To appear in proc. 14th International Joint Conference on Artificial Intelligence (IJCAI’95),

Montréal, PQ, Canada, Aug. 1995

Planning with Abstraction Hierarchies can be
Exponentially Less Efficient*

Christer Backstrom and Peter Jonsson
Department of Computer and Information Science
Linkoping University, S-581 83 Linkoping, Sweden

email: {cba,petej}@ida.liu.se

Abstract

It 1s well-known that state abstraction can speed
up planning exponentially, under ideal condi-
tions. We add to the knowledge—showing that
state abstraction may likewise slow down plan-
ning exponentially, and even result in generat-
ing an exponentially longer solution than nec-
essary. This phenomenon can occur for ab-
straction hierarchies which are generated au-
tomatically by the ALPINE and HIGHPOINT al-
gorithms. We further show that there is little
hope of any drastic improvement upon these
algorithms—it 1s computationally difficult to
generate abstraction hierarchies which allow
finding good approximations of optimal plans.

1 Introduction

One common approach to improving the efficiency of
planning is to use a hierarchical planner based on state
abstraction—ignoring certain literals, either in the op-
erator preconditions [Sacerdoti, 1974] or in the whole
language [Knoblock, 1991, 1994]. First an abstracted
version of the problem instance is solved, thus not tak-
ing all details into account and resulting in a plan which
i1s correct at this abstraction level. This plan is then
used as a skeleton plan to be filled in with more detail at
the next lower level—a process referred to as refinement.
Repeated refinement results in a solution to the original,
non-abstract problem.

Although state abstraction cannot avoid exponential
search spaces in the general case, it is usually considered
a powerful method for reducing the search effort. The
method has been demonstrated to speed up planning
considerably for certain test examples [Knoblock, 1994;
Bacchus and Yang, 1994]. This is augmented with the-
oretical results [Knoblock, 1991] showing that state ab-
straction can reduce the size of the search space from ex-
ponential to linear under certain ideal conditions. These
conditions are very strong, however, and are not likely
to be met in (m)any real applications. One of the condi-
tions is that the hierarchy satisfies the downward refine-

*This research was sponsored by the Swedish Research
Council for Engineering Sciences (TFR) under grants
Dnr 92-143 and Dnr 93-270.

ment property (DRP) [Bacchus and Yang, 1994], which
guarantees that no backtracking occurs between abstrac-
tion levels. Bacchus and Yang [1994] analysed the ex-
pected search complexity when this particular condition
does not hold—more precisely, as a function of the prob-
ability that a plan at some abstraction level can be re-
fined into a plan at the next lower level. They found that
the search complexity is linear both when this probabil-
ity 1s close to 1 and when 1t is close to 0. However,
there is a phase-transition effect increasing the search
complexity considerably, when the probability is neither
low nor high. Bacchus and Yang even reported that the
expected search effort may be somewhat higher with ab-
straction than without in this middle region, namely if
most search has to be redone at the ground level. How-
ever, the literature seems to tacitly assume that state
abstraction will never do any big harm. Contrary to
this, we show that just as state abstraction can speed
up planning exponentially, it can also slow down plan-
ning exponentially, and even force the hierarchical plan-
ner to produce an exponentially longer solution than a
non-hierarchical planner!

Knoblock [1994] has further presented an algorithm,
ALPINE, for generating abstraction hierarchies that are
ordered monotonic—a property guaranteeing that no re-
finement of an abstract plan can undo any effects of the
abstract plan. Bacchus and Yang [1994] have presented
a modification of this algorithm, HIGHPOINT, whose hi-
erarchies are ordered monotonic and expected to satisfy
the DRP more closely. While these algorithms produce
good hierarchies in many cases, they are not guaranteed
to be harmless. In fact, we show that both algorithms
may produce the type of abstraction hierarchy that leads
to exponentially longer solutions. Furthermore, we show
that using the same underlying principle as in ALPINE
and HIGHPOINT, it is computationally difficult to gen-
erate an abstraction hierarchy that allows a hierarchical
planner to generate a solution with length within a con-
stant factor of the optimal plan length (we actually prove
an even stronger approximation bound—a logarithmic
factor in the size of the instance).

