
Fast Detection of Unsolvable Planning Instances Using Local Consistency

Christer Bäckström, Peter Jonssonand Simon Ståhlberg
Department of Computer Science, Linköping University

SE-581 83 Linköping, Sweden
christer.backstrom@liu.se peter.jonsson@liu.se simon.stahlberg@liu.se

Abstract

There has been a tremendous advance in domain-independent
planning over the past decades, and planners have become in-
creasingly efficient at finding plans. However, this has not
been paired by any corresponding improvement in detecting
unsolvable instances. Such instances are obviously impor-
tant but largely neglected in planning. In other areas, such as
constraint solving and model checking, much effort has been
spent on devising methods for detecting unsolvability. We in-
troduce a method for detecting unsolvable planning instances
that is loosely based on consistency checking in constraint
programming. Our method balances completeness against
efficiency through a parameterk: the algorithm identifies
more unsolvable instances but takes more time for increas-
ing values ofk. We present empirical data for our algorithm
and some standard planners on a number of unsolvable in-
stances, demonstrating that our method can be very efficient
where the planners fail to detect unsolvability within reason-
able resource bounds. We observe that planners based on the
h
m heuristic or pattern databases are better than other plan-

ners for detecting unsolvability. This is not a coincidence
since there are similarities (but also significant differences)
between our algorithm and these two heuristic methods.

1 Introduction
There has been an impressive advancement in domain-
independent planning over the past decades. New and ef-
ficient planners have entered the scene, for instance, FAST
FORWARD (Hoffmann and Nebel 2001), FAST DOWN-
WARD (Helmert 2006b), LAMA (Richter and Westphal
2010), and planners based on compilation into SAT in-
stances (Rintanen, Heljanko, and Niemelä 2006). Various
ways to exploit the structure of planning instances have
been proposed and integrated into existing planners. Per-
haps most importantly, a rich flora of heuristics has ap-
peared, making many previously infeasible instances solv-
able with reasonable resources. See, for instance, Helmert
and Domshlak (2009) for a survey and comparison of the
most popular heuristics. This development has largely been
driven by the international planning competitions (IPC).
However, in the long run one might question how healthy it
is for a research area to focus so much effort on solving the

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

particular problems choosen for the competitions. This is a
very natural question from a methodological point of view,
and although it has not been raised as often as one might
expect, it is not a new one, cf. Helmert (2006a).

One problem with the planning competitions so far is
that all planning instances have a solution, and the ef-
fect of this is that the planners and methods used are
getting increasingly faster at finding the solutions that
we already know exist. It is important to note that
other similar competitions, such as the SAT competition
(http://www.satcompetition.org) and the Con-
straint Solver Competition (http://cpai.ucc.ie),
consider unsolvable instances together with solvable in-
stances. It is no secret that few, if any, planners exhibit
any similar speed improvement for instances that have no
solution. For many applications we can know, e.g. by de-
sign, that there is a solution, but this cannot be a general
assumption. Obvious examples are planning for error recov-
ery and planning for systems that were not designed to al-
ways have a solution (old industrial plants that have evolved
over time is an archetypical example). Another example
is support systems where a human operator takes the plan-
ning decisions and the planner is used to decide if there is a
plan or not, or to attempt finding errors in the human-made
plan (Goldman, Kuter, and Schneider 2012). System verifi-
cation has an overlap with planning (Edelkamp, Leue, and
Visser 2007), and proving that a forbidden state is unreach-
able corresponds to proving that there is no plan. Similarly,
planning is used for penetration testing in computer security
(Boddy et al. 2005; Sarraute, Buffet, and Hoffmann 2012;
Futoransky et al. 2010; Harp et al. 2005), which is an area
of emerging commercial importance (Sarraute and Picker-
ing 2012). In penetration testing, a system is considered
safe if there is no plan for intrusion. We finally note that
oversubscribed planning(i.e. where not all goals can be sat-
isfied simultaneously and the objective is to maximize the
number of satisfied goals) have been considered in the lit-
erature (Smith 2004). Clearly, this is a source of relevant
unsolvable instances.

This paper is concerned with unsolvable planning in-
stances and how to efficiently detect them. We present an
algorithm for this problem which is loosely based on consis-
tency checking in CSPs. Our method is often very efficient,
but at the cost of being incomplete, that is, it is infeasible

to detect all unsolvable instances. To the best of our knowl-
edge, this is the first time such a method is analysed and
tested for this pupose in planning (although it is, of course,
implicitly used when planning instances are reformulated
into SAT or CSP instances and solved by such techniques).
Like most such methods, our algorithm also runs in polyno-
mial time for any fixed value of a parameterk, which can
thus be used to trade off between efficiency and complete-
ness. We also present empirical data for a number of un-
solvable planning instances, matching our algorithm against
some of the most commonly used planners. There are also
some heuristic methods, such as iPDB (Haslum et al. 2007)
andhm (Haslum and Geffner 2000), that have certain simi-
larities with our method, and that can also be used for consis-
tency checking. Hence, we include also these methods in the
empirical analysis. The overall result is that our algorithm
had the best coverage, detecting all instances as unsolvable,
although iPDB was a faster method when it worked. Only
one instance could be detected as unsolvable by the plan-
ners, requiring much more time than our method. There are
of course unsolvable instances that our method may fail to
capture given reasonable resource bounds and we give con-
crete examples of when and why this may happen in Sec-
tions 3.3 and 4.1. Yet, our results are encouraging: consis-
tency checking is very cheap for moderate values ofk, so it
seems obvious to recommend using such methods routinely,
either integrated into the planner or as a preprocessing step.

