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ABSTRACT
In contrast to standard compilers, generating code for DSPs can
afford spending considerable resources in time and space on op-
timizations. Generating efficient code for irregular architectures
requires an integrated method that optimizes simultaneously for in-
struction selection, instruction scheduling, and register allocation.

We describe a method for fully integrated optimal code genera-
tion based on dynamic programming. We introduce the concept of
residence classesandspace profiles, which allows us to describe
and optimize for irregular register and memory structures. In order
to obtain a retargetable framework we introduce a structured archi-
tecture description language, ADML, which is based on XML. We
implemented a prototype of such a retargetable system for optimal
code generation. Results for variants of the TI C62x show that our
method can produce optimal solutions to small but nontrivial prob-
lem instances with a reasonable amount of time and space.

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors—code generation

General Terms
Algorithms, Design, Languages, Experimentation, Performance

Keywords
Instruction scheduling, register allocation, instruction selection, in-
tegrated code generation, dynamic programming, space profile

1. INTRODUCTION
Today’s market of communication and consumer electronic sys-

tems is growing continuously. Such systems are mainly embed-
ded and require specialized, high performance processors such as
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Linköping University, project 01.06.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LCTES’02–SCOPES’02,June 19-21, 2002, Berlin, Germany
Copyright 2002 ACM 1-58113-527-0/02/0006 ...$5.00.

digital signal processors (DSPs). Code generation for such archi-
tectures must aim at limiting the cost, for instance by decreasing
the size of memory modules or the power consumption, or by an
efficient utilization of registers.

Generating code consists in solving several subproblems. The
most important ones are instruction selection, instruction schedul-
ing and register allocation. First a front-end translate a source pro-
gram to anIntermediate Representation(IR). Instruction selection
maps IR nodes into semantically equivalent instruction of the target
processor.Instruction schedulingreorders instructions, preserving
data dependencies, to make the program execute more efficiently.
Each instruction is mapped to a time slot when it is to be executed.
Register allocationmaps values corresponding to IR nodes to phys-
ical registers. An efficient mapping decreases the number of (slow)
memory accesses by keeping frequently used values in registers.

The state of the art in production compilers adopts a phase-based
approach where each subproblem is solved independently. How-
ever, most important subproblems of code generation are strongly
interdependent, and this interdependence is particularly strong in
the case of irregular processor architectures. In fact, techniques ap-
plied in compilers for general purpose processors do not produce
expected performance for irregular architectures. This is due to the
fact that hardware irregularities in data paths, multi-bank memory
organization and heterogeneous register sets impose intricate con-
straints on the applicability of special combinations of instructions
such as multiply and accumulate in the same clock cycle, depend-
ing on the location of operands and results, which in turn depend
on the current scheduling situation. Hence, the main problems in
code generation, namely instruction selection, instruction schedul-
ing, and register allocation, can generally not be optimally solved in
subsequent separate compiler optimization phases but must be con-
sidered simultaneously in an integrated optimization framework.

We consider an integrated framework that deals with instruction
selection, scheduling, and register allocation simultaneously. Of
course this increases the complexity of the problem. However, DSP
software industry is willing to spend a considerable amount of time
and space on optimization for critical program parts.

In previous work we introduced a dynamic programming method
for an integrated code generator to produce, for a regular processor
architecture, time-optimal code for a given number of registers.

In this paper we present the new concepts of residences and
space profiles that allow us to precisely describe irregular register
sets and memory structures. They are used as a basic data structure
in a modified dynamic programming algorithm to produce time-
optimal code for irregular architectures. The framework supports
a generalized form of instruction selection for VLIW architectures



that corresponds to forest pattern matching.
In this work we focus on optimality on the basic block level. We

also discuss the generalization to extended basic blocks [12]. An
extension to global code generation is planned.

Furthermore we introduce ADML, a structured architecture de-
scription language based on XML that we developed to make our
framework retargetable.

We report first results for variants of the TI C62x that show that
our method can produce an optimal solution to small but nontrivial
problem instances with a reasonable amount of time and space. The
method is intended for the final, aggressively optimizing produc-
tion run of the compiler. It can also be used to assess the quality of
faster heuristics. For instance, we could experimentally prove that
the heuristically optimized code given by Leupers [10, Chap. 4] is
indeed optimal.

2. FUNDAMENTALS

2.1 Modeling the target processor
We assume that we are given a superscalar or VLIW-like proces-

sor withf functional unitsU1; :::; Uf .
Theunit occupation timeoi of a functional unitUi is the number

of clock cycles thatUi is occupied with executing an instruction
before a new instruction can be issued toUi.

The latency`i of a unitUi is the number of clock cycles taken
by an instruction onUi before the result is available. We assume
thatoi � `i.

The issue width! is the maximum number of instructions that
may be issued in the same clock cycle. For a single-issue processor,
we have! = 1, while most superscalar processors and all VLIW
architectures are multi-issue architectures, that is,! > 1.

2.2 Basic terminology
In the following, we focus on code generation for basic blocks

where the data dependences among the IR operations form a di-
rected acyclic graph (DAG)G = (V;E). In the following, letn
denote the number of IR nodes in the DAG.