2 Basic Formalism

We first define some basic concepts.

Definition 2.1 Given a set S, we let Seqs(S) denote
the set of all sequences formed by members of S. We
further use the symbol “;” to denote sequence concate-
nation. Given a set P = {p1,...,pn} of proposi-
tional atoms, Lp denotes the corresponding set of lit-
erals, ie. Lp = {p,-p|peP}. A set S C Lp of
literals is consistent iff there is no atom p such that
{p,~p} € S. For S C Lp we further define Gen(S) =
{p|p€S or =p€e S}, ie. the sel of atoms generating
the literals in S.

Since we will only prove hardness results, we need
only consider a propositional formalism, and the results
will carry over automatically to more expressive for-
malisms. More precisely, we will use the ground version
of the TWEAK formalism [Chapman, 1987], which is
known [Backstrém, 1995) to be expressively equivalent,
under polynomial reduction, to most other common vari-
ants of propositional STRIPS.

Definition 2.2 A planning problem instance is a
quadruple T = (P, 0, 1,G) where

e P is a finile set of atoms;

e O is a finite set of operators of the form (pre, post)
where pre, post C Lp are consistent and denote the
pre- and post-condition respectively;

e 7.G C Lp are consistent and denote the initial and
goal state respectively.

For o = {pre, post) C O, pre(o) and post(o) to denote
pre and post respectively. A sequence {o01,...,0n) €
Seqs(O) of operators is called a plan over II. The func-
tion Result is defined for all consistent states S C Lp
and plans {(01,...,0n) € Seqs(O) as

Result({),S) =5

Result({o1,...,00),5) =
Result({oz2,...,0n),S U post(o) —{p | —p € post(o)})
We say that a plan {o1,...,0,) € Seqs(Q) is a solution
to an instance I = (P, 0,7,G) iff
1. pre(o1) CZ;
2. G C Result({o1,...,04),T) and

3. pre(o;) C Result({o1,...,
n.

0; — 1),Z) forall 1 < i <

3 State Abstraction

There are two common ways of doing state abstraction:
the relazed method and the reduced method. The re-
laxed method was pioneered for planning in the AB-
STRIPS planner [Sacerdoti, 1974]. Criticality values are
assigned to the literals and at each abstraction level i,
all literals with criticality value < i are omitted from the
operator preconditions. The reduced method [Knoblock,
1991, 1994] goes even further by restricting the whole
language at level ¢ to only those literals having criti-
cality value > i¢. We will base our theorems on the
reduced model, but they trivially hold also under the
relaxed model.

Definition 3.1 Given a set of of atoms P, an abstrac-
tion of P is a set of atoms P’ C P. An n-level ab-
straction hierarchy on P is a chain P* C ... C P! C

PO where P = & and P° = P. We will mostly
write the abstraction hierarchy as an ordered partition-
ing (D=1 ..., D% of P where D' = P! — Pt for all
t. The mapping of a state S C Lp onto the abstract
level i, for some 1 < i < n, is denoted S' and is de-
fined as S' = SN Lpi. Similarly, the mapping of a
ground operator o = (pre, post) onto the abstract level
i is denoted o' and defined as o' = (pre’, post’). The
mapping of an operator set to level i 1s consequently de-
fined as O = {0 | 0 € O} and the mapping of a plan-
ning instance I = (P, 0,I,G) to level i is defined as
It = (PO T8, GY. We refer to level 0 as the ground

level.

The general method for planning with abstraction hi-
erarchies can be cast as an algorithm, HPLAN (see Fig-
ure 1). This planner relies on a non-hierarchical planner
PrLAN for solving subproblems within abstraction levels.
PLAN can be any planner for the language at hand, but
it must be sound and complete to guarantee soundness
and completeness of HPLAN. We will further assume
that PLAN generates shortest plans.

