
Parallel Non-Binary Planning in Polynomial TimeChrister B�ackstr�omDept. of Computer Science,Link�oping UniversityS-581 83 Link�oping, Swedenemail: cba@ida.liu.se Inger KleinDept. of Electrical Engineering,Link�oping UniversityS-581 83 Link�oping, Swedenemail: inger@isy.liu.seIn Proc. 12th Int'l Conf. on Arti�cial Intelligence (IJCAI-91), Sydney, Australia, 1991, pp. 268{273
AbstractThis paper formally presents a class of plan-ning problems which allows non-binary statevariables and parallel execution of actions. Theclass is proven to be tractable, and we providea sound and complete polynomial time algo-rithm for planning within this class. This resultmeans that we are getting closer to tackling re-alistic planning problems in sequential control,where a restricted problem representation is of-ten su�cient, but where the size of the prob-lems make tractability an important issue.1 IntroductionA large proportion of earlier papers about planning fo-cus either on implementation of planners, or on repre-sentation problems, using logic or otherwise, and do notaddress computational issues at all.Among earlier work on planning complexity, Chap-man [1987] has designed an algorithm, called TWEAK,which captures the essentials of constraint-posting non-linear planners. TWEAK is proven correct, but does notalways terminate. Chapman has proven that the class ofproblems TWEAK is designed for is undecidable. Deanand Boddy [1988] have investigated some classes of tem-poral projection problems with propositional state vari-ables. They report that practically all but some trivialclasses are NP. It should be noted, however, that theyassume a non-deterministic domain where events actu-ally occur only if their pre-conditions are ful�lled. Korf[1987] presents some complexity results for traditionalsearch based planning. He shows how the complexity canbe reduced for problems where subgoals are serializableor independent, and he also shows how macro-operatorsand abstract actions can reduce complexity under cer-tain assumptions.The majority of papers on temporal logics discuss rep-resentation of problems, and results about complexityand computability are almost non-existent. An imple-mentation of a restricted version of one temporal logic,ETL, is reported by Hansson [1990]. His decision proce-dure solves temporal projection in exponential time, butis not guaranteed to terminate for planning. Recent workby van Beek [1990] presents some complexity results forsome temporal ordering problems in a point algebra and

a simpli�ed interval algebra. These results are relevant,but not immediately applicable, to planning.Chapman [1987] says: `The restrictions on action rep-resentation make TWEAK almost useless as a real-worldplanner.' He also says: `Any Turing machine with its in-put can be encoded in the TWEAK representation.' Itseems that any useful class of planning problems is nec-essarily undecidable. However, we think that a plannerthat is capable of encoding a Turing machine has muchmore power than needed for most problems. It seemsthat TWEAK is too limited in some aspects, but overlyexpressive in other aspects. We think that �nding classesof problems that balance such aspects against each other,so that they are decidable or even tractable, is an im-portant and interesting research challenge. On the otherhand, we should probably not have much hope of �ndingone single general planner with such properties. The re-search task is rather to �nd di�erent classes of problemswhich are strong in di�erent aspects, so as to be tunedto di�erent kinds of application problems.We have focussed our research on problems where theaction representation is even more restricted than inTWEAK, but where we can prove interesting theoreticalproperties. Our intended applications are in the area ofsequential control, a sub�eld of control theory, where arestricted problem representation is often su�cient, butwhere the size of the problems make tractability an im-portant issue (see section 6).In previous papers [B�ackstr�om and Klein, 1990a;B�ackstr�om and Klein, 1990b] we have presented apolynomial-time, O(m3) in the number of state vari-ables, planning algorithm for a limited class of planningproblems, the SAS-PUBS class. Compared to previouswork on complexity of algorithms for knowledge-basedor logic-based planning, our algorithm achieves compu-tational tractability, but at the expense of only applyingto a signi�cantly more limited class of problems. Ourgeneral research strategy is to start with a restricted buttractable class of planning problems and to then grad-ually extend this class while establishing its propertiesafter each such step. This is a very usual strategy inmost disciplines of science, but is, unfortunately, notvery common in AI. A similar strategy has been pur-sued by Brachman and Levesque [1984] who have stud-ied the relationship between generality and tractabilityin knowledge representation languages.