2.2.1 IR-level scheduling
An IR-schedule, or simplyschedule, of the basic block (DAG)

is a bijective mappingS : f1; :::; ng 7! V describing a linear
sequence of then IR operations inV that is compliant with the
partial order defined byE, that is,(u; v) 2 E ) S(u) < S(v). A
partial scheduleof G is a schedule of a subDAGG0 = (V 0; E \
(V 0 � V 0)) induced by a subsetV 0 � V where for eachv0 2 V 0

holds that all predecessors ofv0 in G are also inV 0. A partial
schedule ofG can be extended to a (complete) schedule ofG if it
is prefixed to a schedule of the remaining DAG induced byV �V 0.

2.2.2 Instruction selection
Naive instruction selection maps each IR operationv to one of

a set	(v) of equivalent, single target instructions: Amatching
target instructiony 2 	(v) for a given IR operationv is a target
processor instruction that performs the operation specified byv.
An instruction selectionY for a DAGG = (V;E) maps each IR
operationv 2 V to a matching target instructiony 2 	(v).

Our framework also supports the case that a single target instruc-
tion y covers a set� of multiple IR operations, which is quite com-
mon for a low-level IR. This corresponds to a generalized version of
tree pattern matching. In particular, the covering pattern needs not
have the shape of a tree but may even address disconnected nodes
of the DAG, for instance different 16-bit operations that could be
combined to a 32-bit MMX instruction.

The converse case of a single IR operation corresponding to mul-
tiple target instructions requires either lowering the IR or schedul-
ing on the target level only, rather than on the IR level, if we do
not want to compromise optimality by fixing a (prescheduled) se-
quence of subsequent target instructions for an IR operation.

A target instructiony may actually require time slots on several
functional units.

2.2.3 Target-level scheduling
A target-scheduleis a mappings of the time slots infU1; :::; Ufg
�N0 to instructions such thatsi;j denotes the instruction starting
execution on unitUi at time slotj. Where no instruction is started
on Ui at time slotj, si;j is defined asNOP. If an instructionsi;j
produces a value that is used by an instructionsi0;j0 , it must hold
j0 � j + `i. Also, it must holdj0 � j00 + oi wheresi0;j00 is the
latest instruction issued toUi0 beforesi0;j0 . Finally, it must hold
jfsi00;j0 6= NOP; 1 � i00 � fgj � !.

For a given IR-scheduleS and a given instruction selectionY ,
an optimal target-schedules can be determined in linear time by
a greedy method that just imitates the behavior of the target pro-
cessor’s instruction dispatcher when exposed to the instruction se-
quence given byY (S).

Theexecution time�(s) of a target-schedules is the number of
clock cycles required for executings, that is,

� (s) = max
i;j
fj + `i : si;j 6= NOPg:

A target schedules is time-optimalif it takes not more time that
any other target schedule for the DAG.

2.2.4 Register allocation
A register allocationfor a given target-schedules of a DAG is a

mappingr from the scheduled instructionssi;j to physical registers
such that the value computed bysi;j resides in a registerr(si;j)
from time slot j and is not overwritten before its last use. For
a particular register allocation, its register need is defined as the
maximum number of registers that are in use at the same time. A
register allocationr is optimal for a given target schedules if its
register need is not higher than that of any other register allocation
r0 for s. That register need is referred to as theregister needof
s. An optimal register allocation for a given target-schedule can be
computed in linear time in a straightforward way [4].

A target-schedule isspace-optimalif it uses no more registers
that any other possible target-schedule of the DAG. For single-issue
architectures with unit-time latencies, IR-schedules and target-sche-
dules are more or less the same, hence the register allocation can
be determined immediately from the IR schedule, such that space-
optimality of a target-schedule also holds for the corresponding IR-
schedule [9]. In all other cases, the register allocation depends on
the target-schedule.

2.3 Basic method
A naive approach to finding an optimal schedule consists in the

exhaustive enumeration of all possible schedules, each of which
can be generated by topological sorting of the DAG nodes.

Topological sortingmaintains a set of DAG nodes with indegree
zero, thezero-indegree set, which is initialized to the setz0 of DAG
leaves. The algorithm repeatedly selects a DAG nodev from the
current zero-indegree set, appends it to the current schedule, and
removes it from the DAG, which implies updating the indegrees of
the parents ofv. The zero-indegree set changes by removingv and
adding those parents ofv that now got indegree zero. This pro-
cess is continued until all DAG nodes have been scheduled. Most



Figure 1: The selection DAG (right hand
side) of the example DAG (middle bot-
tom) as a compression of the selection
tree (left upper corner) where all selec-
tion nodes with the same zero-indegree
set could be merged [9].
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heuristic scheduling algorithms differ just in the way how they as-
sign priorities to DAG nodes that control which nodev is being
selected from a given zero-indegree set. If these priorities always
imply a strict linear ordering of nodes in the zero-indegree set, such
a scheduling heuristic is also referred to aslist scheduling.

A recursive enumeration of all possibilities for selecting the next
node from a zero-indegree list generates all possible IR-schedules
of the DAG. This naive enumeration of all different topological
sortings of a DAG generates an exponential number of valid sched-
ules. As shown in [9], the naive enumeration cannot be applied
for basic blocks larger than 15 instructions even if only space-
optimization matters. For time optimization and especially in the
context of irregular register sets the number of variants to be enu-
merated grows even faster.

Exhaustive enumeration of schedules produced by topological
sorting implicitly builds a tree-like representation of all schedules
of the DAG, called theselection tree, which is leveled. Each node
of the selection tree corresponds to an instance of a zero-indegree
set of DAG nodes during topological sorting. A directed edge con-
nects a nodeu to a nodev of a selection tree if there is a step in
the selection process of topological sorting that produces the zero-
indegree setv from u.