The rest of the paper is structured as follows. Sec. 2
presents our consistency concept, the algorithm which is
based on it, and the computational complexity of this algo-
rithm. Sec. 3 presents the unsolvable test instances we use
as well as the planners and other methods that we compare
our algorithm against. It also presents and discusses the em-
pirical data from our experiments. Sec. 4 deepens the pre-
vious complexity analysis of the consistency checking prob-
lem and discusses methods for improving its performance.
The paper ends (in Sec. 5) with an discussion that mostly
focuses on future research directions.

2 Local Consistency Checking
We assume the reader is familiar with the SAS+ plan-
ning formalism. Briefly, aSAS+ instanceis a tupleΠ =
〈V,A, I,G〉 whereV is a set of multi-valued variables,A is
a set ofactions, I is theinitial stateandG is thegoal. Given
a variablev ∈ V , we letD(v) denote its corresponding do-
main. Each actiona ∈ A has apreconditionpre(a) and an
effecteff(a). A solution plan forΠ is a sequence of actions
that can be executed in the initial stateI and leads to a state
that satisfies the goalG. We sometimes writeV (Π) for the
set of variables ofΠ, A(Π) for the actions ofΠ and so on.

We further define variable projection in the usual
way (Helmert 2004). LetΠ = 〈V,A, I,G〉 be a SAS+ in-
stance and letV ′ ⊆ V . Then thevariable projectionof Π
ontoV ′ is Π|V ′ = 〈V ′, A|V ′ , I|V ′ , G|V ′〉, whereI|V ′ is the
restriction ofI to the variables inV ′ etc. For actions,a|V ′

restrictspre(a) andeff(a) to V ′.
It is well known (Helmert 2004) that if the projection of

a SAS+ instance onto a subset of its variables is unsolvable,
then also the original instance is unsolvable. To find that

an instanceΠ is unsolvable it is thus sufficient to demon-
strate one single subsetV ′ of the variablesV (Π) for Π such
that the projectionΠ|V ′ is unsolvable. This is a very pow-
erful fact, but one that comes at a cost; deciding if such a
subset exists is obviously as hard as deciding ifΠ is solv-
able. In order to gain any efficiency at all from this idea,
we must thus necessarily settle for an incomplete method.
Based on the assumption that there will often exist a small
subset of variables that suffices as a witness for unsolvabil-
ity, the basic principle of our method is to check all subsets
of variables up to some predefined sizek. An obvious use
of this method is as a preprocessing stage, attempting to de-
cide if the instance is unsolvable before even invoking the
planner to search for a plan. The parameterk can be used to
balance time against coverage; a higher value ofk requires
more time but also catches more unsolvable instances.

Definition 1. A SAS+ instanceΠ = 〈V,A, I,G〉 is variable
k-consistent, for an integerk such that0 < k ≤ |V |, if Π|V ′

has a solution for every variable setV ′ ⊆ V of sizek.

We define theconsistency checking problemas taking a
SAS+ instanceΠ = 〈V,A, I,G〉 and a positive integer
k ≤ |V | as input and asking the question whetherΠ is vari-
ablek-consistent? Clearly, the number of subsets to check
grows quickly with the value ofk. If there aren variables in
total, then there are

(

n
k

)

subsets of sizek, so checking con-
sistency is usually only feasible for small values ofk. If an
instance is consistent for a particulark, then it is also con-
sistent for allk′ < k by definition, so if we have decided on
a fixedk to check consistency for, it is sufficient to check all
subsets exactly of sizek. In practice, however, it may be de-
sirable to make an iterative computation that checks also all
smaller sets in order of increasing size, since the algorithm
may often terminate early, for some set of smaller size than
k. Furthermore, if we do not fixk in advance, then we can
check consistency for increasing values ofi until the algo-
rithm is stopped or hits a resource limit. The longer it runs,
the greater the chance that it will detect that an unsolvable
instance is unsolvable. This iterative algorithm can thus be
used as ananytime algorithm.

The straightforward iterative algorithm appears in Fig-
ure 1 (note that ’succeed’ means thatΠ is consistent for
k). The test in line 4 can be performed by any algorithm
that checks whether two vertices are connected in a directed
graph or not: suitable standard algorithms include Dijkstra’s
algorithm and depth-first search. Given the instanceΠ|V ′ ,
first construct the corresponding state-transition graph.This
graph can be constructed in polynomial time and it contains
at mostdk vertices whered is the size of the largest vari-
able domain. Secondly, check whether there exists a path
from I(Π)|V ′ to some state consistent withG(Π)|V ′ or not.
It may be advisable, for increased efficiency, to introduce a
dummy goal vertexg into the graph and add an edge from
each goal state tog. By doing so, repeated application of
the search algorithm is avoided. One may also observe that
every sound and complete planner can be used for the test in
line 4 and this may be a good idea whenk is large since the
explicit construction of the state-transition graph is avoided.

We now consider the time complexity of line 4 of the al-

1 ConsistencyCheck(Π,k)
2 for i from 1 to k do
3 for all V ′ ⊆ V (Π) s.t. |V ′| = i do
4 if Π|V ′ is unsolvablethen fail
5 succeed

Figure 1: The brute-force iterative consistency algorithm.

gorithm. Constructing the state-transition graph can be done
in timeO((dk +1)2 · |A|) as follows. First introducedk +1
vertices; thedk vertices denote the states of the projected
instances and the additional vertex is the special vertex for
handling goal states. Now, for each distinct pair of vertices
s, t, check whether there is a projected action inA that trans-
forms states into statet or not, and if this is the case, add a
directed edge froms to t. Also add an edge from each vertex
consistent with the goal state to the goal vertex. After having
constructed this graph, we can check whether there is a path
from the initial state to the goal state by, for example, using
Dijkstra’sO(|V |2) algorithm. Hence, the total time for line
4 isO((dk + 1)2 · |A|) + (dk + 1)2) = O((dk + 1)2 · |A|).
The total time for checking consistency for one value ofk,
i.e. one iteration of the algorithm, for an instanceΠ with n
variables andm actions is thusO(

(

n
k

)

· (dk + 1)2 · m) =

O(
(

n
k

)

· d2k · m) which is polynomial in the size ofΠ for
fixedk since

(

n
k

)

∈ O(nk).
The algorithm in Figure 1 is reasonably efficient for small

values ofk but it can easily be improved by using well-
known and obvious techniques. We will consider the follow-
ing two straightforward methods for filtering which subsets
to check.

