A register allocationfor a given target-schedukeof a DAG is a
mappingr from the scheduled instructioss; to physical registers
such that the value computed by; resides in a registef(s;,;)

where the data dependences among the IR operations form a difrom time slotj and is not overwritten before its last use. For

rected acyclic graph (DAGY = (V, E). In the following, letn
denote the number of IR nodes in the DAG.

2.2.1 IR-level scheduling

An IR-schedulgor simply schedule of the basic block (DAG)
is a bijective mappingS : {1,...,n} — V describing a linear
sequence of the IR operations inV that is compliant with the
partial order defined by, that is,(u,v) € E = S(u) < S(v). A
partial scheduleof G is a schedule of a sSubDAG' = (V',EN
(V' x V")) induced by a subsét’ C V where for each’ € V'
holds that all predecessors of in G are also inV'. A partial
schedule ofZ can be extended to a (complete) schedulé&r of it
is prefixed to a schedule of the remaining DAG induced’by V".

2.2.2 Instruction selection

Naive instruction selection maps each IR operaticio one of
a set¥(v) of equivalent, single target instructions: ratching
target instructiony € ¥(v) for a given IR operatiom is a target
processor instruction that performs the operation specified. by
An instruction selectiort” for a DAG G = (V, E) maps each IR
operationv € V' to a matching target instructiane ¥ (v).

Our framework also supports the case that a single target instruc-

tion y covers a sey of multiple IR operations, which is quite com-

a particular register allocation, its register need is defined as the
maximum number of registers that are in use at the same time. A
register allocation is optimal for a given target schedusef its
register need is not higher than that of any other register allocation
r' for s. That register need is referred to as tegister needf

s. An optimal register allocation for a given target-schedule can be
computed in linear time in a straightforward way [4].

A target-schedule ispace-optimalf it uses no more registers
that any other possible target-schedule of the DAG. For single-issue
architectures with unit-time latencies, IR-schedules and target-sche-
dules are more or less the same, hence the register allocation can
be determined immediately from the IR schedule, such that space-
optimality of a target-schedule also holds for the corresponding IR-
schedule [9]. In all other cases, the register allocation depends on
the target-schedule.

2.3 Basic method

A naive approach to finding an optimal schedule consists in the
exhaustive enumeration of all possible schedules, each of which
can be generated by topological sorting of the DAG nodes.

Topological sortingmnaintains a set of DAG nodes with indegree
zero, thezero-indegree sewvhich is initialized to the set, of DAG
leaves. The algorithm repeatedly selects a DAG nodi®m the

mon for a low-level IR. This corresponds to a generalized version of current zero-indegree set, appends it to the current schedule, and
tree pattern matching. In particular, the covering pattern needs notremoves it from the DAG, which implies updating the indegrees of
have the shape of a tree but may even address disconnected noddbe parents of. The zero-indegree set changes by removirgd

of the DAG, for instance different 16-bit operations that could be adding those parents af that now got indegree zero. This pro-
combined to a 32-bit MMX instruction. cess is continued until all DAG nodes have been scheduled. Most
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Figure 1: The selection DAG (right hand
side) of the example DAG (middle bot- {0} {f}
tom) as a compression of the selection ¢
tree (left upper corner) where all selec-
tion nodes with the same zero-indegree {n}
set could be merged [9]. |i
{