The SAS-PUBS class constitutes the �rst step alongthe strategy just outlined, but this class is probably toosimple to be of other than theoretical interest. However,even with very moderate extensions one would proba-bly obtain problem classes that occur frequently in prac-tice. This paper presents the SAS-PUS class, which isan extension of the SAS-PUBS class and which brings uscloser to reality. We prove this class also to be tractableby presenting a sound and complete polynomial timeplanning algorithm for it. Furthermore, the algorithmonly orders those actions that must necessarily be ex-ecuted in sequence and allows for parallel execution ofunordered actions.2 Ontology of Worlds, Actions andPlansThis section de�nes our planning ontology with the mainconcepts being: world states, actions, and plans. Al-though presented in a slightly di�erent way, the ontologyis essentially as described by Sandewall and R�onnquist[1986]. For further explanation and intuition regardingaction structures, the reader is referred to Sandewall andR�onnquists paper.2.1 World DescriptionWe assume that the world can be modelled by a �nitenumber of features, or state variables, where each featurecan take on values from some �nite discrete domain, orthe value unde�ned, u. For technical reasons, the con-tradictory value, k, is added. The combination of thevalues of all features is a partial state, and if no valuesare unde�ned the state is also a total state. If it is clearfrom the context, or if it does not matter whether a stateis total or not, we simply call it a state. The order v,re
ecting information content, is de�ned on the featurevalues s.t. the unde�ned and contradictory values con-tain less and more information, respectively, than all theother values. These other values contain equal amountof information and are mutually incomparable.De�nition 2.11. M is a �nite set of feature indices.2. Si, where i 2M, is the domain for the i:th feature.Si must be �nite. S+i = Si [fu; kg where i 2M isthe i:th extended domain. S = Qi2M Si is the totalstate space and S+ = Qi2M S+i is the partial statespace.3. s[i] for s 2 S+ and i 2 M denotes the value of thei:th feature of s. The function dim : S+ ! 2Mis de�ned s.t. for s 2 S+, dim(s) is the set of allfeature indices i s.t. s[i] 6= u. If i 2 dim(s) then iis said to be de�ned for s. A state s 2 S+ is said tobe consistent if s[i] 6= k for all i 2M.4. v is a re
exive partial order on S+i de�ned as8x; x0 2 S+i (x v x0 $ x = u _ x = x0 _ x0 = k)hS+i ;vi forms a
at lattice for each i.5. v is a re
exive partial order over S+ de�ned as8s; s0 2 S+(s v s0 $ 8i 2M(s[i] v s0[i]))so hS+;vi forms a lattice. 2

The lattice operations t, join, and u, meet, are de�nedas usual on the lattices hS+i ;vi and hS+;vi.2.2 Action Types and ActionsPlans are constituted by actions, the atomic objects thatwill have some e�ect on the world when the plan is exe-cuted. Each action in a plan is a unique occurrence, orinstantiation, of an action type, the latter being the spec-i�cation of how the action `behaves'. Two actions are ofthe same type i� they behave in exactly the same way.The `behaviour' of an action type is de�ned by threepartial state valued functions, the pre-, the post-, andthe prevail-condition. Given an action, the conditionsof its type are interpreted as follows: the pre-conditionstates what must hold at the beginning of the action,the post-condition states what will hold at the end ofthe action, and the prevail-condition states what musthold during the action. One could think of the pre- andpost-conditions as de�ning non-sharable resources andthe prevail-condition as de�ning sharable resources, us-ing operating systems terminology.Every action type is subject to the following con-straints: all conditions must be consistent, the pre- andpost-conditions must de�ne exactly the same features,the pre- and post-condition must not specify the samevalue for any of their de�ned features, and a feature de-�ned in the pre-condition must not be de�ned in theprevail-condition. We also demand that two distinct ac-tion types must di�er in at least one condition.In order to distinguish actions of the same type weattach a unique label to each action. We also let anaction `inherit' the conditions from its associated actiontype.De�nition 2.21. H is a set of action types.2. b; e; f : H ! S+ are functions giving the pre-,post- and prevail-condition, respectively, of an ac-tion type.3. L is an in�nite set of action labels.4. A set A � L�H is a set of actions i� no two distinctelements in A have identical labels. 22.3 PlansAn ordered set of actions is a plan from one total stateto another total state i�, when starting in the �rst state,we end up in the second state after executing the actionsof the plan in the speci�ed order. The plan is linear ifthe set is totally ordered, and it is non-linear if it ispartially ordered. In a non-linear plan, the order be-tween two actions does not have to be speci�ed if theseactions can be executed in arbitrary order. The per-sistence handling essentially uses the STRIPS assump-tion [Fikes and Nilsson, 1971], and, since the formal-ism is very restricted, the frame problem [Hayes, 1981;Brown, 1987] is also avoided. The de�nition of plans isbased on the relation 7�! which de�nes how ordered setsof actions can transform one state into another.De�nition 2.3 The relation 7�!� S � 2(L�H) �2(L�H)2 �S is de�ned s.t. if s; s0 2 S, 	 is a set of