When solving an instance I = (P, O,Z,G) under an
abstraction hierarchy (D"=1 ... D% HPLAN first uses
PLAN to solve the most abstract version, II" ™! of this
instance. This results in a plan (o771 . ..,02_1) over
the abstract operator set @”~!. This plan is used as a
skeleton for solving the instance II"~2, with initial and
goal states 7% ~2 and G”~? respectively. In addition, the
intermediate states S} = Result(o]™*,Z"71),... S =
Result(oz_l, Sp—1) on level n — 1 are used as new sub-
goals on level n—2. In this way we get k41 subproblems
to solve on level n — 2, each one hopefully easier than
solving II"~? from scratch. Each of these subproblems
is solved using PLAN, and these solutions are concate-
nated into a solution for II”~2. This process is then
repeated until we reach the ground level, which results
in a solution for II° = 1II.

1 procedure HPLAN(O,Z,G, (D"~1, ... DY)
2w+ Pran (Ot zn-1 gnh
3 if no such plan then fail

4 forifromn—1tol do

5 w — Refine(w,1)

6 return w

1 procedure Refine(w,1)

2 Assume w = (0%, ...,0%)

3 So—7T4Ty—TIt1!

4 for j from 1 to k do

5 S; «— Result(o 1)

6 for j from 1 to é do

7 wj— PLaN (0L T4, S))
8 if no such plan then fail
9 T; — Result(w;, Tj_1)

10 wpy1 — Pran (0= ,Tk,gi‘l)
11 return wi;...wr41

Figure 1: The hierarchical planning algorithm (search
control omitted).

The process of using a plan on one abstraction level as
a skeleton for producing a plan at the next lower level is
called refining the plan. In the general case, for abstrac-
tion hierarchies not satisfying the DRP, HPLAN must
also use backtracking and try refining another skeleton
plan on some level whenever a subproblem cannot be
solved. However, to simplify matters we omit backtrack-
ing in this paper since we will only use HPLAN for hier-
archies satisfying the DRP.

4 Exponential Slow-down

Knoblock [1991] has shown that, under certain ideal con-
ditions, the size of the search space can be reduced from
exponential to linear by using HPLAN and an abstraction
hierarchy instead of an ordinary non-hierarchical plan-
ner. Most of these conditions are expressed in terms
involving properties of the actual planning process and
properties of the final solution, and are thus difficult to
cast in terms involving only properties of the instance.
One of the conditions is the DRP, ze., there is no back-
tracking between abstraction levels.

This section presents some complementary results:
state abstraction can also cause an exponential blow-up
of the search space, causing an exponential slow-down,
under certain conditions—even for hierarchies satisfying
the DRP. Furthermore, this exponential slow-down is ac-
companied by the even worse result that the generated
solution is exponentially longer than the shortest one!

Consider the following generic planning instance, X,
and the two possible abstraction hierarchies H; and Hs.

Definition 4.1 For all even n > 0 we define X, =

<{p0a e apn—l}a Ona @, {Pn—%Pn—l}), where On con-
tains the 2n operators so, 70, ..., 8n_1,Tn_1 as defined in
Table 1. We further define the following two abstraction
hierarchies for X,

Hi = ({poh A{pi}h Ap2b Apst, - Apn—2} {pn-1}),
Hy = ({pih {po} Apsh Apzt, - Apn—1} {pn-2})-
Both H; and Hy obviously satisfy the DRP and are or-
dered.

We can now prove that there is an exponential dif-

ference in the sizes of the solutions and search spaces
depending on the choice of abstraction hierarchy.

Theorem 4.2 HpLAN will produce a solution of length
n for X, under Hy.