heuristic scheduling algorithms differ just in the way how they as- nodes appear at levélin the selection DAG, see Figure 1. This
sign priorities to DAG nodes that control which nodds being grouping of partial schedules is applicable to schedules that are
selected from a given zero-indegree set. If these priorities always comparablewith respect to the optimization goal. Comparability
imply a strict linear ordering of nodes in the zero-indegree set, such also depends on the target architecture. For space-optimality on
a scheduling heuristic is also referred tdiasscheduling single-issue architectures with unit-time latencies it is sufficient to
A recursive enumeration of all possibilities for selecting the next compare just the zero-indegree sets, since there is a one-to-one re-
node from a zero-indegree list generates all possible IR-scheduledationship between a zero-indegree sednd alive(z), the set of
of the DAG. This naive enumeration of all different topological values that reside in registers at the situation described by
sortings of a DAG generates an exponential number of valid sched- i . hedul .
ules. As shown in [9], the naive enumeration cannot be applied alive(z) = {u € schedulek):
for basic blocks larger than 15 instructions even if only space- A(u,v) € B, v ¢ schedulet) }
optimization matters. For time optimization and especially in the  The resulting compression of the solution space decreases con-
context of irregular register sets the number of variants to be enu- siderably the optimization time and makes it possible to generate
merated grows even faster. space-optimal schedules for DAGs of reasonable size [9].
Exhaustive enumeration of schedules produced by topological . .
sorting implicitly builds a tree-like representation of all schedules 2.4 ~ Time profiles
of the DAG, called theselection treewhich is leveled. Each node For time-optimal schedules, comparability of partial schedules
of the selection tree corresponds to an instance of a zero-indegreaequires a more involved definition. In previous work [8] we intro-
set of DAG nodes during topological sorting. A directed edge con- duced the concept of time profilethat represents the occupation
nects a nodex to a nodev of a selection tree if there is a step in  status of all functional units at a given time. It records the infor-
the selection process of topological sorting that produces the zero-mation which instructions are currently being executed and have
indegree set from u. not yet completed on every functional unit, which may influence
In previous work [8] we pointed out that multiple instances of the future scheduling decisions. Two partial schedules are comparable
same zero-indegree set may occur in the selection tree. For all theséf they have the same zero-indegree set and the same time profile
instances, the same sehedule¢z) of nodes in the same subDAG  [8]. Itis sufficient to keep, among comparable schedules, one with
G. of G below z has been scheduled. This leads to the idea that least execution time. Together with other optimizations [8], this
we could perhaps optimize locally among all the partial schedules compression makes the algorithm practical also for medium-sized
corresponding to equal zero-indegree set instances, merge all thes®AGs with up to 50 nodes.
nodes to a single selection node and keep just one optimal par- Formally, atime profile P = (d, p) consists of d@ssue horizon
tial schedule to be used as a prefix in future scheduling steps (seedisplacemend € {0, 1} and aprofile vector
Figure 1). In [9] we have shown that this optimization is valid

when computing space-optimal schedules for a single-issue pro- p = (P11, PLL4+d-1,
cessor. When applying this idea to all nodes of a selection tree, the P2,15 -+, P2,lo4+d—1,
selection tree becomessalection DAGIn the same way as the se- )

lection tree, the selection DAG is leveled, where all zero-indegree P, "'7pfylf+d*1)

setsz that occur after having scheduléd= |schedule¢z)| DAG f i
of 337 (4 +d — 1) entriesp;,; € V U {NOP}. An entryp; ; of



the profile vector denotes either the corresponding DAG ndte For instance, for load-store architectures with a single memory
some instructiory issued td/;, or aNOR—) where no instruction is module, binary arithmetic operations expect their operdrafsd2
issued. Note that for a unit with unit-time latency there is no entry in various registers and write their result to a register again. An
in p. The displacement accounts for the possibility of issuing an  ordinary Load instruction expects of course an address value as
instruction at a time slot where some other instruction has already operandl, which should reside in some register, but the value being
been issued. For single-issue processdrss always 0, thus we loaded actually resided in memory. For simplicity of presentation
can omitd in P. For an in-order multi-issue architecture, we have we assume that the loaded value is implicitly given as opegasfd

d € {0, 1} where ford = 1 at least one and at mast— 1 of the a Load instruction. Similarly, an ordinary Store instruction takes
entries corresponding to the most recent issue tpre,for 1 < an address value as operanand a register holding the value to be

1 < f, must be noNOR For out-of-order issue architectures, the stored as operan2] and creates implicitly an operarfidwith res-
displacement could be greater than one, but we need not considetidence in memory. There may even be special instructions, called
this case as we aim at computing an optimal schedule statically. Of transfer instructionsn the following, that move values directly be-
course, not all theoretically possible time profiles do really occur in tween different memory modules or register files. Load and Store

practice. could be interpreted as transfer instructions as well. The artificial

The time profileP = profile(s) of a given target-schedule memory operands allow to model data dependences in memory.
is determined froms as follows: Lett > 0 denote the time slot Table 1 gives a summary of instruction types for such a simple ex-
where the last instruction is issueddn ThenP = (d,p) is the ample architecture.

time profile that is obtained by just concatenating (in reverse order . .
to determinep) the DAG nodes (oNOR) corresponding to the 3.2 Residence classes and versatility

¢; + d — 1 latest entrie; 1 —q—¢, +2, ..., 5i,¢ in s for the unitsU;, We derive general relationships between registers and register
i =1,..., f, whered = 1 if another instruction may still be issued  ¢lasses by analyzing the instruction set.

