In proc. 13th International Conference on Artificial Intelligence (IJCAI-93),
Chambéry, France, Aug. 29 — Sep. 3, 1993, pp. 1430-1435.

Complexity Results for SAST Planning*

Christer Backstrom
Department of Computer
and Information Science,

Linkoping University

S-581 83 Linkoping, Sweden

email: cha@ida.liu.se

Abstract

We have previously reported a number of
tractable planning problems defined in the
SAST formalism. This paper complements
these results by providing a complete map over
the complexity of SAST planning under all
combinations of the previously considered re-
strictions. We analyse the complexity both of
finding a minimal plan and of finding any plan.
In contrast to other complexity surveys of plan-
ning we study not only the complexity of the
existence problems but also of the search prob-
lems. We prove that the SAST-PUS problem
is the maximal tractable problem under the re-
strictions we have considered if we want to find
a minimal plan. If we are satisfied with finding
any plan, then we can generalize further to the
SAST-US problem, which we prove to be the
maximal tractable problem in this case.

1 Introduction

We have previously reported a number of tractable
planning problems using the SAST and SAS for-
malisms. We started by identifying the SAS-PUBS prob-
lem [Bickstrom and Klein, 1991b] and prove this prob-
lem to be tractable. Then we applied a bottom-up
strategy, generalizing the results by removing restric-
tions, which resulted in the more expressive, but still
tractable, SAS-PUS [Backstrom and Klein, 1991a] and
SAST-PUS [Bickstrom, 1992a, 1992b] problems. The
overall goal of this research has been to identify suc-
cessively more and more expressive, tractable planning
problems, with the hope of ultimately finding problems
which are relevant to practical applications, especially in
sequential controlt

We found the tractable problems mentioned above
by studying a test problem in sequential control and
identifying a number of inherent restrictions (denoted

*This research was supported by the Swedish National
Board for the Engineering Sciences (TFR) under grant
Dnr. 92-143 and by the German Ministry for Research and
Technology (BMFT) under grant IT'W 8901 8.

1Sequential control is a subdisciplin of automatic control
and includes many planning-like problems.

Bernhard Nebel
German Research Center for
Artificial Intelligence (DFKI)

Stuhlsatzenhausweg 3
D-6600 Saarbriicken 11, Germany
email: nebel@dfki.uni-sb.de

P, U, B and S) on that problem. We have proven
[Backstrom, 1992a, 1992b] that the SAST formalism is
expressively equivalent to ‘standard’ variants of proposi-
tional STRIPS and ground TWEAK. Yet, it was essen-
tial to use the SASt formalism since the P, U, B and
S restrictions cannot be naturally expressed in any of
the other formalisms [Backstrom, 1992a Backstrom and
Nebel, 1992] and it is unlikely that we would have man-
aged to isolate them if using a standard formalism.

Having started from one tractable problem and gen-
eralized twice to new tractable problems it is interest-
ing to ask how much further we can generalize and stay
tractable by simply removing restrictions. This paper
answers that question by providing an exhaustive map
over the complexities for finding both optimal and non-
optimal plans for all possible combinations of the P, U,
B and S restrictions. It turns out that the SAST-PUS
problem is the maximally expressive tractable problem if
we insist on finding optimal (Ze. minimal length) plans.
Whichever of the three restrictions on this problem we
drop, the resulting problem is intractable. On the other
hand, if we do not require the solutions to be minimal,
then we can generalize somewhat further. We prove that
if we remove the P restriction, resulting in the SAST-US
problem, we can still plan in polynomial time, although
we are no longer guaranteed to find optimal plans.

2 The SAST Formalism

This section briefly recasts the main differences between
the SAST formalism and the STRIPS formalism and also
gives a somewhat simplified account of the formal defi-
nition. Due to the page limit we have to refer the reader
to previous publications [Backstrom and Klein, 1991a,
1991b, Backstrom, 1992a, 1992b] for background, moti-

vation and examples.