actions, a 2 	, and � is a total order on 	 then 7�! isde�ned as:1. s ?;?7�! s2. s fag;?7�! s0 i� b(a) t f(a) v s, e(a) t f(a) v s0 ands[i] = s0[i] for all i 62 dim(b(a) t f(a))3. s 	;�7�! s0 where j	j � 2 i� a1; : : : ; an are the actionsin 	 in the order � and there are states s1; : : : ; sn 2S s.t. s = s0, s0 = sn and sk�1 fakg;?7�! sk for 1 �k � n. 2De�nition 2.4 A tuple h	; �i is a linear plan from soto s? i� 	 is a set of actions and � is a total order on	 s.t. so 	;�7�! s? . Similarly, a tuple h	; �i where � isa partial order on 	 is a non-linear plan from so to s?i� h	; �i is a linear plan for any total order � on 	 s.t.� � �. 2A plan for a speci�c problem is minimal i� there is noother plan solving the same problem using fewer actions.De�nition 2.5 A plan h	; �i from so to s? isminimal i�there is no other plan h�; �i from so to s? s.t. j�j < j	j.2We say that two actions are independent, meaningthey can be executed in parallel, i� any feature changedby one of the actions is unde�ned in all conditions of theother action and whenever both actions de�ne the samefeature in their prevail-conditions, they de�ne the samevalue for this feature. We further say that a plan is aparallel plan if all its unordered actions are independent,and it is maximally parallel if no pair of independentactions is ordered.De�nition 2.6 Two actions a and a0 are independenti�, for all i 2M, all of the following conditions hold:1. b(a)[i] 6= u implies b(a0)[i] t f(a0)[i] = u2. b(a0)[i] 6= u implies b(a)[i]t f(a)[i] = u3. f(a)[i] v f(a0)[i] or f(a0)[i] v f(a)[i] 2De�nition 2.7 A non-linear plan h	; �i from so to s? isa parallel plan i� all pairs of actions a; a0 2 	 s.t. neithera�a0 nor a0�a are independent. 2De�nition 2.8 A parallel plan h	; �i is maximally par-allel i� h	; �i is not parallel for any � � �. 23 Classes of Planning ProblemsThe class of planning problems according to our ontologyso far is called the SAS, Simpli�ed Action Structures,class.We also want to talk about more restricted classes, sowe de�ne some useful properties that can be ascribed toproblem classes. We say that a domain is binary if it hasexactly two elements, jSij = 2. The set of action typesis unary if all action types change exactly one feature,post-unique if no two di�erent action types can changea certain feature to the same value, and single-valued ifno two action types have de�ned but di�erent values oftheir prevail-conditions for the same feature.

The rest of this paper concentrates on the SAS-PUSclass (PUS meaning post-unique, unary, and single-valued). The implications of these restriction are dis-cussed in section 6. The SAS-PUS class is an extensionof the previously presented SAS-PUBS class, which alsorequires the domains to be binary.De�nition 3.1 A planning problem is in the SAS-PUSclass i� it is SAS andH is unary, post-unique and single-valued. 24 SAS-PUS PlanningThis section presents an algorithm for �nding minimalplans for the SAS-PUS class and also states some the-oretical results about the algorithm and the SAS-PUSclass. The proofs are omitted because of the page limit,but they can be found in our report [B�ackstr�om andKlein, 1991].The de�nitions of most functions and procedures usedin the algorithm should be obvious, but the followingthree might need some explanation.FindActionPost(A,i,x) Searches the set A of actions fora member a s.t. e(a)[i] = x[i] and which is returnedif it exists. If such an a does not exist, the value nilis returned.FindAndRemove(A,i,x) Like FindActionPost but alsoremoves a from A.Order(a,a',r) Adds ara0 to the relation r.Algorithm 4.1Input: M, a set of feature indices, A, a set containingtwo actions of each type in H, and so and s?, theinitial and �nal states respectively.Output: D, a set of actions, and r a relation on D.1 ProcedurePlan(so; s? : state; M :set of)2 feature indices; A : set of actions);3 var i : feature index; a; a0 : action;4 D;P; T : set of actions; L : list of actions;5 r : relation on D;67 ProcedureBuildChain(sF ; sT : state;)8 i : featureindex; A : set of actions; D;T : in out9 set of actions; r : in out relation);10 vars : state; a; a0 : action; L : list of actions;11 beginfBuildChaing12 L := nil; a0 := nil; s := sT ;13 while s[i] 6= sF [i]do14 a :=FindAndRemove(A; i; s);15 if a = nil thenfail16 else17 Insert(a;D); Insert(a; T);Concat(a; L);18 if a0 6= nil thenOrder(a; a0; r)19 a0 := a; s := b(a);20 returnL;21 end; fBuildChaing2223 beginfPlang24 D := ?; T := ?; r := ?;25 for i 2 Mdo