at timet to a unitU; with s;+ = pi,; = NOF and 0 otherwise. For two different residence plac&s andR; in RM, we denote
Entriess;,; with j < 0 are regarded adOR. ¢ is called thetime by R; < R; (read: R; is at least aversatileas R;) that for all
reference poinbf P in s. Note thatt is always smaller than the  instructionsy, R; € Regy, q) = R; € Regy,q) for0 < ¢ < 2.
execution time ob. In other words, whereveR; can be used as operand, one may use

Hence, a time profile contains all the information required to de- R, as well.
cide about the earliest time slot where the node selected next can e denoteR; = R; for R; < R; A R; < R;, and we say
be scheduled: For determining a time-optimal schedule, it is suf- g, < R;iff R; < R; A—Rj < R;.
ficient to keep just one optimal target-schedslamong all those For a given sef of instructions of the target processoregister
target-schedules’ for the same subDAG. that have the same  classis a maximum-size subset &M, containing registers that
time profile P, and to uses as a prefix for all target-schedules that  can, in all instructions i, be used interchangeably as operand 1,
could be created from these target-scheduleby a subsequent  as operand 2, or as result locatidncould be the entire instruction

selection step [8]. set, or may be narrowed to the set of instructions that are applicable
at a certain scheduling situation.
3. SPACE PROFILES Note that register classes are just the equivalence classes of the
A space profile for a zero-indegree sedescribes in which reg- - €dually versatile” relation=).

ister classes the valuesafive(z) reside. We introduce the concept  EXAMPLE: For the TI-C62x (see Figure 6) there are two register
of aresidence clasas a generalization of a register class, by mod- classesA andB consisting of 16 registers each, each one connected

eling memory modules as a special kind of registers. toa memory ban_k. o _
For the Hitachi SH7729 SH3-DSP [6] with its eight DSP regis-

3.1 Registers and residences ters, we find thao = M1, Ao < A1, Y1 < Yo, X1 < Xo and

We are given a DSP architecture withegistersRy, . . ., Ry and Xo < Ai. Via ransitivity of < this means alsi; < A;.
x different (data) memory module¥s, . .., M,.. Standard archi- Hence, M, and M; form one register clasa/, while all other
tectures with a monolithic memory hake= 1 memory module. register classes contain just one register and are thus named the

A value can reside simultaneously in sevaesidence places same way.[]

for instance, in one or several registers and/or in one or several The versatility relation among registers can be lifted to register
memory modules. For simplicity of presentation we assume that cjasses in a natural way: A register cldas., is at least as versatile
the capacity of each register is one value. Note that this is not gen-45 3 register clasBC; iff RC1 C RC» and for allR, € RC,
erally the case for most DSPs. For instance, for the TI-C62x family r, ¢ RC, holds thatR; < Rs.

DSPs the ADD2 instruction performs two 16-bit integer additions  Fojlowing the generalization of registers to residences, we obtain
on upper and lower register halves with a single instruction. A the straightforward generalization of register classessidence
corresponding generalization is straightforward. Furthermore, we cjasseswhere the residence class of a memory module residence

assume the capacity of a memory module to be unbounded. is just that memory module name itself. LBtdenote the set of
Let R = {Ri,..., Ry} denote the set of register names and g yesidence classes. For now we do not consider residence classes
M = {M,,..., M.} the set of memory module names. Then, nat overlap.
RM = R U M denotes the set of alsidence places In order to be able to traverse our solution space in a grid manner,
The set of the residence places where a certain vatasides at  \ye need a relation that classifies a set of partial schedules according
a certain point of time is called theresidenceof v at timet. to the location of the operands. We define a functioot : V
An instruction takes up to two operands (called operarzhd N that sum up the numbers of different residence classes for each

operand2 in the following) and generates up to one result (called noge in a set of IR nodes:

operand0 in the following). For each instructiop and each of

its operandsy, 0 < ¢ < 2, the instruction set defines the set of rpot(¢) = Z |residencév)|
possible residence placd®egy, ¢g) C RM. vee



instruction operand 0 operand1 operand2 operand3 meaning |

COMP1 register register - - unary arithmetic operation

COMP2 register register register - binary arithmetic operation

MOV register register - - add another register residence
LOAD register register (memory) - load a value from a memory module
STORE (memory) register register - store a value to a memory module
MMOV (memory) register register (memory) direct memory—memory move

Table 1: Overview of compute and data transfer instruction types for a simple RISC architecture with a single memory module.