(1) A projection without any goal variables is solved by
the empty plan, so it is sufficient to check projections con-
taining at least one goal variable.

(2) A variable projection induces a subgraph of the causal
graph which need not be weakly connected even if the causal
graph is. The components of the subgraph define indepen-
dent subinstances, so if a projection tok variables induces
more than one component, it suffices to check consistency
for each component separately. As a further improvement,
our implementation traverses the causal graph to generate
only those sets that are connected, thus avoiding to even con-
sider the non-connected ones.

3 Experiments
Our consistency-checking method is novel to the area of
planning, so the primary purpose of our experiments is a
proof of concept. We want to demonstrate that our method
can be very effective in cases where standard methods fail.
Since we are not aware of any standard sets of benchmarks
with unsolvable instances, we use a mix of IPC instances
that are modified to be unsolvable and new instances de-
signed from scratch, intended to display a diversity in why
they are unsolvable. We acknowledge that this is a small and
probably biased set of test instances but we hope that the ex-
periments are illuminating anyway. The lack of unsolvable
test examples and the resulting difficulties in planner evalu-
ation are discussed in Section 5.

This section is divided into four parts: we present the test
instances, we discuss the methods tested, we present and dis-
cuss the empirical data and, finally, we discuss some simi-
larities and differences between methods.

3.1 Test Instances
We used the following test instances.

Trucks: An unsolvable variant of the IPC Trucks in-
stances, with two independent parts (see Figure 2). The left

a

b

p1, p2, t1
c1

c2

c3

c4
c5 c6

c7

c8

p9,t2
p10

p3

p4
p5

p6

p7

p8

Figure 2: The Trucks instance.

part has two locations,a andb, and a one-way path froma to
b. There is one truck and two packages ata and the packages
must both be delievered atb. The truck can only carry one
package at a time so it cannot satisfy its goal. The right part
has 8 locations interconnected to form a clique. There is one
truck and 8 packages. The truck must pick up every package
and deliver it at another location, but this is easy due to the
structure of the road graph.

Tiles: A grid-based path planning problem with mutual-
exclusion constraints (see Figure 3). Agents move from their
initial positions to their individual goal positions, one tile at
a time, moving up, down, left or right. An agent can only
move to a white tile, and every tile it visits turns black and
becomes impassable for the other agents. The positions of

a) Tiles I
(initial state)

b) Tiles I
(a deadlock state)

12 3

c) Tiles II
(initial state)

Figure 3: The Tiles instances.

the agents are marked with filled circles and their goal po-
sitions with unfilled circles. In the initial state of instance
Tiles I (Figure 3a) the initially black tiles form a wall with
a one-tile wide passage. Only one agent can pass the wall
since the passage will also be black afterwards, meaning
that only one agent can reach its goal. Figure 3b illustrates
this. Instance Tiles II (Figure 3c) has two constraining tiles,
marked 1 and 2. Number 1 always causes a deadlock, while
number 2 can cause a deadlock or not, depending on whether
the upper agents goes via tile 2 or 3. The number of agents is
not important for consistency checking, as long as there are
enough of them. Two agents are sufficient in a projection of
Tiles I to spot that it is inconsistent, since only one agent can
pass the wall.

Grid: An unsolvable variant of the IPC Grid problem,
with a grid of rooms and a robot that can move around and
move things. In particular, the robot may fetch keys that are
required to open doors to certain rooms. Two rooms, A and
B, both require a key to enter, but the key to room A is in
room B and vice versa, so the robot cannot get any of these
keys. There is also another key to room A, but if the robot
goes to fetch it, then it cannot get back to room A.

3SAT: PDDL encodings of unsolvable 3SAT instances
generated using code from an existing project (Muise 2010).
Instance 3SAT I has 15 variables and 17 clauses, and it is on
the formx1∧x1∧c1∧ . . .∧c15 wherec1∧ . . .∧c15 is a sat-
isfiable 3CNF formula. Instance 3SAT II is a formula with 5
variables and 25 clauses that is less obviously unsatisfiable.

3.2 Methods Tested
Our consistency checking algorithm was implemented in
C#. This was primarily a pilot study of the method, so we
did not attempt much optimization of the algorithm. The ac-
tual consistency checking of a particular projection (line4
of the algorithm in Figure 1) is done using a basic depth-
first search algorithm. Our algorithm works best with multi-
valued variables but all test instances were coded in PDDL
so we had to translate them. To this end we used the transla-
tor module of the Fast Downward planner (Helmert 2006b),
which also uses multi-valued variables internally.

For comparison, we tried a number of standard planners:
FAST FORWARD (FF) (Hoffmann and Nebel 2001), FAST
DOWNWARD (FD) (Helmert 2006b) and LAMA (Richter
and Westphal 2010). Fast Downward was tested in
two configurations,seq-sat-fd-autotune-1 and seq-sat-
fd-autotune-2, referred to as FD1 and FD2, respectively.
It is reasonable to assume that the heuristics of the planners
will often do more harm than good on unsolvable instances.
Hence, we also tested breadth-first search by using the A∗

algorithm in Fast Downward equipped with a blind heuris-
tic.