Proof: Let L, be the length of the shortest plan
HPLAN can produce under H;. We prove by induction

operator pre post
894 {Pzz’—l,Pzz’—z} {Pzz’}
794 {Pzz’—l,Pzz’—z} {"Pzz’}
S2i41 {“Pzz’—l, _‘Pzz’—z} {P2i+1}

2441 {"Pzz’—l,_‘Pzz’—z} {_'P2i+1}

Table 1: Operators for the planning instance X,,, where
0 < 2¢ < n and with the exception that the operators
so, 7o, $1 and r; have empty preconditions.

over n that for even n > 0,

2,
Ln - { 2+ Ln—Za

Base step: For n = 2 all operators have empty pre-
conditions, so the behaviour of HPLAN will correspond
to the two uppermost levels of Figure 2. The resulting
plan is (s1, sg), which clearly must be a shortest plan.
Hence, Ly = 2.

Induction step: Assume the claim holds for all even
k < n for some even n > 2. Planning on the four most
abstract levels will proceed as shown in Figure 2. The
initial state will be empty on all abstraction levels and
orderedness of the abstraction hierarchy guarantees that
the last three states on level n — 4 will be refined into

states subsummg these states. Hence, the operators s;,~ 411

for n =2,
for n > 2.

and s Wlll be refined into the single-operator plans

(5;_1) and (s _,) respectively at each level i < n—4. Tt
n2s"78). Ordered-

remains to analyse the subplan (s 75, sm"5).
ness guarantees that the atom p,_; cannot be affected
and will not be required for any refinement of this sub-
plan. Hence, this atom can be ignored for the expansion.
Substituting indices n —1 and n —2forn—3 and n — 4

respectively then shows that the subplan (s"”3 s"~3) is

isomorphic to the plan (s"~7 s"~2) on level n — 2, and
similarly for the adjacent states. That is, by ignoring
the atom p,_; we see that the subplan (s"”3 s'”3) is
the solution at level n — 4 for the instance X, _», so it
follows from the induction hypothesis that it will be re-
fined into a ground solution of length L, _5. It follows
that L, = 2+ L,,_s for even n > 4, which proves the
claim and ends the induction.

The solution to the recursive equation is L, = n,

which proves the theorem. a

Theorem 4.3 The shortest solutton HPLAN can gener-
ate for ¥, under Ho is of size Q(2%).

Proof: Let L, be the length of the shortest plan
HPLAN can produce under Hs. We prove by induction
over n that for even n > 0,

2,
Ln = { 2425, s

1 pm = 1
A I’ | Sn—l g
| | =1l Pp—1
|

for n =2,
for n > 2.

1
goa { O} result/initial
|

-— - -
. — operator
T2 A== | g2 - = empty subplan
| | n—2 n—2 | Pn—1 > 1 refi t
| 1int| Poot | %2 | pyo goal refinemen
I 1 1 I
-— P— -
IS ~=~ e Q\ g3
| | 28 n—3 | 23 Pn—1 Pn—1
|) n—1| Pna| n— | Pn—1 | “h—2 Lpn_2 S Pn—2
LT |\Pn—3 2| P | 15, _le
- -, ~ =
R . N — G
—4 Pn—l —4 Pn—1
I 2—1 Pu1] 5, S f Pn—1| °E—2 p“_2
| n-—4 | Pn—3 |
I I Pt |pn —1 ‘Bg_:gj

Figure 2: Applying HPLAN to X, under H;.

Base step: For n = 2 all operators have empty pre-
conditions, so the behaviour of HPLAN will correspond
to the two uppermost levels of Figure 3. The resulting
plan is (sg, s1), which clearly must be a ahortest plan.
Hence, Lo = 2.

Induction step: Assume the claim holds for all even
k < n for some even n > 2. For n > 4, planning on
the four most abstract levels will proceed as shown in
Figure 3. Analogous to the previous proof we see that the
operators SZ:% and 5"_4 will be refined into the single-
operator plans (5;_1) and (s?,_,) respectively at each
level ¢ < n — 4. Also by analog reasoning, the atoms
Pn—1 and pp_so can be ignored wrt. the expansions of
the subplans (szzg,SZ:i) and (rZ:é,rZ:i). The first
of these is clearly the solution at level n — 4 for X,,_»
and 1t, thus, follows from the induction hypothesis that
it expands into a ground subplan of length L,,_5. Since
the operators r,_3 and r,,_4 have the same preconditions
as sp_3 and s,_4 respectively, it is immediate that the
two subplans will have isomorphic refinements. Hence,
also the second subplan expands into a ground subplan
of length L,_». It follows that L, =2+ 2L, _5 for even
n > 4, which proves the claim and ends the induction.