A
For a given residence claasc P we define for a given sétof IR 6\\?4
nodes OO
oS
2
Z 1itiff v resides inx X Lk'l@ | kf‘ @ LK@ -
= . A\ N L L -
o) € { 0 otherwise &l []—1— ST J’il— = e

Since schedule(z) increases in size at each scheduling step,
rpot(schedule(z)) is monotonically increasing as topological sort-
ing proceeds. Additionally, a transfer instruction may move a value
to a residence in another residence class where that value was still
missing, and thus increases the “residence potential” of that value
even ifscheduledz) is not affected by such transfer instructions.

In contrast,rpot(alive(z)) is not monotonic since some nodes
may leavealive(z) at a scheduling step. Therefore we define the 3 L o o
residence pote(nt%adis a functiorRPotthat computes, for a given L!ﬁ@ Lﬁ%@ LFE% b
zero-indegree setand a level = |schedulegz)| an index on the Y
residence potential axis of the solution space:

T S i

[9A3)

Figure 2: Structuring the space of partial solutions as a three-

dimensional grid.

RPO(z,0) = 1 (|P| - [V + 1) + 3 1pot(a, alive(z)) g
aEP

The maximum residence potential that may occur for a given This structure supports efficient retrieval of all possible candi-
DAG is |P|-|V|. That means that all nodes of the DAG were present dates for comparable partial solutions: They are located within a fi-
in all residence classes. This gives a simple lower bour(¢®| - nite rectangl_JIar subg_rld whose offse_t is determined by the schedule
|V| + 1) for RPoteach time we schedule a node (and thus increase length, the time profile’s reference time, and the residence poten-
the levell) or a transfer instruction that does not increase the level tidl, and whose extents are determined by the architectural param-

(but the residence potential). ThiRPo{(z, ) is a monotonically eters such as maximum latency or number of residence classes.
growing function in terms of our algorithm. Another advantage of this grid structure is that, by taking the

precedence constraints for the construction of the partial solutions
into account, we can change the order of construction as far as pos-

4. SYNTHESIS sible such that the more promising solutions will be considered first
. . while the less promising ones are set aside and reconsidered only
4.1 Time-space profiles if all the initially promising alternatives finally turn out to be sub-

We extend the dynamic programming algorithm of Section 2.3 to optimal. This means that we proceed along the time axis as first
cope with irregular register sets and memory structures by combin- optimization goal, while the axes for length and residence potential

ing time profiles and space profiles to a joint data structimes- have secondary priority.
space profiles For the comparability of partial schedules the fol- Obviouslyrpot(a, ) = 0 for all a € P. A complete schedule
lowing holds: ends at level (after n selection steps). This allows us to opti-

mize the look-up for final solutions by simply checking in the so-
THEOREM 1. For determining a time-optimal schedule, it is lution space, at a given computation tiraethe leveln. Note that
sufficient to keep just one optimal target-schedudenong all those RPo(n,0) = n(n - |P| + 1), calledh,, in the following.
target-schedules’ for the same subDAG; . that have the same . . . . .
time profileP and the same space profileand to uses as apre- 4.3 Implications to instruction selection

fix for all target-schedules that could be created from these target-  An instructiony that may match a node is only applicable

schedules’ by a subsequent selection step. (and thus, selectable) in a certain scheduling step if its operands
are available in the “right” residence classes. Further instructions
The proof is a straightforward extension of our proof in [8]. may become applicable after applying one or several data transfer
. . instructions that broaden the residence of some values.
4.2 StrUCtu“ng of the solution Space We denote byy the set of IR nodes that are covered by a se-

We structure the solution space as a three dimensional grid, aslected instructiory. Note that applying an instructianthat covers
shown in Figure 2. The grid axes are the level (i.e., length of the p = |x| > 1 IR nodes skipp — 1 levels in the extended selection
partial schedule), execution time, and the residence potential (in DAG. The topological sorting algorithm is extended accordingly to
terms of our adapted functidRPo). handle selections with > 1.



4.4 The entire algorithm

We extend the definition of selection nodes [9, 8] accordingly:

An extended selection noder ESNoddor short, is identified by
a quadruple; = (z,t, P, R), consisting of a zero-indegree sgt
a space profiler, a time profileP, the time reference poirit of
P in the schedules which is stored as an attributeschedulein
that node. Technically, ESNodes can be retrieved efficiently, e.g.
by hashing (as applied in the current implementation).

According to Theorem 1 it is sufficient to keep as the attribute
n.scheduleof an ESNode), among all target-schedules with equal
zero-indegree set, equal time-profiles and equal space profiles, ong
with the shortest execution time.