2.1 World Modelling

There are basically two important differences between
the SAST formalism and the propositional STRIPS for-
malism. The first one is that the SAST formalism uses
partial, multi-valued state variables instead of proposi-
tional atoms. The second difference is that the oper-
ators also have a prevail-condition in addition to the
usual pre- and post-conditions. This makes it possi-

1 ble to distinguish easily between those parts of the (tra-

ditional STRIPS) pre-condition that is changed by the
operator and the part that remains unchanged.? That
is, the (SAST) pre-condition of an operator specifies
those state variables which must have a certain defined
value in order to execute the operator and that will also
be changed to some other value by the operator. The
prevail-condition, on the other hand, specifies those state
variables that must have a certain value but will remain
unchanged after executing the operator.

Definition 2.1 A SAS*-structure ® = (M,S,H) is
defined by:
o aset M={i,..
o aspace § =&, x...x&;, of total states, where
for each j € M,

— &; is a domain of mulually exclusive values
for the jth state variable and
- 8]7" = S; U {u} is the extended domain for
the jth state variable,where u denotes the un-
defined value,
and the space ST = SZ»"; X ...
states is implicitly defined;

.,im} of state variable indices;

xST':n

T of partial
e a set 'H of operators (action types), each h € H
being of the form h = (b,e,f) € ST x St x §*
where b, e and f, denote the pre-, post- and prevail-
condition respectively of h, and where the set 'H is
subject to the following restrictions:
— for all h € H and for all i € M, if b(h)[i] # u,
then b(h)[i] # e(h)[{] #u
— for allh € H and i € M, either e(h)[i] = u or
f(h)[{] = u.

The first of the two restrictions on H expresses that
all state variables having a defined value in the pre-
condition of some operator to have a defined but dif-
ferent value in the post-condition. That is, an operator
cannot change a state variable from a defined value to the
undefined value and it must either change a variable or
not define it at all in the pre- and post-conditions; Vari-
ables that are defined but not changed should go into
the prevail-condition. The second restriction expresses
that the post-condition and the prevail-condition of an
operator must not define the same state variables since
an operator cannot both change a state variable and re-
quire it to be constant. Neither of these is a restriction
in practice.

We write s[i] to denote the value of the ¢th state vari-
able in a state s. We also write s C ¢ if the state s is
subsumed (or satisfied) by state ¢, ie.,

sCt iff Vie M(s[i] =u or s[i] = t[i]).
2.2 Plans

To simplify matters we only define linear plans and do
not distinguish between operators and their instantia-
tions (actions).

2This distinction could be implicitly derived from the or-
dinary STRIPS pre- and post-conditions but we find it both
formally and conceptually clearer to make it explicit. Fur-
thermore, the distinction is important if we also consider
parallel execution of operators [Backstrém and Klein, 1991b,
1991a, Bickstrém, 1992a).

Definition 2.2 A plan over a SAST-structure ® =

(M, S, H) is a sequence of operators (hy,... hy,) s.t.
hy € H for1 <k <mn.

Given two plans & = (hi,...,hy) and 3 =
(M, ... hL) we define (a;5) = (hy,...,hpm, Ry, ... R)).

The result of executing a plan is defined recursively as
follows, using the update function 6.

Definition 2.3 Given two states s,t € ST, we define
foralli e M,

oo ={ f} L0

The function result gives the state resulting from execut-
g a plan and s defined recursively as:

result(s, () = s,
result(s, (a;(h))) =
{ result(s, &) @ e(h)

(Uuy .. u)

An operator h is admissible wrt. a state s iff b(h) C s
and f(h) E s. A plan & = (hy, ..., hy,) is admissible wrt.
a state s iff hy 1s admissible wrt. s and for 1 < k£ < n, hy
is admissible wrt. result(s,{hy,..., hx—1)). In addition,
the empty plan () is admissible wrt. any state.

Definition 2.4 An instance of the SAST planning
problem s a tuple I = (®,s0,s4) s.t. & s a SAST-
structure and sqg,s, € ST denote the initial state and
goal state respectively. A plan a over @ solves Il iff

if b(h) C result(s, &)
and f(h) C result(s, &),
otherwise.

1. @ 15 admaissible wrt. sy and
2. s, C result(sg, a).

More specifically we distinguish four different problems.
The SASTplan existence problem is: given an in-
stance I, decide whether there exists some plan & over
® s.t. @ solves Il. The SASTplan search problem is:
given an instance I1, find a plan & over ® that solves 11,
or answer that there is no such plan. The corresponding
bounded plan existence (search) problem takes an ex-
tra parameter K and asks only for plans of length K or
shorter.