26 L :=BuildChain(so; s?; i;A; D; T; r);27 P :=Copy(D);28 whileT 6= ?do29 a :=RemoveAnAction(T);30 for i 2 Mdo31 if f(a)[i] 6v so[i] then32 a0 :=FindActionPost(D; i; f(a));33 if a0 6= nil thenOrder(a0; a; r)34 else35 L :=BuildChain(so; f(a); i;A; D; T; r);36 Order(Last(L); a; r);37 if f(a)[i] 6v s?[i] then38 a0 :=FindActionPre(D; i; f(a));39 if a0 6= nil thenOrder(a; a0; r)40 else41 L :=BuildChain(f(a); so; i;A; D; T; r);42 Order(a;First(L); r);43 a0 :=FindActionPre(P; i; so);44 if a0 6= nil thenOrder(Last(L); a0; r)45 TransitiveClosure(r);46 if \r is not antire
exive" then fail47 return hD; ri;48 end; fPlangThe main variables are D, T and r. D is a non-decreasing set of actions which will eventually be theset of actions in the plan, if the algorithm succeeds. Ev-ery action ever inserted into D is also inserted into T ,and the use of this set will become clear later on. r isa relation on D, and it will eventually be the executionorder of the plan.The function BuildChain has the purpose of trying to�nd a, possibly empty, sequence of actions in A which, ifexecutable, changes the i:th feature from sF [i] to sT [i].If such a sequence is found, it is removed from A andinserted into D and T . Otherwise, the algorithm fails.The main body of the algorithm �rst calls BuildChainonce for each feature i to �nd a sequence of action chang-ing i from so[i] to s?[i]. D now contains all actionsprimarily needed to change so into s?, but all of theseactions do not necessarily have their prevail-conditionssatis�ed. The purpose of the while loop in the algo-rithm is to achieve that all actions have their prevail-conditions satis�ed. Since all actions in T are eventuallyremoved from T and processed by the body of the whileloop, all actions in the �nal plan will have their prevail-conditions satis�ed. For each action a in T , the bodyof the while loop tests, for each feature i, whether theprevail-condition of the current action is satis�ed in so.Nothing need be done if this is the case, but, otherwise,the algorithm checks if there is already a sequence of ac-tions in D that changes the i:th feature from so to f(a).If there is such a sequence, it is ordered before a, and,otherwise, BuildChain is called to �nd such a sequence.Since the actions needed to satisfy the prevail-conditionof a might interfere with the primary actions changingso into s?, we must also assure that f(a)[i] is changedinto s?[i]. This is done in the second half of the body ofthe while loop, and in a way analogous to the �rst part.The di�erence is that if BuildChain is called, it �nds asequence of actions changing f(a)[i] into so[i], not s?[i].The reason for this is that if so[i] 6= s?[i], then there is