The solution to the recursive equation is L,, = 2511 -2
so L, € Q(2%), which proves the theorem. a

These results mean that if we happen to make a for-
tuitous choice of abstraction hierarchy, then HPLAN will
generate a linear-size solution, using only a linear-size
search space. On the other hand, if we are less fortunate,
then HPLAN is forced to explore an exponential number
of nodes generating an exponentially longer solution.

Obviously, an unfortunate choice of abstraction hier-
archy can force HPLAN to take exponential time, pro-
ducing an exponentially suboptimal solution. It is thus
interesting to compare this to the performance of a non-
hierarchical planner. Such a planner may also have to
explore an exponential-size search space. However, al-
lowing the planner to search the whole, exponential-size
search space would at least guarantee generating a short-
est, te.linear-size, solution. Furthermore, a standard
planner using a domain-independent standard heuristic
can guarantee finding a solution exploring only a linear
number of nodes in this case.

Theorem 4.4 SNLP [McAllester and Rosenblitt, 1991]

1,= 1
A | I -1 g
| “n—2|Pn—2

_ \ .-

2 - y 2
I |’- 1 n—2 n—2 Pr—1. g
| 1’n—2Pn—2)n—1 prl

_

e i i ¥
| n—4 n—2f Pn—2 n—4 Pn 5 n—1 Pn—
\
| \n—4 'Pn M n—4 n—4 \n—4 Pn—1 —1
[P — —
| n—4fPn—4 n—B —4| "n—2lpp—o n—4 Pn 2Irl 1 Pn—2 Pn—2
\Pn—B an—S E

_

Figure 3: Applying HPLAN to X, under Hs.

solves X, tn polynomial time of equipped with a heuris-
tic which prefers existing actions to new ones for goal
establishment.

5 Building Abstraction Hierarchies

Knoblock [1994] has suggested defining a preorder C in
the set of atoms and then use this order to define an
abstraction hierarchy satisfying the following restriction.

Restriction 5.1 Define C on P s.i. for all p,p’ € P
and every o € O,

1. if p,p' € Gen(post(o)) and p#£yp] then p C p' and
/ .
P EP;
2. if pEGen(pre(o)) and p'€Gen(post (o)), then p C p'.
For all atoms pe PLp e P4, if pCp/, then i < j.

The intention is that if p C p’, then p must not occur
higher up in the abstraction hierarchy than p’. Restric-
tion 5.1 is known [Knoblock, 1994] to be a sufficient,
though not necessary, condition for an abstraction hier-
archy to be ordered monotonic.

Knoblock [1994] has further presented an algorithm,
ALPINE, for generating maximally deep abstraction hi-
erarchies satisfying Restriction 5.1, thus generating or-
dered abstraction hierarchies. The basic ALPINE algo-
rithm appears in Figure 4.1 The actual ALPINE algo-
rithm [Knoblock, 1994] is somewhat more advanced and
also comes equipped with certain heuristics. Further, it
handles a first-order language, while our version is in-
tended only for a propositional language. These differ-
ences do not affect the results to be proven in the fol-
lowing section, however—a topic which will be further
discussed later in this paper.

ALPINE builds a directed graph, GG, corresponding to
the preorder C and then collapses all strong components
in (G, resulting in a set C' of equivalence classes over P.
The final line of the algorithm sorts the partially ordered
set C' topologically, but does not specify any preference
for a particular topological sort. Hence, ALPINE cannot
always distinguish between good and bad abstraction hi-

erarchies, like H; and Hs.