3 Restrictions

We have previously identified four restrictions on the
SAST planning problem that together result in tractabil-
ity. An instance of the SAST problem is post-unique
(P) iff no two distinct operators can change the same
state variable to the same value and it is unary (U) iff
each operator changes exactly one state variable. The
instance is binary (B) iff all state variable domains are
two-valued. Finally, the instance is single-valued (S) iff
any two operators that both require the same state vari-
able to have some specific value during their respective
occurrences must require the same defined value. For
example, single-valuedness prevents us from having two
operators such that one requires a certain room to be lit
during its occurrence while the other requires the same
room to be dark during its occurrence.

Definition 3.1 A SAST structure ® = (M,8,'H) is

e binary iff |S;| = 2 for alli e M,

e post-unique iff for all h,h' € H, if e(h)[{] =
e(h)[{] # u for some i € M, then h = h';

e unary iff for all h € H, there is exactly one i € M
s.t. e(h)[] # u;

o single-valued ff there exists some state s s.t.
f(h) C s for all h € H. In particular, we define the

global prevail-condition f2 for M as the minimal
such s (wrt. the number of defined values).

All these restrictions were identified by studying a test
example in automatic control, thus complementing the
usual problems from the Al world. For a somewhat more
elaborate discussion of the restrictions, see Backstrom
and Klein [1991a] or Backstrém [1992a].

We name subproblems of the SAST problem satisfy-
ing combinations of the above restrictions by appending
the letters denoting these restrictions. For example, the
SAST-PUS problem is the SAST problem restricted to
instances that are post-unique, unary and single-valued
while the SAST-B problem is only restricted to binary
state variables.

Since we have previously studied also the slightly more
restricted SAS formalism and it could, thus, be interest-
ing to view also SAS problems as restricted versions of
the corresponding SAST problems. It turns out, how-
ever, that all complexity results presented in this paper
hold regardless of whether we consider SAS*-structures
or SAS-structures. The complexity figures depend only
on the restrictions in Definition 3.1.

4 Existence of Optimal Plans

We already know [Backstrém, 1992a, 1992b] that we can
find optimal (in the sense of minimal length) plans for
the SAST-PUS problem in polynomial time.

Theorem 4.1 Bounded SAST-PUS plan existence and
plan search s solvable in polynomial time.

Since this problem is a generalization of the previously
studied, tractable SAS-PUBS [Biackstrom and Klein,
1991b] and SAS-PUS [Backstrom and Klein, 1991a] plan-
ning problems, it i1s interesting to ask whether we can
generalize even further, staying tractable. Unfortu-
nately, i1t turns out that we cannot remove any of the
three restrictions (P, U and S) and still find optimal plans
tractably, as we will see in this section. The complex-
ity results for bounded plan existence are summarized in
Figure 1 for all possible combinations of the restrictions
in Definition 3.1.

The following theorems together establish that the
SAST-PUS problems is the maximal tractable problem
wrt. the P, U and S restrictions. Due to space limi-
tations we will sometimes omit proofs or provide only
proof sketches, but the full proofs of all theorems appear
in Bickstréom and Nebel [1993].

We first note that all problems which are both
unary and single-valued have polynomially-sized mini-
mal plans.

Unrestricted

NP-complete

p

PUBS

Figure 1: Complexity of bounded plan existence for the
SAST problem and its subproblems.

Theorem 4.2 All solvable instances of the SAST-US
problem have minimal solutions which are of polynomi-
ally bounded length.

Proof: Appears in Bickstrom and Nebel [1993]. It is

also an immediate consequence of Theorem 6.1 in this

paper. O
We can now prove the NP-hardness results.

Theorem 4.3 Bounded plan existence is NP-complete
in the strong sense for SAST-UBS and SAST-US.

Proof: We prove NP-hardness of SAST-UBS plan ex-
istence by reduction from minimum cover [Garey and
Johnson, 1979, page 222] which is defined as follows.
Let X = {21,...,2mn} be aset, let C = {C4,...,C,}
be a set of subsets of X and let K be an integer. Does
there exist a cover for X, ie., a subcollection €’ C (' s.t.
Uc,ecr Cr = X and |[C'] < K.