There are some methods that are primarily intended for
planning that are reasonable to use also for detecting un-
solvable instances. An admissible heuristic function under-
estimates the cost to the goal and is used to guide the search
algorithm to find a solution faster. The cost to the goal is in-
finite when there is no solution, so the planner can terminate
if the heuristic estimate is infinite. However, this is also an
incomplete method since the heuristic estimate will often be
lower than the true cost and need not be infinite. We have,
thus, also tested two heuristic methods that can be used for
the same purpose as our method, pattern databases andhm.

The variable projection of an instanceΠ to a subset of its
variables is a new instance that is a state abstraction ofΠ. It
is common to exploit this by choosing a subset of variables
and compute the heuristic estimate between two states as the
true cost (or length) of a plan between their corresponding
abstract states in the abstract instance. This is an admissible
heuristic. It is also common to compute the costs between all
abstract states and store them in a so calledpattern database
(PDB) (Culberson and Schaeffer 1998). In practice, one of-
ten builds a number of different PDBs, using different vari-
able subsets, and compute a single heuristic function from

these that is better than what each of the PDBs alone can
provide. One such method is iPDB (Haslum et al. 2007),
which we have chosen for our experiments.

The hm heuristic (Haslum and Geffner 2000), where
m ≥ 1, is a family of admissible heuristics. For a given
m, hm is the maximum cost of achieving any subset ofm
goal atoms by regression, applying the same criterion also to
all subgoals. We used the built-inhm module of Fast Down-
ward and applied it to the inital state of the given instance.
If this state is identified as a dead-end, then the instance is
clearly unsolvable. The implementation is considered very
inefficient so we are slightly surprised that this approach is
competitive when it succeeds.

3.3 Experiments and Results
All tests were run a computer with an Intel Core i5 3570K
3.4 GHz CPU and 4 GB available RAM. Both the imple-
mented algorithm and all test examples are available upon
request. All methods were given a time limit of 30 minutes
on each instance, and were considered to fail if they either
ran out of time or memory. The empirical data for all meth-
ods is listed in Table 1. The figures in the table denote the
time for detecting that the instance is unsolvable, while fail-
ure to detect unsolvability is marked with either – M – or –
T –, depending on whether the memory or the time limit was
hit first. Our consistency algorithm was run iteratively with
both filters until it detected unsolvability, and the figuresde-
note total time for all iterations until it terminated. The iPDB
method needs to set a parameternum_samples, which con-
trols how many states it samples when comparing two pro-
jections. The figures in the table use manually tuned values
for each instance, but using the default value of 1000 was
only marginally slower. We tried values higher than106 for
those instances that were not detected as unsolvable, which
did not help. There is also a parametermin_improvement
to control how much improvement a new candidate must
give for the algorithm to continue. This parameter was set
to 1, to force the algorithm not to give up too early. Forhm,
we triedm values of 1 to 5, since 5 was high enough to run
out of time or memory for all instances.

Our consistency checking algorithm detected all 6 in-
stances as unsolvable, iterating tok = 7 for one instance.
The iPDB method could only detect 3 of the 6 instances as
unsolvable, but, on the other hand, it was considerably faster
than our method on those instances. Thehm family of meth-
ods together detected 4 of the instances as unsolvable, but it
failed on one instance that iPDB could handle. Furthermore,
thehm approach was slower than our method in all but one
case. We finally note that Grid was the only instance that any
of planners could detect as unsolvable, and that all of them
but FF managed this. We also note that blind search was
considerably faster than all other planners, which supports
the assumption that the heuristics of the planners are often
more of a burden than an asset for unsolvable instances.

More detailed data for our algorithm is provided in Ta-
ble 2. The table lists two cases for each instance, the brute-
force variant with no filters and the variant where both filters
1 and 2 are used. The data is also broken down to show the
time and number of subsets to explore for each iteration, up

Method 3SAT I 3SAT II Tiles I Tiles II Trucks Grid
cons. check. 15 ms 10.1 s 61.5 s 288 s 106 ms 32.1 s
iPDB – M – – M – 360 ms 690 ms – M – 1.96 s
h1 – T – – T – – T – – T – – T – – T –
h2 219 ms – T – 100 s – T – 440 ms 8.38 s
h3 12.6 s – T – – T – – T – 35.8 s 24:30 min
h4 13:58 min – T – – M – – M – – T – – T –
h5 – M – – T – – M – – M – – T – – T –
FF – M – – T – – T – – M – – T – – T –
FD1 – M – – M – – M – – M – – M – 18:41 min
FD2 – M – – M – – M – – M – – M – 16:49 min
LAMA – M – – M – – M – – M – – M – 25:33 min
Blind – M – – M – – M – – M – – M – 10 s

Table 1: Empirical data for the methods tested. Figures denote time for detecting unsolvability, while – M – and – T – denotes
failure due to memory and time limit, respectively.

k 3SAT I 3SAT II Tiles I Tiles II Trucks Grid
1 8 ms 47 4 ms 21 123 ms 67 42 ms 70 7 ms 14 42 ms 13
2 176 ms 1081 26 ms 210 6.24 s 2211 2.01 s 2415 53 ms 91 365 ms 78
3 3.58 s 16215 233 ms 1330 178 s 47905 63.1 s 54740 378 ms 364 1.92 s 286
4 535 ms 178365 1.48 s 5985 1241 s 916895 173 ms 1001 6.75 s 715
5 6.96 s 20349 18.7 s 1287
6 24.9 s 54264 29.5 s 1716
7 69.1 s 116280