Theorem 5.1 Given the planning instance ¥, , ALPINE
arbitrarily generates any of a number of possible abstrac-
tion hierarchies including H1 and H-.

Proof: The first step of ALPINE will produce the graph
G in Figure 5 (corresponding to the preorder C). Since
there are no strong components of size > 1, step 2 will

!Note that, contrary to Knoblock, we direct the arcs in
the standard way.

1 procedure ALPINE(P, O)

2 G— (P,

3 forallpp eP do

4 if pCp’ then insert arc {p,p’) in G

5 Collapse the strong components in GG and let
G' = (C, A) be the reduced graph

6 return any topological sorting of A

Figure 4: The ALPINE algorithm.

Pn—2 Pn-1 Pn—-1 Pn—2

£< f f

Pn—4 Pn-3 Pn-2 Pn-1
AY <4 i A
G S T1 T2
P.z sz P.l P.o
Po P1 Po yan

Figure 5: The preorder on P induced by the first step of
the ALPINE algorithm and two of the possible topological
sortings of the reduced graph.

produce an isomorphic graph, with each element being
a singleton component, inducing a partial order on the
atoms. Finally, step 3 may produce any topological sort-
ing of this partial order, which clearly include the total
orders reflected by the graphs 77 and 75 in Figure 5. Ob-
viously, T correspond to H; and 75 to Hs, which proves
the theorem. ad

What, then, are the chances of improving ALPINE by
making a more informed choice in line 67 The imple-
mented version comes equipped with certain heuristics
[Knoblock, 1994, pp. 272-273], of which only one (num-
ber 3) applies to the propositional case. This heuristic
specifies that adjacent levels not containing any goal lit-
erals should be merged into one single level. Applying
this heuristic would cause the atoms pg, ..., p,_3 to end
up on the same level.?

A modified version of the algorithm, HIGHPOINT [Bac-
chus and Yang, 1994], uses a sampling method to deter-
mine for each pair of components ¢;,¢; € C that could
be ordered the expected probability that a plan at level
¢ can be refined at level j if ordering ¢ above j. These
probabilities are then used to further collapse some com-
ponents and to guide the topological sorting of the re-
maining components. However, for X,,, HIGHPOINT will
always find that the probability of refinement is 1, so it
is provided no extra information to guide the topological
sorting. Hence, HIGHPOINT is bound to suffer from the
same problem as ALPINE, ie., not being able to prefer
Hl to Hz.

This is hardly surprising, however, since it is possible
to show that no modification or heuristic can improve the
topological sorting to always allow HPLAN to produce
shortest plans.

Definition 5.2 The search problem ALPGENMIN is de-
fined as follows:

Instance: A planning instance Il = (P, O, 7,G).
Problem: When executing the ALPINE algorithm on II,
find a topological sorting in the final step that results in
an abstraction hierarchy which allows HPLAN fo find a
shortest solution.

Theorem 5.3 ALPGENMIN is NP-hard.

2Knoblock [personal comm., 1995] argues that this is the
right behaviour in this case. However, our Theorems 4.2 and
4.3 would hold also under heuristic 3 if setting G = P in Xs,.

Proof: Proof by reduction from MiNIMUM COVER
[Garey and Johnson, 1979, p. 222], which is NP-
complete. Let X = {a1,...,2,} be a set, let C =
{C1,...,Cy} be aset of subsets of X and let K be an in-
teger. W.l.o.g. we restrict the problem to having covers
of even size only, by requiring that m is even and that the
atoms x9; and x9;41 always appear together in members
of C'. Define a planning instance II = (P, 0, <, {p})
where P is partitioned into the three sets Piop, = {p},
Puc = X UA{r}, and Prir = {q0,...,¢x+1}. The set
of operators is similarly partitioned into three sets Oy,p,
Ouc and Opgp, s.t. the operators in Oy, change only
atoms in Piop etc. The set Opr¢ contains one operator
o; for each member C; of C', having no precondition and
C;U{r} as its effect. The set Of;, contains one operator
o; for each atom ¢; € Py;, having no precondition and
{g0,¢;} as its effect. Finally, Oy, consists of the two
operators opyr¢ and oz, both having the effect p and
having the preconditions Pyrc and Py, respectively.