In previous work [8] we pointed out that multiple instances of the
same zero-indegree set may occur in the selection tree. For all these
instances, the same setscheduled(z) of nodes in the same subDAG
Gz of G below z has been scheduled. This leads to the idea that
we could perhaps optimize locally among all the partial schedules
corresponding to equal zero-indegree set instances, merge all these
nodes to a single selection node and keep just one optimal par-
tial schedule to be used as a prefix in future scheduling steps (see
Figure 1). In [9] we have shown that this optimization is valid
when computing space-optimal schedules for a single-issue pro-
cessor. When applying this idea to all nodes of a selection tree, the
selection tree becomes aselection DAG. In the same way as the se-
lection tree, the selection DAG is leveled, where all zero-indegree
setsz that occur after having scheduledl = jscheduled(z)j DAG

nodes appear at levell in the selection DAG, see Figure 1. This
grouping of partial schedules is applicable to schedules that are
comparablewith respect to the optimization goal. Comparability
also depends on the target architecture. For space-optimality on
single-issue architectures with unit-time latencies it is sufficient to
compare just the zero-indegree sets, since there is a one-to-one re-
lationship between a zero-indegree setz and alive(z), the set of
values that reside in registers at the situation described byz:

alive(z) = fu 2 scheduled(z):
9(u; v) 2 E, v =2 scheduled(z) g

The resulting compression of the solution space decreases con-
siderably the optimization time and makes it possible to generate
space-optimal schedules for DAGs of reasonable size [9].

2.4 Time profiles
For time-optimal schedules, comparability of partial schedules

requires a more involved definition. In previous work [8] we intro-
duced the concept of atime profilethat represents the occupation
status of all functional units at a given time. It records the infor-
mation which instructions are currently being executed and have
not yet completed on every functional unit, which may influence
future scheduling decisions. Two partial schedules are comparable
if they have the same zero-indegree set and the same time profile
[8]. It is sufficient to keep, among comparable schedules, one with
least execution time. Together with other optimizations [8], this
compression makes the algorithm practical also for medium-sized
DAGs with up to 50 nodes.

Formally, atime profileP = (d; p) consists of aissue horizon
displacementd 2 f0; 1g and aprofile vector

p = ( p1;1; :::; p1;`1+d�1;
p2;1; :::; p2;`2+d�1;
: : : ;
pf;1; :::; pf;`f+d�1)

of
Pf

i=1(`i + d � 1) entriespi;j 2 V [ fNOPg. An entrypi;j of



the profile vector denotes either the corresponding DAG nodev for
some instructiony issued toUi, or aNOP(–) where no instruction is
issued. Note that for a unit with unit-time latency there is no entry
in p. The displacementd accounts for the possibility of issuing an
instruction at a time slot where some other instruction has already
been issued. For single-issue processors,d is always 0, thus we
can omitd in P . For an in-order multi-issue architecture, we have
d 2 f0; 1g where ford = 1 at least one and at most! � 1 of the
entries corresponding to the most recent issue time,pi;1 for 1 �
i � f , must be non-NOP. For out-of-order issue architectures, the
displacement could be greater than one, but we need not consider
this case as we aim at computing an optimal schedule statically. Of
course, not all theoretically possible time profiles do really occur in
practice.

The time profileP = profile(s) of a given target-schedules
is determined froms as follows: Lett � 0 denote the time slot
where the last instruction is issued ins. ThenP = (d; p) is the
time profile that is obtained by just concatenating (in reverse order
to determinep) the DAG nodes (orNOPs) corresponding to the
`i + d � 1 latest entriessi;t�d�`i+2; :::; si;t in s for the unitsUi,
i = 1; :::; f , whered = 1 if another instruction may still be issued
at time t to a unitUi with si;t = pi;1 = NOP, and 0 otherwise.
Entriessi;j with j < 0 are regarded asNOPs. t is called thetime
reference pointof P in s. Note thatt is always smaller than the
execution time ofs.

Hence, a time profile contains all the information required to de-
cide about the earliest time slot where the node selected next can
be scheduled: For determining a time-optimal schedule, it is suf-
ficient to keep just one optimal target-schedules among all those
target-scheduless0 for the same subDAGGz that have the same
time profileP , and to uses as a prefix for all target-schedules that
could be created from these target-scheduless0 by a subsequent
selection step [8].

3. SPACE PROFILES
A space profile for a zero-indegree setz describes in which reg-

ister classes the values inalive(z) reside. We introduce the concept
of a residence classas a generalization of a register class, by mod-
eling memory modules as a special kind of registers.

3.1 Registers and residences
We are given a DSP architecture withk registersR1; : : : ; Rk and

� different (data) memory modulesM1; : : : ;M�. Standard archi-
tectures with a monolithic memory have� = 1 memory module.

A value can reside simultaneously in severalresidence places,
for instance, in one or several registers and/or in one or several
memory modules. For simplicity of presentation we assume that
the capacity of each register is one value. Note that this is not gen-
erally the case for most DSPs. For instance, for the TI-C62x family
DSPs the ADD2 instruction performs two 16-bit integer additions
on upper and lower register halves with a single instruction. A
corresponding generalization is straightforward. Furthermore, we
assume the capacity of a memory module to be unbounded.