Define one binary state variable, x, for each x; € X
and one, ¢, for each C7 € C'. Further define an operator
h; for each ¢; s.t. h; sets ¢; and also define an operator
hy for each C7 and each x; € €7 s.t. hyp can set zp
iff ¢; 18 set. Let all state variables be reset initially and
require all z; to be set in the goal state. It is obvious
that X has a cover C' s.t. |C'] < K iff there is a plan of
size | X |+ K or less solving II.

Both problems are in NP since the minimal solutions
are always of polynomial length (Theorem 4.2) and can,
thus, be verified in polynomial time. a

Theorem 4.4 Bounded plan existence is NP-hard n
the strong sense for SAST-PUB.

Proof sketch: NP-hardness in the strong sense fol-
lows by a reduction from the cligue problem [Garey and
Johnson, 1979, p. 194]. Assuming a graph G = (V, E),
the underlying idea of the proof is to define a SAST-
PUB instance as follows. For each vertex v; € V we
use five state variables A;, B;, C;, D; and V; and eight
operators a;»i', b;", ef, ¢ d;", d;, v;" and v; s.t. oper-
ators denoted + (-) set (reset) their corresponding state
+

variables. The prevail-conditions are chosen s.t. a; can

be executed only if C; 1s set and D; is reset, while b;»"
can be executed only if C; is reset and D; is set. We
let all state variables be reset initially and require all
variables but V; to be set in the goal state. Obviously,
any plan must include either of the operator sequences
(e at e, df bF ¢y and (dF, b, d7,cf af, dF). We
further add prevail-conditions s.t. ¢; be executable only
if V; is set and d; is executable only if V; is set for all
v; not incident to v; in G. It can be proven that G has
a clique of size k iff the above SAST-PUB instance has
a plan of length 8|V| — 2k or less. O

Theorem 4.5 Bounded plan existence is NP-hard n
the strong sense for SAST-PBS.

Proof sketch: SAST-PUB plan existence can be re-
duced to SAST-PBS plan existence as follows. For each
state variable r add a new state variable ' and redefine
the operators s.t. z’ is set when x is reset, reset when x is
set and undefined when x is undefined. This is possible
since the new instance need not be unary. Furthermore,
we can now test whether z is reset by instead testing
whether 2z’ is set, so the operators can be redefined to
be single-valued. ad

If we further drop post-uniqueness, then the last two
problems become PSPACE-complete.

Theorem 4.6 Both bounded and unbounded SASt plan
existence i1s PSPACE-complete.

Proof: Immediate from the formalism equivalence re-
sult [Backstrém, 1992a, Corollary 5.18] and PSPACE-
completeness for propositional STRIPS [Bylander, 1991,
Theorem 1]. O
We also sharpen the PSPACE-completeness results
presented by Bylander [1991] and Erol et al. [1992].

Theorem 4.7 Both bounded and unbounded SAST-UB
and SAST-BS plan existence is PSPACE-complete.

5 Finding Optimal Plans

We are ultimately interested in finding a solution, not
only finding out whether one exists. Hence, it is in-
teresting to also analyse the complexity of the bounded
plan search problem. Obviously, a search problem can
never be easier than its corresponding existence prob-
lem, so the results in the previous section provide lower
bounds for the bounded plan search problems. Further-
more, if we can solve the bounded plan existence prob-
lem, then we can also solve the bounded plan search
problem by using prefiz search [Balcazar et al., 1988,
Garey and Johnson, 1979, pp. 116-117]. It is impor-
tant to note, however, that this method does not provide
a polynomial reduction of the bounded search problem
to the bounded existence problem. The reason for this
is that some of the problems we consider do not have
polynomially bounded minimal solutions, as we will see
below. Hence, the prefix search method provides only a
pseudo-polynomial reduction, ze., the reduction is poly-
nomially bounded in K, but not necessarily in the size
of the representation of K.

Theorem 5.1 The SAST-PUB and SAST-PBS plan-
ning problems have instances with exponentially sized
minimal solutions.