1 1 ms 17 1 ms 15 16 ms 5 3 ms 2 2 ms 10 0 ms 1
2 3 ms 44 3 ms 37 1.17 s 310 277 ms 136 12 ms 20 49 ms 10
3 10 ms 105 16 ms 166 60.3 s 10075 12.4 s 4624 89 ms 68 429 ms 49
4 1 ms 235 84 ms 633 275 s 102510 3 ms 141 1.82 s 155
5 413 ms 2254 7.76 s 348
6 1.86 s 7012 22.1 s 575
7 7.73 s 18414

Table 2: Detailed data for consistency checking, without filters (top box) and with both filters (bottom box). The figures for
eachk value denote time and number of subsets to explore for this value.

to thek value where inconsistency was detected. For exam-
ple, the Trucks instance is consistent for allk ≤ 3 but is
inconsistent fork = 4, so the algorithm was never run for
higher values ofk. While the running time of the algorithm
on each instance increases monotonically with the value of
k, as would be expected, it does sometimes drop dramati-
cally for the highestk value. This is also to be expected; if
the instance is consistent fork, then it must check all (pos-
sibly after filtering) variable subsets of sizek. On the other
hand, if the instance is inconsistent fork, then the algorithm
only has to run until it finds a subset of sizek that is in-
consistent. Hence, the time needed depends on the order in
which the subsets are checked. The number of subsets given
in the table is the total number of sets to check, i.e. not all
of these sets were checked for the highestk value.

Finally, Table 3 gives some examples of how the effect
of the two filtering methods can differ between instances.
For example, method 1 has negligible effect on 3SAT II, so
all filtering effects are due to filter 2. On Tiles II, however,
the number of subsets is the same for all filter combinations,
meaning that the two filters choose exactly the same subsets.

Finally, Grid is an example where both filters contribute to a
smaller number of subsets than either filter alone does.

filters 3SAT II (k=6) Tiles II (k=3) Grid (k=5)
none 54264 54740 1287
1 54263 4624 495
2 7012 4624 857
1+2 7012 4624 348

Table 3: Examples of the effect of the filters.

At this point, it is important to remind the reader that lo-
cal consistency checking is an incomplete method. The in-
completeness is entirely due to the fact that some unsolv-
able instances are still consistent for large values ofk. To
illustrate this, consider an instance with binary variables
v0, . . . , vn−1 and actionsa0, . . . , an−1 whereai sets vari-
able v((i+1) mod n) if vi is set, i.e. the causal graph is a
cycle over the variables. Suppose all variables are initially
false and the goal is to set one variable, which has no so-
lution. Any projection to fewer thann variables has some

action with empty precondition, making the projection solv-
able. This instance is, thus, consistent for allk < n but not
for k = n so consistency checking is not very helpful in this
case.

3.4 Similarities between Methods
The only methods tested that could compete with our
method were iPDB andhm. This is, perhaps, not very sur-
prising since there are similarities between these methods
and ours.

The iPDB method is similar to ours in that it considers a
number of different variable projections and computes the
true plan length in each, but there are also differences. Our
method systematically checks subsets of a certain sizek,
so it is guaranteed to detect that ak-inconsistent instance
is unsolvable. The iPDB approach chooses a smaller num-
ber of subsets according to some method that is intended
to improve the resulting heuristic function. Given the same
amount of time, it will thus check fewer but larger subsets;
it may find that an instance ism-inconsistent but(m − 1)-
consistent for somem larger thank, but at the same time
miss that an instance is inconsistent already for some value
smaller thank. This method is thus more opportunistic and
less systematic than consistency checking.

Some kind of consistency checking is inherent also in the
hm method but it is less straightforward to compare this ap-
proach to ours. Consequently, we leave such a comparison
for future work.

4 Improving Consistency Checking
Since the consistency checking algorithm is highly system-
atic (at least without the filtering methods activated) and ba-
sically only performs an exhaustive enumeration of subin-
stances, there is no reason to expect any surprises concern-
ing its scaling properties: its behaviour on instances thatare
k−1-consistent but notk-consistent can be closely bounded
from above by the worst-case time complexity analysis in
Section 2. This actually holds also when using the filtering
methods: the methods we have used are so computationally
efficient that it is very rare that they slow down the con-
sistency checking algorithm. With this in mind, it is not
hard to see that consistency checking may take a consider-
able amount of time (in the worst case) when the constantk
is large, and that this may very well happen when applied to
real-world examples. It is consequently interesting to think
about ways of improving consistency checking. Hence, we
will now consider the possibility of improving consistency
checking from both positive and negative angles.

(1) Whenk is large, then the time needed for performing
consistency checks increases rapidly (albeit polynomially)
with the size of instances. One way to improve the situa-
tion is thus to use methods that can identify unsolvability at
lower values ofk. In Section 4.1, we present such a method
based onmutexes. Mutexes have earlier been used in various
ways (cf. Haslum, Bonet, and Geffner (2005) and Zilles and
Holte (2010)) and they are explicitly constructed and used
by the Fast Downward planner. We show that this is a viable
idea and we demonstrate it on a blocks world example.

(2) Although variablek consistency can be checked in
polynomial time for every fixedk, it is problematic that the
degree of the polynomial grows with the constantk. How-
ever, it may be the case that we could solve the problem in a
way that does not scale as badly with the value ofk by using
some other algorithm. By exploitingparameterised com-
plexity theory, we show that there is no consistency check-
ing algorithm running inO(f(k)·nc) time for some function
f and constantc, unless an unlikely collapse of complexity
classes occur. In other words, we can expect every given
consistency checking algorithm to run inO(ng(k)) time for
some functiong that is not bounded from above and, conse-
quently, have scaling properties comparable to those of our
algorithm. This result is presented in Section 4.2.