Let R = fR1; : : : ; Rkg denote the set of register names and
M = fM1; : : : ;M�g the set of memory module names. Then,
RM = R[M denotes the set of allresidence places.

The set of the residence places where a certain valuev resides at
a certain point of timet is called theresidenceof v at timet.

An instruction takes up to two operands (called operand1 and
operand2 in the following) and generates up to one result (called
operand0 in the following). For each instructiony and each of
its operandsq, 0 � q � 2, the instruction set defines the set of
possible residence places,Res(y; q) � RM.

For instance, for load-store architectures with a single memory
module, binary arithmetic operations expect their operands1 and2
in various registers and write their result to a register again. An
ordinary Load instruction expects of course an address value as
operand1, which should reside in some register, but the value being
loaded actually resided in memory. For simplicity of presentation
we assume that the loaded value is implicitly given as operand2 of
a Load instruction. Similarly, an ordinary Store instruction takes
an address value as operand1 and a register holding the value to be
stored as operand2, and creates implicitly an operand0 with res-
idence in memory. There may even be special instructions, called
transfer instructionsin the following, that move values directly be-
tween different memory modules or register files. Load and Store
could be interpreted as transfer instructions as well. The artificial
memory operands allow to model data dependences in memory.
Table 1 gives a summary of instruction types for such a simple ex-
ample architecture.

3.2 Residence classes and versatility
We derive general relationships between registers and register

classes by analyzing the instruction set.
For two different residence placesRi andRj inRM, we denote

by Ri � Rj (read: Rj is at least asversatileasRi) that for all
instructionsy, Ri 2 Res(y; q) ) Rj 2 Res(y; q) for 0 � q � 2.
In other words, whereverRi can be used as operand, one may use
Rj as well.

We denoteRi � Rj for Ri � Rj ^ Rj � Ri, and we say
Ri < Rj iff Ri � Rj ^ :Rj � Ri.

For a given setI of instructions of the target processor, aregister
classis a maximum-size subset ofRM, containing registers that
can, in all instructions inI, be used interchangeably as operand 1,
as operand 2, or as result location.I could be the entire instruction
set, or may be narrowed to the set of instructions that are applicable
at a certain scheduling situation.

Note that register classes are just the equivalence classes of the
“equally versatile” relation (�).
EXAMPLE: For the TI-C62x (see Figure 6) there are two register
classesA andB consisting of 16 registers each, each one connected
to a memory bank.

For the Hitachi SH7729 SH3-DSP [6] with its eight DSP regis-
ters, we find thatM0 � M1, A0 < A1, Y1 < Y0, X1 < X0 and
X0 < A1. Via transitivity of� this means alsoX1 < A1.

Hence,M0 andM1 form one register classM , while all other
register classes contain just one register and are thus named the
same way.�

The versatility relation among registers can be lifted to register
classes in a natural way: A register classRC2 is at least as versatile
as a register classRC1 iff RC1 � RC2 and for allR1 2 RC1,
R2 2 RC2 holds thatR1 � R2.

Following the generalization of registers to residences, we obtain
the straightforward generalization of register classes toresidence
classes, where the residence class of a memory module residence
is just that memory module name itself. LetP denote the set of
all residence classes. For now we do not consider residence classes
that overlap.

In order to be able to traverse our solution space in a grid manner,
we need a relation that classifies a set of partial schedules according
to the location of the operands. We define a functionrpot : V 7!
N that sum up the numbers of different residence classes for each
node in a set� of IR nodes:

rpot(�) =
X
v2�

jresidence(v)j



instruction operand 0 operand 1 operand 2 operand 3 meaning

COMP1 register register – – unary arithmetic operation
COMP2 register register register – binary arithmetic operation
MOV register register – – add another register residence
LOAD register register (memory) – load a value from a memory module
STORE (memory) register register – store a value to a memory module
MMOV (memory) register register (memory) direct memory–memory move

Table 1: Overview of compute and data transfer instruction types for a simple RISC architecture with a single memory module.

For a given residence class� 2 P we define for a given set� of IR
nodes

rpot(�; �) =
X
v2�

�
1 it iff v resides in�
0 otherwise

Since scheduled(z) increases in size at each scheduling step,
rpot(scheduled(z)) is monotonically increasing as topological sort-
ing proceeds. Additionally, a transfer instruction may move a value
to a residence in another residence class where that value was still
missing, and thus increases the “residence potential” of that value
even ifscheduled(z) is not affected by such transfer instructions.

In contrast,rpot(alive(z)) is not monotonic since some nodes
may leavealive(z) at a scheduling step. Therefore we define the
residence potentialas a functionRPot that computes, for a given
zero-indegree setz and a levell = jscheduled(z)j an index on the
residence potential axis of the solution space:

RPot(z; l) = l � (jPj � jV j+ 1) +
X
�2P

rpot(�; alive(z))

The maximum residence potential that may occur for a given
DAG is jPj�jV j. That means that all nodes of the DAG were present
in all residence classes. This gives a simple lower bound ofl �(jPj �
jV j+ 1) for RPoteach time we schedule a node (and thus increase
the levell) or a transfer instruction that does not increase the level
(but the residence potential). Thus,RPot(z; l) is a monotonically
growing function in terms of our algorithm.