When applying ALPINE to II, it will find the three
maximal strong components Py,p, Parc and Py, the
first being ordered above the two latter, which are mu-
tually unordered. Hence, there are two possible ab-
straction hierarchies: Harc = (Piop, Priz, Puc) and
Hiiw = (Piop, Parc, Pric). Obviously, under hierarchy
Harc 1t is possible to find a plan of lenght K*+ 1, where
K™ is the size of the minimum cover for X. Hj;,, on
the other hand, will force the planner to generate a plan
of length K + 2, which is optimal iff K* > K (remem-
ber that K* must be even). Now, if we could choose
in polynomial time the hierarchy allowing us to find an
optimal plan, then we could also solve MINIMUM COVER
in polynomial time. Hence, ALPGENMIN is NP-hard. O

Note that the theorem is not about whether HPLAN
will generate a shortest plan, but only about whether
the abstraction hierarchy prevents it from doing so or
not. This is a disappointing result since one of the condi-
tions guaranteeing a linear-size search space for HPLAN is
that HPLAN generates a shortest plan [Knoblock, 1991].
Knoblock mentions, however, that this condition can
be relaxed; it is sufficient that HpLAN finds a plan of
length within a constant factor longer than the short-
est one. Unfortunately, ALPGENMIN cannot be approxi-
mated within any constant factor, unless P=NP. In fact,
an even stronger approximation limit can be proven.

Theorem 5.4 ALPGENMIN cannot be asymptotically
[P 1

approzimated within a factor clog, Tl Jor any ¢ < 3
unless NP C DTIME (nloglosn).

Proof sketch: Suppose the theorem were not true.
Then it would follow from the construction in the proof
of Theorem 5.3 that we could approximate MINIMUM
COVER within clog, |X| for some ¢ < . However, this
is impossible unless N P C DTIME (n'°8!°87) [Bellare et
al., 1993], contradicting the assumption. a

We have previously required that the algorithm PLAN
underlying HPLAN always generates optimal plans. Un-
fortunately, generating an optimal plan at an abstract
level does not guarantee that we find an optimal plan at
the ground level. This does not affect Theorems 5.3 and
5.4, however, since it 1s obvious from their proofs that

neither theorem depends on the assumption that PLAN
generates an optimal plan.

6 Discussion

It is well-known [Knoblock, 1991] that state abstraction
can speed up planning exponentially. Under certain ideal
conditions, plans can be generated in linear time in the
length of the solution for some planning problems, eg.
the Towers-of-Hanoi problem. However, the value of
this demonstration is questionable since the problem 1s
unrealistic in the sense that it has exponentially sized
minimal solutions.® One of these ideal conditions is the
downward refinement property (DRP), which guarantees
that no backtracking occurs between abstraction levels.
We have added to previous analyses of state abstrac-
tion by showing that not only can state abstraction give
exponential speed-up in some cases; it can also cause ex-
ponential slow-down in other cases—even for hierarchies
satisfying the DRP. More precisely, there exist problem
instances such that the ideal choice of abstraction hier-
archy leads to the generation of a linear-size plan, while
a more unfortunate choice forces the generation of an
exponential-size plan, taking exponentially longer time
to generate. This may even happen in cases where a
standard non-hierarchical planner equipped with a sim-
ple, domain-independent heuristic produces a shortest,
te. linear-size, solution in polynomial time. Instances of
this kind seem no less realistic than, for instance, Towers-
of-Hano.