The overall algorithmtimeopt is depicted in Figure 3. The func-
tion updatespaceinserts a new ESNode in the extended selection
DAG if there is no ESNode with same zero-indegree set, same time
profile, same space profile and lower reference time. Otherwise,
the new ESNode is discarded immediately. If such an ESNode with
higher reference time exists, that ESNode is removed and the new
ESNode is inserted instead.

4.5 Example

Figure 4 illustrates the resulting extended selection DAG for the
example DAG shown in the lower right corner of Figure 4. The
example assumes a two-issue target processor with two functional
units, Uy with latency?; = 1 and U, with latencyf, = 2. In-
structions that could be selected for DAG nadsre to be executed
on unit U, those for all other DAG nodes dif;. For simplicity
we assume that the target processor has only two residence classe
namely a general purpose register file and the memory. We assumé
that the result ot/> can be written only to memory.

For better readability each node of Figure 4 is organized into
three layers. The top layer of each node represents the zero-indegre
setz and the execution time in terms of clock cycles of the associ-
ated schedule. For example, the top node contains the set of DAG
leaves as zero-indegree sgt, b}, and the execution time ¢ as
the schedule is initially empty. The second layer represents the time
profile and its reference time. In our example the time profile has
one entry for each functional unit since we have a multi-issue archi-

tecture. The dashes in between parentheses denote empty (not yet.

used) time slots for a functional unit. Initially all functional units
are empty and the reference time is 0. The bottom layer shows the|
space profile, i.e. the mapping of alive nodes to residence classes
and their associated residence potenf&ofz, |schedule)|).
Initially the nodes reside in none of the residence classes. We could
have started with a preset residence profile, but in this example we
assume that the leaves are constants and do not need to reside |
any residence class.

In Figure 4 the ESNodes are only grouped according to their
level (increasing from top to bottom). The dashed arrows rep-
resent transfer instructions inserted by the algorithm, which add
a progress in residence potential but not in length. The crossed
ESNodes are pruned by the algorithm. ESNodes marked “not se-
lectable” are not expanded further because their space profile does
not match the requirements of the candidate instructions that could
be selected there.

4.6 Improvement: Exploiting symmetry
To cope with the combinatorial explosion, we exploit symmetry

int maxtime« 0;

function timeopt( DAG G with n nodes andetz, of leaves)
List<ESNode> Ly, x, < empty listvh Vk VI;
no <—new ESNOdQZo, Po, Ro, to);
no.schedule— 0
Lo,0,0.insernew List<ESNode> (n0));
hm < n(|V]|P| + 1);
for k from Oto infinity do // outer loop: over time axis
checkstopn(|V'||P| + 1), [V||P], k);
for levell from0ton — 1 do
for residence potentidl from I(|V||P| + 1)
to (I +1)(|V||P|+1) —1do
forall n = (z,t,P,R) € Lp,; do
forall v € zdo
for all target-instructiong € ¥(v) that are
selectable givern and space profil&
let x = { nodes covered by };
2" « selectiofv, 2);
Updatesl:’acéna zla Y X l7 k7 |X|)
for all v € alive(z) do
for all possible transfer® of v do
if T selectablehen
updatespacén, z, T, {v}, 1, k,0)
end function timeopt

h

function updatespace( ESNode n = (z,t, P, R),
setz' (zero-indegree set), target-instruction y,
setx of IR nodes covered by,

2

’
h

levell, timek, integerp (progress))
(s',R") «+ (n.schedulex y, R);
k<« 7(s');

°p profile(s');

t' is the time reference point ¢°', R') in s’
n' < new ESNode(2',t', P', R');
h' < RPo(l + p, alive(z));
forall Ly ;14 With £ < j < maxtimedo
if " < L j,14pl00kup(2’, P', R') exists then

break;
if " =(2,t",P',R') existsthen
if k"< j then

Ly j14+p-removén’); Ly g 4p-insert(n’);
else forgetn’ end if
else Ly pr 14p-inser(n’);
maxtime« max(maxtimek');
Lif 1+ p=mnthen checkstoph’, 0, k);
end function updatespace

function checkstoph., h2, k)
for all A from hy to hy + ha do
if Lp,k,n.noONempty) then
exit with solutionn.scheduldor somen € Ly, , k.n;
end function checkstop

Figure 3: The algorithm for determining a time-optimal sched-

ule, taking instruction selection and transfers into account.

properties similar to those characterized by Chou et al. [2] which ~ We define arequivalence relatioon IR nodes such that, when-
allows us to reduce the solution space and thus the optimizationever two equivalent nodes, v are simultaneously in the zero-
time. The main difference is that our integrated framework includes indegree set, we need to consider only one order, salyeforev,
instruction selection, while Chou et al. assume that the instruction instead of both, because the other order would finally not make any
selection has already been fixed in an earlier compiler phase. difference on time and space requirements. An in-depth formal de-
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Figure 4: Solution space (extended selection DAG) for the example DAG in the right lower corner.