4. SYNTHESIS

4.1 Time-space profiles
We extend the dynamic programming algorithm of Section 2.3 to

cope with irregular register sets and memory structures by combin-
ing time profiles and space profiles to a joint data structure,time-
space profiles. For the comparability of partial schedules the fol-
lowing holds:

THEOREM 1. For determining a time-optimal schedule, it is
sufficient to keep just one optimal target-schedules among all those
target-scheduless0 for the same subDAGGz that have the same
time profileP and the same space profileR and to uses as a pre-
fix for all target-schedules that could be created from these target-
scheduless0 by a subsequent selection step.

The proof is a straightforward extension of our proof in [8].

4.2 Structuring of the solution space
We structure the solution space as a three dimensional grid, as

shown in Figure 2. The grid axes are the level (i.e., length of the
partial schedule), execution time, and the residence potential (in
terms of our adapted functionRPot).
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Figure 2: Structuring the space of partial solutions as a three-
dimensional grid.

This structure supports efficient retrieval of all possible candi-
dates for comparable partial solutions: They are located within a fi-
nite rectangular subgrid whose offset is determined by the schedule
length, the time profile’s reference time, and the residence poten-
tial, and whose extents are determined by the architectural param-
eters such as maximum latency or number of residence classes.

Another advantage of this grid structure is that, by taking the
precedence constraints for the construction of the partial solutions
into account, we can change the order of construction as far as pos-
sible such that the more promising solutions will be considered first
while the less promising ones are set aside and reconsidered only
if all the initially promising alternatives finally turn out to be sub-
optimal. This means that we proceed along the time axis as first
optimization goal, while the axes for length and residence potential
have secondary priority.

Obviouslyrpot(�; ;) = 0 for all � 2 P. A complete schedule
ends at leveln (after n selection steps). This allows us to opti-
mize the look-up for final solutions by simply checking in the so-
lution space, at a given computation timek, the leveln. Note that
RPot(n; ;) = n(n � jPj+ 1), calledhm in the following.

4.3 Implications to instruction selection
An instructiony that may match a nodev is only applicable

(and thus, selectable) in a certain scheduling step if its operands
are available in the “right” residence classes. Further instructions
may become applicable after applying one or several data transfer
instructions that broaden the residence of some values.

We denote by� the set of IR nodes that are covered by a se-
lected instructiony. Note that applying an instructiony that covers
p = j�j > 1 IR nodes skipsp� 1 levels in the extended selection
DAG. The topological sorting algorithm is extended accordingly to
handle selections withp > 1.



4.4 The entire algorithm
We extend the definition of selection nodes [9, 8] accordingly:
An extended selection node, or ESNodefor short, is identified by

a quadruple� = (z; t; P;R), consisting of a zero-indegree setz,
a space profileR, a time profileP , the time reference pointt of
P in the schedules which is stored as an attribute�:schedulein
that node. Technically, ESNodes can be retrieved efficiently, e.g.
by hashing (as applied in the current implementation).

According to Theorem 1 it is sufficient to keep as the attribute
�:scheduleof an ESNode�, among all target-schedules with equal
zero-indegree set, equal time-profiles and equal space profiles, one
with the shortest execution time.

The overall algorithm,timeopt, is depicted in Figure 3. The func-
tion updatespaceinserts a new ESNode in the extended selection
DAG if there is no ESNode with same zero-indegree set, same time
profile, same space profile and lower reference time. Otherwise,
the new ESNode is discarded immediately. If such an ESNode with
higher reference time exists, that ESNode is removed and the new
ESNode is inserted instead.

4.5 Example
Figure 4 illustrates the resulting extended selection DAG for the

example DAG shown in the lower right corner of Figure 4. The
example assumes a two-issue target processor with two functional
units,U1 with latency`1 = 1 andU2 with latency`2 = 2. In-
structions that could be selected for DAG nodeb are to be executed
on unitU2, those for all other DAG nodes onU1. For simplicity
we assume that the target processor has only two residence classes,
namely a general purpose register file and the memory. We assume
that the result ofU2 can be written only to memory.

For better readability each node of Figure 4 is organized into
three layers. The top layer of each node represents the zero-indegree
setz and the execution time in terms of clock cycles of the associ-
ated schedule. For example, the top node contains the set of DAG
leaves as zero-indegree set,fa; bg, and the execution time is0cc as
the schedule is initially empty. The second layer represents the time
profile and its reference time. In our example the time profile has
one entry for each functional unit since we have a multi-issue archi-
tecture. The dashes in between parentheses denote empty (not yet
used) time slots for a functional unit. Initially all functional units
are empty and the reference time is 0. The bottom layer shows the
space profile, i.e. the mapping of alive nodes to residence classes,
and their associated residence potentialRPot(z; jscheduled(z)j).
Initially the nodes reside in none of the residence classes. We could
have started with a preset residence profile, but in this example we
assume that the leaves are constants and do not need to reside in
any residence class.

In Figure 4 the ESNodes are only grouped according to their
level (increasing from top to bottom). The dashed arrows rep-
resent transfer instructions inserted by the algorithm, which add
a progress in residence potential but not in length. The crossed
ESNodes are pruned by the algorithm. ESNodes marked “not se-
lectable” are not expanded further because their space profile does
not match the requirements of the candidate instructions that could
be selected there.