4.1 Mutex Groups
Given a planning instanceΠ = (V,A, I,G), we say that a
proposition is a pair(v, d) wherev ∈ V andd ∈ D(V).
A mutex groupM is a set of propositions such that for any
states reachable fromI, there is at most one proposition
(v, d) ∈ M such thatv equalsd in s. Consider a projection
Π|V ′ for someV ′ ⊆ V . If some state in this instance vio-
lates the mutex condition (with respect toM), then we can
safely remove it from further consideration. In particular,
we can remove it from the state-transition graph that we con-
sider in line 4 of the consistency checking algorithm. Note
that similar ideas have been used elsewhere, cf. Haslum,
Bonet, and Geffner (2005). This makes the state-transition
graph smaller (which may be beneficial) but, more impor-
tantly, it may disconnect the initial state from the goal states
and allow us to conclude that there is no solution. In fact,
we will exhibit unsolvable instances that arek-consistent but
not k + 1-consistent having the following property: mutex-
enhanced consistency checking discovers inconsistency for
subsets of sizek′ wherek′ < k + 1. That is, there is a
potential for significant improvements.

The implementation of the mutex-enhanced consistency
algorithm is based on the previously presented consistency
algorithm, i.e. we use a simple depth-first search algorithm
and we have both filters activated. We check in every state
considered by the search algorithm (i.e. line 4 in Figure 1)
whether any of the mutex groups has two or more proposi-
tions true at the same time. If this is the case, then we back-
track and, thus, avoid considering plans which violate mutex
groups. Obviously, this is equivalent with first construct-
ing the state-transition graph and then removing certain ver-
tices as described above; the chosen method has proven to be
more computationally efficient, though. The mutex groups
we use in our experiments are automatically provided by the
translator module in the Fast Downward planner.

We tested this idea on a number of unsolvable blocks
world instances. The test instances are unsolvable because
the goal is a physically impossible configuration, namely,
we have that blockA has to be on top of blockB andB has
to be on top ofA, but the rest of the blocks have solvable
goals. These instances are 5-consistent but not 6-consistent
and they are interesting since consistency checking is not
particularly useful for identifying that they are unsolvable.
This can be seen in Table 4 where we apply a selection of

BW 4 BW 8 BW 16 BW 32 BW 64
cons. check. with mutex groups 9 ms 100 ms 1.2 s 18.5 s 5:05 min
cons. check. without mutex groups493 ms – M – – M – – M – – M –
iPDB 180 ms 2.2 s – T – – T – – T –
h2 97 ms 691 ms 28.5 s – T – – T –
Blind 71 ms 1.8 s – M – – M – – M –

Table 4: How different methods performs given a number of similar blocks world instances of different size.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
with mutex groups 0 ms 4 ms 5 ms
without mutex groups 0 ms 4 ms 10 ms 26 ms 73 ms 380 ms

Table 5: How consistency checking performs with and withoutmutex groups for the blocks world example with 4 blocks.

methods to instances containing 4, 8, 16, 32, and 64 blocks.
Obviously, consistency checking is inferior when compared
to the other methods. However, when consistency checking
is enhanced with mutex groups, then it undoubtedly shows
the best performance among these methods. The heuristic
h2 performs the best out of all the other methods, but is only
able to identify the 16 block instance as unsolvable, while
consistency checking with mutex groups is able to identify
instances up to 4 times this size as unsolvable. iPDB and
blind search are only able to identify instances of 8 blocks as
unsolvable before running out of time and memory, respec-
tively. Table 5 gives additional information concerning the
difference between using mutex groups and not using them.
The difference is huge and this is mainly due to the fact that
inconsistency is found at a lowerk value when using mutex
groups, which is very promising.

4.2 Parameterised Complexity Analysis
We begin by defining the basic notions of parameterised
complexity theory and refer to other sources (Downey and
Fellows 1999; Flum and Grohe 2006) for an in-depth treat-
ment. Aparameterized problemis a set ofinstances〈I, k〉,
whereI is the main part andk theparameter(usually a non-
negative integer). The problem isfixed-parameter tractable
(FPT) if there is an algorithm that solves any instance〈I, k〉
of sizen in time f(k) · nc, wheref is an arbitrary com-
putable function andc is a constant independent of bothn
andk. Note that this expression is separable in the sense
that f(k) must not depend onn andnc must not depend
on k. FPT is the class of all fixed-parameter tractable deci-
sion problems. There are also various classes used to prove
that problems are hard, eg. the classW[1] which is often
considered as a parameterised analogue ofNP. A param-
eterized problemL reduces to a parameterized problemL′

if there is a mappingR from instances ofL to instances of
L′ such that (1)〈I, k〉 is a YES-instance ofL if and only
if 〈I′, k′〉 = R(I, k) is a YES-instance ofL′, (2) there is a
computable functionf and a constantc such thatR can be
computed in timeO(f(k) · nc), wheren denotes the size
of 〈I, k〉 and (3) there is a computable functiong such that
k′ ≤ g(k). If variablek-consistency is inFPT, then there
is an algorithm that might scale badly ink but not in the
combination ofk andn, as the polynomialnk does. Un-

fortunately, the problem isW[1]-hard when usingk as the
parameter, and thus unlikely to be inFPT.

Theorem 2. Variable k-Consistency is W[1]-hard when
parameterised byk.