Connector (B)

LOAD LOAD LOAD LOAD LOAD LOAD LOAD LOAD

Figure 5: Example DAG [10, Chap. 4]

scription of equivalence in terms of graph isomorphism constraints
would go beyond the space limits of this paper. A special case of
equivalence is shown in the DAG in Figure 5 where all Load nodes
are equivalent to each other.

We improve thdimeoptalgorithm in Figure 3 by modifying the
loop forall v € z, such that a node € z is just skipped if it is
equivalent to any other € 2 that was already tried.

4.7 Extension to global code generation

For a given basic block, we create an artificial entry node with
all DAG leaves as successors, and an artificial exit node with all

multiple entries require merging of profiles over the ingoing edges,
which may lead to a loss of precision. For loops, this would ad-
ditionally require a fixpoint iteration. Loop unrolling may enlarge
the scope of local code generation. However, other code genera-
tion techniques for loops, such as software pipelining, should also
be taken into account. This is an issue of future research.

5. HARDWARE DESCRIPTION
5.1 Example: TI-C62x DSP

In the experiments with our prototype framework we generated
code for several simplified variants of the TI-C62x DSP [13] as
shown in Figure 6. The simplifications consist in that we do not
cover all possible instructions and have less constraints.

TI-C62x is a load-store architecture with two separate register
files A and B, each of which contains 16 general purpose registers
of 32 bit length. Eight functional units, including two multipliers,
allow a maximum issue rate of eight instructions per clock cycle.
The eight functional units are divided into two symmetric groups
of four units, where L1, S1, M1 and D1 are connected to register
file A,and L2, S2, M2 and D2 are connected to register file B. Most
instructions have zero delay slots (MOVE, ADD). The LOAD in-
struction has a delay of four. Functional units work on their local

DAG roots as predecessors, to specify values and their residenceegister file, with the exception that there are two cross-paths that
classes that are alive on entry or at exit from the basic block. Theseallow up to two values to flow from one register file to another as an
nodes correspond to empty instructions that take no resources andperand of an instruction. There are move instructions that allow
no time but carry a time and space profile. The entry node may be to transfer data between register files. Those moves use the cross

preset with a certain time and space profile. After optimization, the
exit node holds the resulting profiles at the end of the basic block.

path X1 (resp., X2) to transfer data from register file B to register
file A (resp., from register file A to register file B).

These nodes can serve as connectors to propagate profiles along Additional constraints, relevant for our following specifications

control flow edges.

The algorithm described above can be immediately applied to
extended basic bloc&2], by applying it first to the leading basic
block, then propagating the time and space profileBgE exit
node to the entry nodes of its immediate control flow successors,
optimizing for these, and so forth. As there is no join of control

flow in an extended basic block, there is no need to merge profiles.

In acyclic regions of the control flow graph, basic blocks with

and examples, consist in that the processor may issue up to two
LOAD/STORE instructions only if memory addresses are located
in different register files.

5.2 ADML

Our goal is to provide a retargetable code generator for various
hardware architectures. The structure of a processor, as far as rele-
vant for the generation of optimal code, is specified in a structured



Program cache/Program memor . . . . . . .
£ g y Finally, theinstruction _set section defines the instruction

set for the target processor. Each instruction defines in which res-
‘ idence classes the source operamgsl (andop2) should reside,

SRS O AN O W AN W S W AN Y U S and in which residence class the resalt@) is produced. This de-
t?i @z o1/ \.o2/ Eﬂj Ej fines the constraints for the selectability of a given instruction at a
given scheduling step of our dynamic programming algorithm.