4.6 Improvement: Exploiting symmetry
To cope with the combinatorial explosion, we exploit symmetry

properties similar to those characterized by Chou et al. [2] which
allows us to reduce the solution space and thus the optimization
time. The main difference is that our integrated framework includes
instruction selection, while Chou et al. assume that the instruction
selection has already been fixed in an earlier compiler phase.

int maxtime 0;

function timeopt( DAG G with n nodes andsetz0 of leaves)
List<ESNode> Lh;k;l  empty list8h 8k 8l;
�0  new ESNode(z0; P0; R0; t0);
�0:schedule ;
L0;0;0:insert(new List<ESNode> (�0));
hm  n(jV jjPj+ 1);
for k from 0 to infinity do // outer loop: over time axis

checkstop(n(jV jjPj+ 1); jV jjPj; k);
for level l from 0 ton� 1 do

for residence potentialh from l(jV jjPj+ 1)
to (l+ 1)(jV jjPj+ 1)� 1 do

for all � = (z; t; P;R) 2 Lh;k;l do
for all v 2 z do

for all target-instructionsy 2 	(v) that are
selectable givenz and space profileR

let � = f nodes covered byy g;
z0  selection(v; z);
updatespace(�; z0; y; �; l; k; j�j)

for all v 2 alive(z) do
for all possible transfersT of v do

if T selectablethen
updatespace(�; z; T; fvg; l; k; 0)

end function timeopt

function updatespace( ESNode � = (z; t; P;R),
setz0 (zero-indegree set), target-instruction y,
set� of IR nodes covered byy,
level l, time k, integer p (progress) )

(s0; R0) (�:schedule./ y;R);
k0  � (s0);
P 0  profile(s0);
t0 is the time reference point of(P 0; R0) in s0

�0  new ESNode(z0; t0; P 0; R0);
h0  RPot(l+ p; alive(z0));
for all Lh0;j;l+p with k � j � maxtimedo

if �00  Lh0;j;l+p.lookup(z0; P 0; R0) exists then
break;

if �00 = (z0; t00; P 0; R0) exists then
if k0 < j then

Lh0;j;l+p.remove(�00); Lh0;k0;l+p.insert(�0);
else forget�0 end if

else Lh0;k0;l+p.insert(�0);
maxtime max(maxtime; k0);

if l+ p = n then checkstop(h0; 0; k);
end function updatespace

function checkstop(h1; h2; k)
for all h from h1 to h1 + h2 do

if Lh;k;n.nonempty() then
exit with solution�:schedulefor some� 2 Lhm;k;n;

end function checkstop

Figure 3: The algorithm for determining a time-optimal sched-
ule, taking instruction selection and transfers into account.

We define anequivalence relationon IR nodes such that, when-
ever two equivalent nodesu, v are simultaneously in the zero-
indegree setz, we need to consider only one order, sayu beforev,
instead of both, because the other order would finally not make any
difference on time and space requirements. An in-depth formal de-
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Figure 4: Solution space (extended selection DAG) for the example DAG in the right lower corner.
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Figure 5: Example DAG [10, Chap. 4]

scription of equivalence in terms of graph isomorphism constraints
would go beyond the space limits of this paper. A special case of
equivalence is shown in the DAG in Figure 5 where all Load nodes
are equivalent to each other.

We improve thetimeoptalgorithm in Figure 3 by modifying the
loop forall v 2 z, such that a nodev 2 z is just skipped if it is
equivalent to any otherv0 2 z that was already tried.

4.7 Extension to global code generation
For a given basic block, we create an artificial entry node with

all DAG leaves as successors, and an artificial exit node with all
DAG roots as predecessors, to specify values and their residence
classes that are alive on entry or at exit from the basic block. These
nodes correspond to empty instructions that take no resources and
no time but carry a time and space profile. The entry node may be
preset with a certain time and space profile. After optimization, the
exit node holds the resulting profiles at the end of the basic block.
These nodes can serve as connectors to propagate profiles along
control flow edges.

The algorithm described above can be immediately applied to
extended basic blocks[12], by applying it first to the leading basic
block, then propagating the time and space profiles ofB1 ’s exit
node to the entry nodes of its immediate control flow successors,
optimizing for these, and so forth. As there is no join of control
flow in an extended basic block, there is no need to merge profiles.

In acyclic regions of the control flow graph, basic blocks with

multiple entries require merging of profiles over the ingoing edges,
which may lead to a loss of precision. For loops, this would ad-
ditionally require a fixpoint iteration. Loop unrolling may enlarge
the scope of local code generation. However, other code genera-
tion techniques for loops, such as software pipelining, should also
be taken into account. This is an issue of future research.

5. HARDWARE DESCRIPTION

5.1 Example: TI-C62x DSP
In the experiments with our prototype framework we generated

code for several simplified variants of the TI-C62x DSP [13] as
shown in Figure 6. The simplifications consist in that we do not
cover all possible instructions and have less constraints.

TI-C62x is a load-store architecture with two separate register
files A and B, each of which contains 16 general purpose registers
of 32 bit length. Eight functional units, including two multipliers,
allow a maximum issue rate of eight instructions per clock cycle.
The eight functional units are divided into two symmetric groups
of four units, where L1, S1, M1 and D1 are connected to register
file A,and L2, S2, M2 and D2 are connected to register file B. Most
instructions have zero delay slots (MOVE, ADD). The LOAD in-
struction has a delay of four. Functional units work on their local
register file, with the exception that there are two cross-paths that
allow up to two values to flow from one register file to another as an
operand of an instruction. There are move instructions that allow
to transfer data between register files. Those moves use the cross
path X1 (resp., X2) to transfer data from register file B to register
file A (resp., from register file A to register file B).

Additional constraints, relevant for our following specifications
and examples, consist in that the processor may issue up to two
LOAD/STORE instructions only if memory addresses are located
in different register files.