Proof sketch: Given m > 0, define a SAST-PUB
instance IT = ((M, S, H), so, s4) s.t. M = {1,...,m};
all §; = {0,1}; H = {h{,h7,...,ht R}, where for
1<k <m,
. . if Q= k,

sl =)l = {0 B
if Q= k,
otherwise ,
i< k-1,
iz k—1,

otherwise ;

(W)l = b(hD)[i] = {

SO 2= 2O

(D)) = f(h)li] = {

so = {0,...,0) and s, = (0,...,0,1). This instance has
a unique minimal solution of length 2 —1 corresponding
to a Hamilton path in the state space.

The above SAST-PUB instance can be encoded as a
SAST-PBS instance, using the same technique as in the
proof of Theorem 4.5, which, thus, has a unique minimal
plan of length 2™ — 1. ad

An immediate consequence of this theorem is that
both bounded and unbounded SAST-PUB and SAST-
PBS plan search is provably intractable since we might
have to output a solution which is exponentially larger
than the problem instance itself. Some care should be
taken in interpreting these results, though. What we
see here is the second cause for intractability as defined
by Garey and Johnson [1979, pp. 11-12] and we should
hardly regard instances with exponentially sized solu-
tions as realistic. However, even if we look only for
solutions with a specified length the problems are still
NP-hard in the length parameter®, which follows from
the strong NP-hardness of SAST-PBS and SAST-PUB
bounded plan existence. A further discussion on this
topic appears in Backstrom [1992a, pp. 142-147].

Finally, the following result is immediate from Theo-
rem 4.

Theorem 5.2 Bounded plan search is NP-equivalent
Jor SAST-UBS and SAST-US

6 Non-optimal Planning

While an algorithm for the bounded plan existence prob-
lem can be used to find plans, this is not the case for the
unbounded existence problem. The reason is that we no
longer have a measure of the distance to the goal. A
polynomial-time algorithm used to prove that an exis-
tence problem is tractable can often be modified to also
find a solution in polynomial time. This is not always
the case, however. Hence, 1t seems that it is not of much
use to know the complexity of the plan existence prob-
lem since we are ultimately interested in the complexity
of finding a plan. Therefore, we focus only on the search
problem in this section.

Figure 2 summarizes the complexity results for both
the bounded and the unbounded plan search problems.
The only difference is that the problems in the grey
area are tractable for unbounded plan search but NP-
equivalent for bounded plan search.

®That is, NP-hard in the value of the length parameter,
not only in the size of its representation.

While the SAST-PUS problem was found to be the
maximal tractable problem for optimal planning (wrt.
the restrictions in Definition 3.1), this is no longer the
case if we consider also non-optimal solutions. It turns
out that we can find a solution in polynomial time even
if we remove the P restriction, ze. if we have alternative
ways of achieving an effect.

Unrestricted

Intractable
(exponential
solutions)

Tractable
(polynomial
solutions)

Figure 2: Complexity of plan search for the SAST prob-
lem and its subproblems. The results hold also for
bounded plan search, except for the problems in the grey
area which are then NP-equivalent.

Theorem 6.1 Plan search 1is solvable in polynomial

time for SAST-US .

Proof sketch: The following algorithm, Plan, finds
plans for the SAST-US problem in polynomial time.*
Plan(M, S, H, so, 54)
N —O
loop

(s, &) «— Achieve Prevail(N)

(t,) — AchieveGoal(s)

if t C s then return (&;3)

elsif 3i € N(t[i] £ s[i]) then reject

elseN — N U {i € M|s[i] # fx[i]}
end loop

WO 0 =IO O~ QW N~

Achteve Prevail returns a state s and a plan a from
so to s s.t. s[i] = f[i] for as many i € M — N as
possible and s[i] = sp[é] otherwise. Unariness and single-
valuedness together guarantee that a unique such state
exists, since achieving the global prevail-condition, 1%7.[,
for one state variable cannot make 1?7.[unachievable for
another state variable. An iterated greedy strategy is
used to find s and @, which is not guaranteed to be
minimal.

Using a similar strategy, AchieveGoal returns a state
t and a plan 8 from ¢ to s, s.t. [i] = s[i] for as many
i € M as possible and t[{] = s,[i] otherwise.

*The algorithm is a descendant from an algorithm used
by Bylander [1991, Theorem 7).