Proof. We present a parameterised reduction from
Independent Set, which is W[1]-hard (Downey and
Fellows 1999), to Variable k-Consistency. Let
〈V,E〉 and k ≥ 0 denote an arbitrary instance of
Independent Set and assumeV = {v1, . . . , vn}. Con-
struct a planning instanceΠ = 〈W,A, I,G〉 as follows.
Define the actionsbji : {wi = s} ⇒ {wi = vj} and
clmij : {eij = 0, wi = vl, wj = vm} ⇒ {eij = 1}, and let

• W = {w1, . . . , wk} ∪ {eij | 1 ≤ i < j ≤ k}

• D(wi) = {s, v1, . . . , vn}, 1 ≤ i ≤ k

• D(eij) = {0, 1}, 1 ≤ i < j ≤ k

• A = {bji | 1 ≤ i ≤ k, 1 ≤ j ≤ n} ∪ {clmij | 1 ≤ i <

j ≤ k, 1 ≤ l,m ≤ n, l 6= m, (vl, vm) 6∈ E},
• I = {wi = s | 1 ≤ i ≤ k} ∪ {eij = 0 | 1 ≤ i < j ≤ k}

• G = {eij = 1 | 1 ≤ i < j ≤ k}

To prove that this is indeed a parameterised reduction, we
first prove thatΠ has a solution if and only ifG has an in-
dependent set of sizek. AssumeG contains an independent
set{v1, . . . , vk}. Then, the following is a valid plan forΠ
for some functionf : [1, k] → [1, n] that tells how thebji
actions select thek independent vertices fromV :

b
f(1)
1 , . . . , b

f(k)
k , c

f(1)f(1)
11 , c

f(1)f(2)
12 , ..., c

f(k−1)f(k)
(k−1)k .

Assume instead thatΠ has a valid planω. Since all
variableseij are set to 1 after the execution ofω, it fol-
lows that all variablesw1, . . . , wk are given distinct values.
Additionally, these values (if interpreted as vertices in the
original graph) form an independent set. Now note that
|W | = k + k(k − 1) = k2 so Π has a solution if and
only if Π is variablek2-consistent. Thus, it satisfies con-
dition (1) and (3). To see that it satisfies condition (2), it
is sufficient to note that the reduction can be performed in
O(poly(k)·poly(|V |+|E|)) time: we introducek+k(k−1)
variables where each variables has a domain of size≤ n+1
and we introduce less thank · n+ k2 · n2 actions.

5 Discussion
At this point, the message of this paper should be perfectly
clear: traditional planners have severe difficulties in identi-
fying unsolvable instances but, fortunately, there are meth-
ods (such as consistency checking) with the potential of sig-
nificantly improving their behaviour. We see several direc-
tions for continuing this work which we describe in the next
two sections.

5.1 Research Directions

(1) There is a need for more test examples and we view the
construction of such examples as an urgent task. Construct-
ing a portfolio of interesting unsolvable planning instances
is highly non-trivial and calls for a cooperation between dif-
ferent parts of the planning community: obtaining unsolv-
able benchmarks matching the breadth and diversity of the
IPC benchmarks will be a major undertaking. Interesting
unsolvable instances appear in industrial applications, and
we have already discussed some of these in the introduc-
tion. However, one should keep in mind that industrial ex-
amples typically come as large individual instances and this
makes them hard for studying scalability. Thus, one may
also consider theoretical examples based on, for instance,
unsatisfiable SAT instances Chvátal and Szemerédi (1988)
and Friedgut (1998).

(2) It is vital to study the behaviour of additional plan-
ners on unsolvable instances and pinpoint their strengths and
weaknesses. We have considered a fair number of different
planners and heuristics but there are others that may pro-
vide us with additional insights. Immediate examples that
come to mind are planners that compile instances into other
problems such as SAT, CEGAR-based methods (Seipp and
Helmert 2013), and heuristics such asimplicit abstraction
heuristics(Katz and Domshlak 2010) that have interesting
connections with PDBs. An exciting way of performing
parts of this research would be to launch an IPC track de-
voted to both solvable and unsolvable instances.

(3) It is obvious that consistency checking need to be gen-
eralized in order to cope with certain real-world problems;
some concrete ideas are collected in Section 5.2. When it
comes to radically new methods for detecting unsolvable in-
stances, we have the following open-ended idea. Bäckström
and Jonsson (2012) have shown that there is not much to
gain (in terms of computational complexity) by reformulat-
ing the plan existence problem as some other problem and
then utilizing algorithms for the second problem (unless the
polynomial-time hierarchy collapses). However, for the pur-
pose of detecting unsolvable instances, one may use ‘one-
sided reformulations’ where solvable planning instances are
mapped (by a functionρ) to ’yes’-instances of some prob-
lemX but we allow unsolvable instances to be mapped into
both ’no’- and ’yes’-instances. Given a (preferably highly
efficient) algorithmA for detecting ‘no’-instances ofX, we
can now convert a planning instanceI into ρ(I) and then
apply algorithmA. If A replies thatρ(I) is a ‘no’-instance,
then we know for sure thatI has no solution. Thus, we cir-
cumvent the barrier implied by their result and the process
may be computationally advantageous.

5.2 Improving Consistency Checking
We expect that our method can be improved in a number
of ways. A very straightforward way is to parallelize the
algorithm. Consistency checking is an archetypical exam-
ple of so calledembarassingly parallelproblems, since all
projections can be checked in isolation from each other. A
more interesting way is to exploit mutex groups (or other
types of implicit information) in more powerful ways. Ad-
mittedly, the use of this kind of information in Section 4.1
is fairly primitive and it is highly likely that it can be used
for speeding-up consistency checking even further. This is
not trivial, though, and we have noted in preliminary experi-
ments that mutex groups can both increase and decrease the
time for consistency checking. The time needed may in-
crease due to the overhead induced by mutex group testing;
this is typical when the mutex groups are very large but they
do not disconnect the state-transition graph during search.
In other cases, the time needed is virtually unchanged: the
Trucks scenario is a case where we basically do not yield or
lose anything since Fast Downward fails to generate any mu-
tex groups. In Trucks, every package has a location variable
and every truck has a flag variable, to tell if it is loaded or
empty. Unloading a package changes its location and flags
the truck as empty. If a projection contains the truck flag
but not the location of some package, we get an action that
flags the truck as empty without unloading anything, i.e. the
truck gets unlimited capacity. Mutex groups can obviously
replace such flags by constraining that every package can-
not be in the truck at the same time. The Fast Downward
planner does not give these mutex groups, however, so it is
an interesting question if there are better methods for com-
puting mutex groups, or perhaps even identifying when and
how we can replace flag variables with mutex groups. Other
ways forward could be to consider other ways of detecting
and removing ‘anomalous’ states and actions in projections,
to require certain groups of variables to always appear to-
gether or not at all in projections, or to find particular ways
to do the encodings to avoid certain problems.