5.2 ADML
Our goal is to provide a retargetable code generator for various

hardware architectures. The structure of a processor, as far as rele-
vant for the generation of optimal code, is specified in a structured
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Figure 6: TI-C62x family DSP processor.

architecture description language, calledArchitecture Description
Mark-up Language(ADML), which is based on XML.

An ADML document contains four sections:

(1) registers

(2) residence classes

(3) functional units

(4) instruction set

In the following example description ellipses are only used for
brevity and are not part of the specification.

<architecture omega="8">
<registers> ... </registers>
<residenceclasses> ... </residenceclasses>
<funits> ... </funits>
<instruction_set> ... </instruction_set>

</architecture>

The fieldomega of thearchitecture node specifies the is-
sue width of the architecture.

Theregisters section enumerates all registers present on the
architecture. Each register is mapped to a unique name.

<registers>
<reg id="A0"/> <reg id="A1"/> ...

</registers>

The residenceclasses section defines the different resi-
dence classes of the architecture. In our example, the TI-C62x
processor has three residence classes: register fileA, register file
B, and the memory.

<residenceclasses>
<residenceclass id="A">

<reg id="A0"/> <reg id="A1"/> ...
</residenceclass>
<residenceclass id="B">

<reg id="B0"/> <reg id="B1"/> ...
</residenceclass>
<residence id="MEM" size="32"/>

</residenceclasses>

An optional parametersize specifies the size of memory mod-
ules.

Thefunits part describes the characteristics of each functional
unit of the processor in terms of occupation and latency cycles.

<funits>
<fu id="L1" occupation="1" latency="1"/>
<fu id="S1" occupation="1" latency="1"/>
...

</funits>

Finally, theinstruction set section defines the instruction
set for the target processor. Each instruction defines in which res-
idence classes the source operands (op1 andop2 ) should reside,
and in which residence class the result (op0 ) is produced. This de-
fines the constraints for the selectability of a given instruction at a
given scheduling step of our dynamic programming algorithm.

An abstract IR node may generally correspond to several seman-
tically equivalent target instructions. For a given IR operator we
enumerate the set of all semantically equivalent instructions that
cover that operator. Each IR operator is identified by an integer
value that is specified asop field of the instruction node in
our description. Theid field is only for readability and debugging
purposes. In the following instruction set specification an IR ad-
dition (ADDP4) can be computed using either the instructionADD
.L1 , or ADD .L2 in TI-C62x notation. That is, an addition can
be performed using the functional unitL1 or L2 . The choice of
the instruction depends on the residence of operands: Instruction
ADD .L1 is selectable if its operands (op1 andop2 ) are in the
residence classA, and it produces the result back to the residence
classA.

<instruction_set>
<instruction id="ADDP4" op="4407">

<target id="ADD .L1" op0="A"
op1="A" op2="A" use_fu="L1"/>

<target id="ADD .L2" op0="B"
op1="B" op2="B" use_fu="L2"/>

...
</instruction>
...
<transfer>

<target id="MOVE" op0="r2" op1="r1">
<use_fu="X2"/>
<use_fu="L1"/>

</target>
...

</transfer>
</instruction_set>

As part of the instruction set, we additionally specify transfer
instructions that move data between different residence classes.

For future extensions of ADML we plan to express additional in-
formation, such as the immediate use of a value by multiple func-
tional units via the cross path. Finally, we would like to add a more
flexible way of expressing constraints that cannot be expressed in
the basic ADML structure.

6. IMPLEMENTATION, FIRST RESULTS
The current implementation is based on our previous framework

[8]. We use the LEDA [11] library for the most important data
structures and graphs. We use LCC [3] as C front-end. The rest of
the system is implemented in C++. For parsing ADML files we use
the XML parser Xerces.

The order of constructing the solution space influences consid-
erably the space requirements of our optimizer. The residence po-
tential gives information about the space occupation. We experi-
mented with two different orders of the main loops along the level
axis and the residence potential axis. If the innermost loop is along
the residence potential axis, the resulting time-optimal schedule ex-
hibits multiple moves that do not affect the total time but that are
inserted because higher residence profiles are generally preferred.
This however can have a negative impact on code size and energy
consumption. For that reason we prefer to have the innermost loop
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Basic block jV j time[s] space[MB] #Impr. #merged #ESNodes
cplxinit 14 201 38 0 140183 44412
vectcopy init 12 16 11 26 61552 12286
vectcopy loop 14 47 15 58 149899 29035
matrixcopy loop 18 18372 194 1782 5172442 722012
vectsum loop 12 11 10 9 36715 8896
vectsum unrolled 17 1537 58 3143 1316684 198571
matrixsum loop 17 10527 154 2898 3502106 564058
dotproduct loop 17 3495 77 4360 2382094 345256
codebksrch bb33 17 431 41 306 319648 64948
codebksrch bb29 13 7 12 0 17221 6433
codebksrch bb26 11 11 13 144 73761 19275
vecsumc bb6 20 9749 154 5920 3744583 499740
vec max bb8 13 79 35 0 99504 37254
fni 4 (FFTW) bb6 15 454 59 0 227561 75396
fni 4 (FFTW) bb8 15 432 57 0 225610 72242
fni 4 (FFTW) bb9 17 5106 197 18 1398073 338964
fni 4 (FFTW) bb10 13 110 32 0 102747 35685
fni 4 (FFTW) bb11 15 483 59 0 234767 76753
fni 4 (FFTW) bb12 17 4885 198 16 1385802 338096
codebksrch bb12 17 4822 142 1545 2214194 376714
codebksrch bb22 12 8 14 0 14038 8822
codebksrch bb24 12 2 9 3 6454 2214
fir vselp bb10 19 9413 131 3463 4003244 565860
fir bb10 14 5106 161 2683 2331577 367212