The first time around the loop in Plan the global
prevail-condition 1s achieved for as many ¢ € M as pos-
sible in the state s, and t is the state ’closest’ to s from
which the goal can be achieved. If s = ¢, then s is a
subgoal s.t. & is a plan from sy to s and 3 is a plan from
s t0 $4, and we are done. Otherwise, if s[i] # t[¢] for
some i € M — N, then s,[7] could not be achieved from

s[i] so fx[i] must not be a subgoal. Hence, i is put in

N to guarantee that fx[i] is not achieved the next time
around the loop. Furthermore, if there is some i € N
s.t. s[i] # t[i], then there cannot be any plan at all since

s,[7] cannot be achieved from so[i] and not from fx[i] (or

f3[i] itself could never be achieved).

Plan terminates since N grows strictly. To see that
Plan is correct, note that N is empty the first time
around the loop, so if s.[i] could not be achieved from
s[7] because such a plan would require some operator h
s.t. f(h) £ s, then it could not be achieved at all. Fur-
thermore, any prevail-condition which is subsequently
blocked by N must not be achieved since this would make
some other part of the goal unachievable. ad

Theorem 5.1 imply provable intractability also for
the unbounded SAS*T-PUB and SAST-PBS plan search
problems. Hence, we can find plans in polynomial
time exactly for those problems that have polynomially
bounded minimal solutions. One should not try to draw
any generalized conclusions from this observation, how-
ever.

7 Discussion and Conclusions

Recently a number of results have been published on
the computational complexity of propositional STRIPS
planning under various restrictions [Bylander, 1991,
1992a, Erol et al., 1992]. In addition to this we have pre-
viously presented a number of tractable planning prob-
lems using the SAST formalism [Béckstrom and Klein,
1991a, 1991b, Bickstrom, 1992a, 1992b]. All of these
results concerns the complexity of planning in various
restricted versions of certain formalisms. One might
also investigate the complexity of planning for specific
problems instead of specific formalisms. This has been
done for some variants of the blocks-world problem by
Gupta and Nau [1992]. Furthermore, the complexity
of temporal projection and its relationship to planning
has been investigated by Dean and Boddy [1988] and
by ourselves [Backstrom and Nebel, 1992; Nebel and
Bickstrom, 1993].

Our previous publications on SAST planning have con-
centrated on finding tractable subproblems and trying
to extend these while retaining tractability. This pa-
per complements these results by presenting a complete
investigation of the complexity for each of the possible
combinations of the previously considered restrictions.
We already know [Backstrom, 1992a, 1992b] that the
SAST formalism is expressively equivalent to a num-
ber of ‘standard’ propositional STRIPS formalisms, in-
cluding those analysed by Bylander [1991] and Erol et
al. [1992]. One might wonder, then, why we have both-
ered doing such a complexity analysis for the SAST for-
malism. However, there are at least two important dif-

ferences between our analysis and the previous ones.

Firstly, Bylander and Erol et al. have only stud-
ied local restrictions on operators. Unariness is such
a local restriction, while post-uniqueness and single-
valuedness are global restrictions on the whole set of op-
erators. Korf [1987] has studied some computationally
interesting global properties, like independent and seri-
alizable subgoals. Unfortunately, finding out whether a
problem instance has serializable subgoals 1s PSPACE-
complete [Bylander, 1992b]. In contrast to this, all
our restrictions can be tested in low-order polynomial
time [Biackstrom, 1992a, Theorem 4.8]. Furthermore,
we have not derived our restrictions from the formalism
per se but from studying a test example in the area of
automatic control. Using the SAST formalism instead
of the STRIPS formalism has facilitated in finding these
restrictions, which are interesting from a computational
point of view by resulting in tractability. One should
also note that the equivalence result applies to the unre-
stricted versions of the formalisms and it is not guaran-
teed to hold under arbitrary restrictions. Furthermore,
it is not always obvious how to translate a restriction for
SAST into a restriction for STRIPS and wvice versa.