We have further noted that our method is similar to iPDB.
One way to view the two methods is as a search in the space
of variables subsets. Then our method is a blind complete
enumeration while iPDB is some kind of heuristic search in
the space of variable subsets. This gives a more uniform
view of the two methods which opens up for a better under-
standing of how to combine them or design new methods
with a flavour of both. One might also envision a variant
of iPDB that explores many more subsets, for the purpose
of checking consistency, without necessarily keeping more
projections in the database.

Acknowledgements
We thank the reviewers for their feedback on this paper. In
particular, we would like to thank one of the reviewers for
pointing out that heuristics other than iPDB implicitly uti-
lize some kind of consistency checking. Simon Ståhlberg
is partially supported by theNational Graduate School in
Computer Science(CUGS), Sweden.

References
Bäckström, C., and Jonsson, P. 2012. Algorithms and limits
for compact plan representations.Journal of Artifical Intel-
ligence Research44:141–177.

Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of action generation for cyber security using classi-
cal planning. InProceedings of the 15th International Con-
ference on Automated Planning and Scheduling (ICAPS-
2005), 12–21.

Chvátal, V., and Szemerédi, E. 1988. Many hard examples
for resolution.Journal of the ACM35(4):759–768.

Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence14(3):318–334.

Downey, R. G., and Fellows, M. R. 1999.Parameterized
Complexity. Monographs in Computer Science. Springer,
New York.

Edelkamp, S.; Leue, S.; and Visser, W. 2007. Summary of
Dagstuhl seminar 06172 on directed model checking. InDi-
rected Model Checking, number 06172 in Dagstuhl Seminar
Proceedings. Dagstuhl, Germany.

Flum, J., and Grohe, M. 2006.Parameterized Complexity
Theory, volume XIV of Texts in Theoretical Computer Sci-
ence. An EATCS Series. Springer, Berlin.

Friedgut, E. 1998. Sharp thresholds of graph properties, and
the k-sat problem.Journal of the American Mathematical
Society12:1017–1054.

Futoransky, A.; Notarfrancesco, L.; Richarte, G.; and Sar-
raute, C. 2010. Building computer network attacks.ArXiv
abs/1006.1916.

Goldman, R. P.; Kuter, U.; and Schneider, T. 2012. Using
classical planners for plan verification and counterexample
generation. InProceedings of AAAI workshop Problem Solv-
ing Using Classical Planners, Toronto, ON, Canada.

Harp, S.; Gohde, J.; Haigh, T.; and Boddy, M. 2005. Au-
tomated vulnerability analysis using AI planning. InPro-
ceedings of AAAI Spring Symposium on AI Technologies for
Homeland Security, Stanford, CA, USA, 52–62.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. InProceedings of the 5th Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems (AIPS-2000), 140–149. AAAI Press.

Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-independent construction of pattern
database heuristics for cost-optimal planning. InProceed-
ings of the 22th AAAI Conference on Artifical Intelligence
(AAAI-2007), 1007–1012. AAAI Press.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admissi-
ble heuristics for domain-independent planning. InProceed-
ings of the 20th AAAI Conference on Artifical Intelligence
(AAAI-2005), 1163–1168.

Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS-2009).

Helmert, M. 2004. A planning heuristic based on
causal graph analysis. InProceedings of the 14th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2004), 161–170.
Helmert, M. 2006a. New complexity results for classical
planning benchmarks. InProceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-2006), 52–62.
Helmert, M. 2006b. The fast downward planning system.
Journal of Artifical Intelligence Research26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search.Journal of
Artificial Intelligence Research14:253–302.
Katz, M., and Domshlak, C. 2010. Implicit abstraction
heuristics.Journal of Artifical Intelligence Research39:51–
126.
Muise, C. 2010. The planning domain repos-
itory. https://bitbucket.org/haz/
planning-domain-repository.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks.Jour-
nal of Artifical Intelligence Research39:127–177.
Rintanen, J.; Heljanko, K.; and Niemelä, I. 2006. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search.Artifical Intelligence170(12-13):1031–1080.
Sarraute, C., and Pickering, K. 2012. Encounters of the
third kind between pentesting and automated planning. In
Invited talk at AAAI workshop Problem Solving Using Clas-
sical Planners, Toronto, ON, Canada.
Sarraute, C.; Buffet, O.; and Hoffmann, J. 2012. POMDPs
make better hackers: Accounting for uncertainty in penetra-
tion testing. InProceedings of the 26th AAAI Conference on
Artifical Intelligence (AAAI-2012).
Seipp, J., and Helmert, M. 2013. Counterexample-guided
cartesian abstraction refinement. InProceedings of the
23th International Conference on Automated Planning and
Scheduling (ICAPS-2013), To appear.
Smith, D. E. 2004. Choosing objectives in over-subscription
planning. InProceedings of the 14th International Confer-
ence on Automated Planning and Scheduling (ICAPS-2004),
393–401.
Zilles, S., and Holte, R. 2010. The computational com-
plexity of avoiding spurious states in state space abstraction.
Artifical Intelligence174(14):1072–1092.