Table 2: Optimization time and space for various basic blocks
taken from DSP benchmark programs. Column #merged indi-
cates how many partial solutions could be covered by the same
ESNode, which gives a rough impression of the amount of com-
pression achieved. Column #Impr shows how often an actual
improvement in time is obtained byupdatespacein the branch
if k0 < j (see Fig. 3).

run along the level axis. An alternative could be a postprocessing
of a solution to remove unnecessary moves.

The structuring and traversal order of the solution space allows
us to optimize the memory consumption of the optimization algo-
rithm. As soon as we leave the level(h; k; l) we can safely remove
all nodes stored at that level, because they will never be looked up
again. This is achieved by the fact that the residence potentialRPot
is a monotonically growing function.

As a particularly interesting example we consider the family of
DAGs consisting of parallel Load operations, as shown in Figure 5
for the case of 8 Loads, which was taken from Leupers’ book [10,
Chap. 4] that describes a heuristic solution to the same optimiza-
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tion problem for the same architecture. We obtained the optimal
solution (see Table 7) in 15 minutes and could thereby prove that
the solution reported by Leupers was indeed optimal. The results
allow to compare the effect of exploiting symmetry, as described in
Section 4.6. For our measurements we used a 1500 MHz PC.

Table 2 shows the behavior of our algorithm on a collection of
basic blocks taken from handwritten example programs and DSP
benchmarks (TI compbench, FFTW). It appears that the algorithm
is practical for basic blocks up to size 20. The time and space
requirements of these examples are visualized in Figures 9 and 10.

7. FUTURE WORK
Spilling to memory modules is currently not considered, as we

assume that the register classes have enough capacity to hold all
values of interest. However, this is no longer true for small resi-
dence classes, as e.g. in the case of the Hitachi SH3DSP. Our algo-
rithm is, in principle, able to generate optimal spill code and take
this code already into account for determining an optimal sched-
ule. On the other hand, taking spill code into consideration may
considerably increase the space requirements. We plan to develop
further methods for the elimination of uninteresting alternatives.
Note that our algorithm automatically considers spilling toother
register classesalready now.

Large DAGs require heuristic pruning of the solution space to
cope with the combinatorial complexity. This could, for instance,



Figure 7: a) schedule gener-
ated by TI-C compiler (12 cycles)
[10], b) heuristically optimized
schedule [10] (9 cycles), c) opti-
mal schedule generated by OPTI-
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NOP MV A11,B6 NOP
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be achieved by limiting the number of ESNodes per cell of the
three-dimensional solution space.

We did not yet really exploit the option of working with a lattice
of residence classes that would result from a more general defini-
tion of residence classes based on the versatility relation. This is an
issue of future research.

8. RELATED WORK
Aho and Johnson [1] use a linear-time dynamic programming

algorithm to determine an optimal schedule of expressiontreesfor
a single-issue, unit-latency processor with homogeneous register
set and multiple addressing modes, fetching operands either from
registers or directly from memory.

Vegdahl [14] proposes a dynamic programming algorithm for
time-optimal scheduling that uses a similar compression strategy
as described in Section 2.3 for combining all partial schedules of
the same subset of nodes. In contrast to our algorithm, he first
constructs the entire selection DAG, which is not leveled in his ap-
proach, and then applies a shortest path algorithm. In contrast, we
take the time and space requirements of the partial schedules into
account immediately when constructing the corresponding selec-
tion node. Hence, we need to construct only those parts of the se-
lection DAG that could still lead to an optimal schedule. Instruction
selection and residences are not considered in [14].

The split-node DAG technique used in AVIV [5] modifies the
DAG such that it contains explicitly the possible variations for gen-
erating code. This also includes nodes for transfer instructions.
AVIV uses branch-and-bound as basic optimization mechanism with
aggressive heuristic pruning. The framework is retargetable by
specifying the target architecture in the ISDL specification lan-
guage.

Chou and Chung [2] enumerate all possible target-schedules to
find an optimal one. They propose methods to prune the enumera-
tion tree based on structural properties of the DAG such as a sym-
metry relation. Their algorithm is suitable for basic blocks with up
to 30 instructions, but instruction selection and residences are not
considered.

Leupers [10, Chap. 4] uses a phase-decoupled heuristic for gen-
erating code for clustered VLIW architectures. The mutual in-
terdependence between the partitioning phase (i.e., fixing a resi-
dence class for every value) and the scheduling phase is heuristi-
cally solved by an iterative process based on simulated annealing.

Wilson et al. [15] apply integer linear programming to integrated
code generation for non-pipelined architectures.

Kästner [7] developed a phase coupled optimizer generator that
reads in a processor specification described inTarget Description
Language(TDL) and generates a phase coupled optimizer which
is specified as an integer linear program that takes restrictions and
features of the target processor into account. An exact and optimal

solution is produced, or a heuristic based, if the time limit is ex-
ceeded. In this framework, the full phase integration is not possible
for larger basic blocks, as the time complexity is too high.
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