We have further shown that the ALPINE [Knoblock,
1994] and HIGHPOINT [Bacchus and Yang, 1994] algo-
rithms for generating abstraction hierarchies are not able
to distinguish between such good and bad hierarchies as
mentioned above. Furthermore, we have also shown that
it is even 1mpossible to design an algorithm based on the
same underlying principle as ALPINE and HIGHPOINT
that always produces hierarchies allowing a hierarchical
planner to generate plans of length within a constant
factor of the shortest length (actually, not even within a
logarithmic factor in the size of the instance). We have
choosen in this paper to concentrate on state abstraction
as defined and used by Knoblock [1994], ie. using a total-
order hierarchical planner. We are currently investigat-
ing the consequences of using a partial-order hierarchical
planner like ABTWEAK [Yang and Tenenberg, 1990] in-
stead. Although ABTWEAK seems to handle correctly
the particular example we have used to demonstrate the
exponential slow-down effect, we do not believe there 1s
any fundamental difference in general. In fact, the ap-
proximation result mentioned above should be valid also
for partial-order planners like ABTWEAK.

The message of this paper is not that state abstrac-
tion and the use of algorithms like ALPINE and HIGH-
POINT should be abandoned; in many cases, these can
still be powerful tools for tackling the search complexity
in planning. However, the results tell us that we must
be very careful; state abstraction is a powerful tool, but
a tool that may occasionally turn its power against us,

®See Biackstrom and Nebel [1993] or [Garey and Johnson,
1979, pp. 11-12] for a discussion of this topic.

making things exponentially worse. Even if good ab-
straction hierarchies exist in many domains, the task of
finding these is non-trivial and seems to remain a highly
domain-dependent heuristic endeavour. We believe that
more research is needed in order to understand when
state abstraction works and how to exploit the inher-
ent structure of problems for building good abstraction
hierarchies.

Acknowledgements
We would like to thank Craig Knoblock, Jalal Maleki,

Qiang Yang and the anonymous referees for comments
which helped improving this paper.

References

[AAAT, 1991] Proc. 9th (US) Nat’l Conf. on Artif. In-
tell. (AAAI-91), Anaheim, CA, USA, 1991.

[Bacchus and Yang, 1994] Fahiem Bacchus and Qiang
Yang. Downward refinement and the efficiency of hi-
erarchical problem solving. Artif. Intell., 71:43-100,
1994.

[Backstrom and Nebel, 1993] Christer Biackstrém and
Bernhard Nebel. Complexity results for SAST plan-
ning. In Proc 13th Int’l Jownt Conf. on Artif. Intell
(IJCAI-93), Chambery, France, 1993.

[Backstrom, 1995]) Christer Backstrom. Expressive
equivalence of planning formalisms. Artif. Intell., Spe-
cial Issue on Planning and Scheduling, 1995. To ap-
pear.

[Bellare et al., 1993] M. Bellare, S. Goldwasser, C.
Lund, and A. Russel. Efficient probabilistically check-
able proofs and applications to approximation. In 25th
ACM Symp. Theory Comput. (STOC-93), pages 294
304. ACM, 1993.

[Chapman, 1987] David Chapman. Planning for con-
junctive goals. Artif. Intell | 32:333-377, 1987.

[Garey and Johnson, 1979] Michael Garey and David
Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, New York,
1979.

[Knoblock, 1991] Craig A Knoblock. Search reduction in
hierarchical problem solving. In AAAI [1991], pages
686—691.

[Knoblock, 1994] Craig A. Knoblock. Automatically
generating abstractions for planning. Artif. Intell,

68:243-302, 1994.
[McAllester and Rosenblitt, 1991] David McAllester

and David Rosenblitt. Systematic nonlinear planning.

In AAAT [1991], pages 634-639.

[Sacerdoti, 1974] Earl D Sacerdoti. Planning in a hier-
archy of abstraction spaces. Artif. Intell., 5:115-135,
1974.

[Yang and Tenenberg, 1990] Qiang Yang and Josh D
Tenenberg. ABTWEAK: Abstracting a nonlinear,
least commitment planner. In Proc. 8th (US) Nat’l
Conf. on Artif. Intell. (AAAI-90), pages 204-209,
Boston, MA, USA, 1990.