‘ Register file A (A0-A15) Register file B (B0-B15)

Data cache/Data memory An abstract IR node may generally correspond to several seman-
tically equivalent target instructions. For a given IR operator we
Figure 6: TI-C62x family DSP processor. enumerate the set of all semantically equivalent instructions that
cover that operator. Each IR operator is identified by an integer
value that is specified agp field of theinstruction node in
architecture description language, calkedthitecture Description  our description. Théd field is only for readability and debugging
Mark-up Languag€ADML), which is based on XML. purposes. In the following instruction set specification an IR ad-
An ADML document contains four sections: dition (ADDP4 can be computed using either the instructhddD

L1, orADD .L2 in TI-C62x notation. That is, an addition can
be performed using the functional unif or L2. The choice of

(2) residence classes the instruction depends on the residence of operands: Instruction
ADD .L1 is selectable if its operandegl andop2) are in the
residence clas8, and it produces the result back to the residence
(4) instruction set classA.

(1) registers
(3) functional units

In the following example description ellipses are only used for i struction set>
brevity and are not part of the specification. <instruction id="ADDP4" op="4407">
<target id="ADD .L1" opO="A"
opl="A" op2="A" use_fu="L1"/>
<target id="ADD .L2" opO="B"
opl="B" op2="B" use_fu="L2"/>

<architecture omega="8">
<registers> ... </registers>
<residenceclasses> ... </residenceclasses>
<funits> ... </funits>
<instruction_set> ... </instruction_set>

X <i i
</architecture> f/instruction

The fieldomega of thearchitecture ~ node specifies the is- <transfer> e
sue width of the architecture. <target id="MOVE" op0="r2" op1="r1">

Theregisters  section enumerates all registers present on the <use_]1:uf::le"'/ >
architecture. Each register is mapped to a unique name. <use_fu="L1"/>

</target>
<registers>
<reg id="A0"/> <reg id="Al"/> .. </transfer>
</registers> </instruction_set>
The residenceclasses section defines the different resi- As part of the instruction set, we additionally specify transfer
dence classes of the architecture. In our example, the TI-C62x instructions that move data between different residence classes.
processor has three residence classes: registeh filegister file For future extensions of ADML we plan to express additional in-
B, and the memory. formation, such as the immediate use of a value by multiple func-
tional units via the cross path. Finally, we would like to add a more
<residenceclasses> flexible way of expressing constraints that cannot be expressed in
<residenceclass id="A"> the basic ADML structure.
<reg id="A0"/> <reg id="A1"/> ...
Shesidenceclass> .. 6. IMPLEMENTATION, FIRST RESULTS
<residenceclass id="B"> ; . .
<reg id="B0"/> <reg id="B1"/> ... The current |mplementat|on_ is based on our previous framework
</residenceclass> [8]. We use the LEDA [11] library for the most important data
<residence id="MEM" size="32"/> structures and graphs. We use LCC [3] as C front-end. The rest of
</residenceclasses> the system is implemented in C++. For parsing ADML files we use
the XML parser Xerces.
An optional parametesize specifies the size of memory mod- The order of constructing the solution space influences consid-
ules. erably the space requirements of our optimizer. The residence po-

Thefunits  part describes the characteristics of each functional tential gives information about the space occupation. We experi-
unit of the processor in terms of occupation and latency cycles. ~ mented with two different orders of the main loops along the level
axis and the residence potential axis. If the innermost loop is along

<funits> the residence potential axis, the resulting time-optimal schedule ex-
<fu id="L1" occupation="1" latency="1"/> hibits multiple moves that do not affect the total time but that are
<fu id="S1" occupation="1" latency="1"/> inserted because higher residence profiles are generally preferred.