The second difference is that the previous analyses of
planning complexity have only considered the plan ez-
istence problem [Bylander, 1991], and sometimes also
the bounded plan existence problem [Bylander, 1993,
Erol et al., 1992]. In addition to this, we also analyse
the complexity of actually finding a (possibly optimal)
plan, which 1s what we are ultimately interested in. In
many cases there is a strong relationship between a deci-
sion (solution existence) problem and its corresponding
search problem (finding a solution), but it is not always
S0.

The result of our analysis shows that we have reached
the tractability borderline and we cannot continue to re-
move restrictions and still have tractability. This should
not discourage us, however. It means that we have will
have to start considering alternative restrictions or less
restricted variants of the P, U, B and S restrictions. The
proposed research methodology is further described in
Backstrom [1992a] where also some suggestions for such
alternative restrictions are given. Finally, it seems that
one important reason for the disappointing complexity
results is that most formalisms allow formulating un-
realistic problems, having exponentially sized minimal
solutions.

Acknowledgements

Bart Selman and the anonymous reviewers have provided
helpful comments on the paper.

References

[AAAT, 1992] Proc. 10th (US) Nat’l Conf. on Artif In-
tell. (AAAI-92), San José, CA, USA, July 1992.

[Backstrom and Klein, 1991a] Christer Backstrom and
Inger Klein. Parallel non-binary planning in polyno-

mial time. In IJCAI [1991], pages 268-273.

[Backstrom and Klein, 1991b] Christer Backstrom and
Inger Klein. Planning in polynomial time: The SAS-
PUBS class. Comput. Intell., 7(3):181-197, 1991.

[Backstrom and Nebel, 1992] Christer Béackstrém and
Bernhard Nebel. On the computational complexity of
planning and story understanding. In Proc. 10th Eur.
Conf. on Artif. Intell. (ECAI-92), pages 349-353, Vi-
enna, Austria, August 1992.

[Backstrom and Nebel, 1993] Christer Backstrém and
Bernhard Nebel. Complexity results for SAST plan-
ning. Research report, Department of Computer and
Information Science, Linkoping University, 1993.

[Backstrom, 1992a] Christer Biackstrom. Computational
Complexity of Reasoning about Plans. Doctoral dis-
sertation, Linkoping University, Linkoping, Sweden,
June 1992.

[Backstrom, 1992b] Christer Biackstrom. Equivalence
and tractability results for SAST planning. In Proc.
3rd Int’l Conf. on Principles of Knowledge Repr. and
Reasoning (KR-92), pages 126-137, Cambridge, MA,
USA, October 1992.

[Balcdzar et al., 1988] José Luis Balcazar, Josep Diaz,
and Joaquim Gabarrd. Structural Complezity I
Springer, 1988.

[Bylander, 1991] Tom Bylander. Complexity results for
planning. In LJCAI [1991], pages 274-279.

[Bylander, 1992a] Tom Bylander. Complexity results for
extended planning. In Proc. 1st Int’l Conf. on Artif.
Intell. Planning Syst. (AIPS-92), pages 20-27, College
Park, MD, USA, June 1992.

[Bylander, 1992b] Tom Bylander. Complexity results
for serial decomposability. In AAATI [1992], pages 729
734.

[Bylander, 1993] Tom Bylander. The computational
complexity of propositional STRIPS planning. Artif.
Intell. To appear.

[Dean and Boddy, 1988] Thomas Dean and Mark
Boddy. Reasoning about partially ordered events.
Artaf. Intell | 36:375-399, 1988.

[Erol et al., 1992] Kutluhan Erol, Dana S Nau, and
V S Subrahmanian. On the complexity of domain-
independent planning. In AAAIL [1992], pages 381
386.

[Garey and Johnson, 1979] Michael Garey and David
Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[Gupta and Nau, 1992] Naresh Gupta and Dana S Nau.
On the complexity of blocks-world planning. Artif.
Intell.; 56:223-254, 1992.

[IJCAI, 1991] Proc 12th Int’l Joint Conf. on Artif. In-
tell. (IJCAI-91), Sydney, Australia, August 1991.

[Korf, 1987] Richard E Korf. Planning as search: A
quantitative approach. Artif. Intell.) 33:65-88, 1987.
[Nebel and Backstréom, 1993] Bernhard Nebel and

Christer Backstrom. On the computational complex-

ity of temporal projection, planning and plan valida-
tion. Artif. Intell. To appear.