This however can have a negative impact on code size and energy
</funits> consumption. For that reason we prefer to have the innermost loop
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Figure 8: Optimal code generation for parallel loads: optimiza- Figure 9: Optimization time requirements
tion time without and with exploiting symmetry.
e ‘Space requ\remer‘n °
Basic block V] time[s] space[MB] #lmpr. #merged #ESNodes
cplxinit 14 201 38 0 140183 44412
vectcopy init 12 16 11 26 61552 12286 o o
vectcopy loop 14 47 15 58 149899 29035 ° 8 IS ¢
matrixcopy loop 18 18372 194 1782 5172442 722012 100 ¢ R ]
vectsum loop 12 11 10 9 36715 8896 - ° 3
vectsum unrolled 17 1537 58 3143 1316684 198571 = s ° °
matrixsum loop 17 10527 154 2898 3502106 564058 g
dotproduct loop 17 3495 77 4360 2382094 345256 L. .
codebksrch bb33 17 431 41 306 319648 64948 10} 8 ¢ J
codebksrch bb29 13 7 12 0 17221 6433
codebksrch bb26 11 11 13 144 73761 19275
vecsumc bb6 20 9749 154 5920 3744583 499740
vecmax bb8 13 79 35 0 99504 37254
fni_4 (FFTW)bb6 15 454 59 0 227561 75396 . ‘ ‘ ‘ ‘ ‘
fni_4 (FFTW) bb8 15 432 57 0 225610 72242 10 12 14 oaG i 18 20
fni.4 (FFTW)bb9 17 5106 197 18 1398073 338964
fni_4 (FFTW) bb10 13 110 32 0 102747 35685 . . .
fni_4 (FFTW) bb1l 15 483 59 0 234767 76753 Figure 10: Optimization space requirements
fni_4 (FFTW) bb12 17 4885 198 16 1385802 338096
codebksrch bb12 17 4822 142 1545 2214194 376714
gggggti:gﬂ Eggi g g 13 g 132;? gglzj tion problem for the same architecture. We obtained the optimal
fir_vselp bb10 19 9413 131 3463 4003244 565860 solution _(see Table 7) in 15 minutes a_nd could th_ereby prove that
fir bb10 14 5106 161 2683 2331577 367212 the solution reported by Leupers was indeed optimal. The_resu_lts
allow to compare the effect of exploiting symmetry, as described in
) o . . . Section 4.6. For our measurements we used a 1500 MHz PC.
Table 2: Optimization time and space for various basic blocks Table 2 shows the behavior of our algorithm on a collection of
taken from DSP benchmark programs. Column #merged indi- basic blocks taken from handwritten example programs and DSP
cates how many partial solutions could be covered by the same  penchmarks (TI compench, FFTW). It appears that the algorithm
ESNode, which gives a rough impression of the amount of com- i practical for basic blocks up to size 20. The time and space

pression achieved. Column #Impr shows how often an actual  requirements of these examples are visualized in Figures 9 and 10.
improvement in time is obtained byupdatespacen the branch

if k' < j (see Fig. 3).
7. FUTURE WORK
Spilling to memory modules is currently not considered, as we

run along the level axis. An alternative could be a postprocessing assume that the register classes have enough capacity to hold all
of a solution to remove unnecessary moves. values of interest. However, this is no longer true for small resi-

The structuring and traversal order of the solution space allows dence classes, as e.g. in the case of the Hitachi SH3DSP. Our algo-
us to optimize the memory consumption of the optimization algo- rithm is, in principle, able to generate optimal spill code and take
rithm. As soon as we leave the le\@l, k, ) we can safely remove  this code already into account for determining an optimal sched-
all nodes stored at that level, because they will never be looked upule. On the other hand, taking spill code into consideration may
again. This is achieved by the fact that the residence potéfial considerably increase the space requirements. We plan to develop
is a monotonically growing function. further methods for the elimination of uninteresting alternatives.

As a particularly interesting example we consider the family of Note that our algorithm automatically considers spillingotber
DAGs consisting of parallel Load operations, as shown in Figure 5 register classealready now.
for the case of 8 Loads, which was taken from Leupers’ book [10, Large DAGs require heuristic pruning of the solution space to
Chap. 4] that describes a heuristic solution to the same optimiza- cope with the combinatorial complexity. This could, for instance,
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Figure 7: a) schedule gener- LD *A0.BO

LD *A0,A8 || MV A1,B8

LD *B8,B1 || LD *A2,A9 || MV A3,B10
LD *B10,B3 || LD *A4,A10 || MV A5,B12
LD *B12,B5 || LD *A6,A11 || MV A7,B14

(c)

LD *A0,A8 || MV A1,B8

LD *B8,B1 || LD *A2,A9 || MV A3,B10
LD *B10,B3 || LD *A4,A10 || MV A5,B12
LD *B12,B5 || LD *A6,A11 || MV A7,B14

ated by TI-C compiler (12 cycles) | p*a2B2 LD *B14,87 LD *B14,B7 || MV A8,B0
[10], b) heuristically optimized LD *A5,B5 MV A8,B0 MV A9,B2
schedule [10] (9 cycles), c) opti- LD *A7,A4 MV A9,B2 MV A10,B4
mal schedule generated by OPTI- h%;AG'BG '\IC/I\\//’:lloJ:BB% “ﬂ,\éﬁll'%
MIST (9 cycles) MV A8 B1
MV A9,B3
MV A4,B7

be achieved by limiting the number of ESNodes per cell of the solution is produced, or a heuristic based, if the time limit is ex-
three-dimensional solution space. ceeded. In this framework, the full phase integration is not possible
We did not yet really exploit the option of working with a lattice  for larger basic blocks, as the time complexity is too high.
of residence classes that would result from a more general defini-
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