already a sequence of actions in D changing so[i] intos?[i], and which is then ordered after the newly foundsequence. After computing the transitive closure of r,it is tested for antire
exivity, and the algorithm fails ifthe order contains circularities. The algorithm is provensound and complete.Theorem 4.1 Given a SAS-PUS planning problem, ifthere is any plan solving the problem then algorithm 4.1�nds a minimal non-linear plan that solves the problem,otherwise it fails. 2The main reason that the algorithm can be so simple isthat the set of action types is single-valued. This givesas a result that any action a�ecting a certain featureis either ordered before or after all actions de�ning thisfeature in their prevail-conditions. In other words, all ac-tions de�ning a certain feature in their prevail-conditionscan share action sequences achieving this value and as-suring the �nal value. This is also the reason that noplan contains more than two actions of each type.It can also be proven that the plan returned by thealgorithm is maximally parallel.Theorem 4.2 Algorithm 4.1 can be implemented torun in O(m3n3) time using O(m2n2) space where m =jMj and n = maxi2M jSij. 2Both complexity �gures can be reduced by more de-tailed analysis of the size of H, the di�erence in domainsizes, and other factors. It should also be noted that theonly data structure requiring more than O(mn) space isthe output data, and that we are not likely to be inter-ested in the transitive closure in practical applications.The main explanation for the complexity result is thatthe set of action types is post-unique and single-valued.Post-uniqueness implies that there is never any choice ofwhich action type to use. Single-valuedness implies, aswas mentioned above, that no plan contains more thantwo actions of each type, which thus bounds the numberof iterations of the main while loop.5 ExampleThis section presents an example that �ts in the SAS-PUS class. The example is a much simpli�ed versionof a LEGO1 car factory which is used for undergraduatelaborations in sequential control at Link�oping University[Str�omberg, 1990]. The task is to assemble a LEGO carfrom pre-assembled parts as shown in �gure 1.We represent the problem using three features de�nedas follows:s[1] : 1: Chassis in chassis storage, 2: Chassis at work-stations[2] : 1: Top in top storage, 2: Top at workstation, 3:Top on chassiss[3] : 1: Wheels in wheel storage, 2: Wheels at worksta-tion, 3: Wheels on chassisObviously, M = f1; 2; 3g and states are written ashs[1]; s[2]; s[3]i. We assume that the set H consists of the1LEGO is a trademark of the LEGO Group.

h b(h) e(h) f(h) Explanationh1 h1; u; ui h2; u; ui hu; u; ui Move chassis to workstationh2 h2; u; ui h1; u; ui hu; u; ui Move chassis to chassis storageh3 hu; 1; ui hu; 2; ui hu; u; ui Move top to work stationh4 hu; 2; ui hu; 3; ui h2; u; ui Mount toph5 hu; u; 1i hu; u; 2i hu; u; ui Move wheels to work stationh6 hu; u; 2i hu; u; 3i h2; u; ui Mount wheelsTable 1: Action types for the example
Chassis storage

Top storage

Wheels storage Workstation Chassis storage

h3

h1

h5

h4

h6

h2Figure 1: The LEGO car exampleaction types in table 1, and that the set A is fa1; : : : ; a12gwhere ai and ai+6 are of type hi for 1 � i � 6.We also assume that the initial state is so = h1; 1; 1i,all parts in storage, and the �nal state is s? = h1; 3; 3i,an assembled car in the chassis storage.The algorithm �rst calls BuildChain once for eachi 2 M to change so[i] into s?[i]. BuildChain �ndsthe empty sequence for feature 1, and the sequencesa3; a4 and a5; a6 for features 2 and 3, respectively. Now,A = fa1; a2; a7; : : : ; a12g, D = T = fa3; a4; a5; a6g and rconsists of a2ra4 and a5ra6.The actions in T , plus those added to T during the fol-lowing process, are removed one at a time and processedby the while loop. a3 and a5 fall straight through theloop body since their prevail-conditions are trivially sat-is�ed. The prevail-condition of a4 is not satis�ed in theinitial state, and there are no actions in D providing theprevail-condition of a4. BuildChain is thus called, andit returns the action a1 which changes the 1st feature tosatisfy the prevail-condition of a4. Similarly, BuildChain�nds the action a2 which assures the desired �nal valueof this feature. Both these actions are inserted into Dand T , and a1ra4 and a4ra2 are inserted into r. Theaction a6 has the same prevail-condition as a4, so thereare already actions, namely a1 and a2, in D that pro-
a3

a1

a5

a4

a6

a2Figure 2: The plan for the example (transitive arcs omit-ted).

vide its prevail-condition and assures the �nal value ofthe 1st feature. No actions are inserted into D, but ris extended with a1ra6 and a6ra2. The actions a1 anda2 are also removed from T , but their prevail-conditionsare trivially satis�ed.The algorithm then computes the transitive closure ofr, and, since r is anti-re
exive, it succeeds and returnsthe plan hD; ri, where D is fa1; : : : ; a6g and r is as de-picted in �gure 2.6 DiscussionThe restriction that H be unary is serious for planningproblems where two or more features can change simul-taneously, but it is not always the same combinationsof features that change simultaneously. Allowing non-binary domains does not help much in this case. Al-though one could represent several feature domains asone multi-valued feature, this would most likely violatethe restrictions on action types in the SAS class. Post-uniqueness need not be a very limiting restriction forapplications where there is little or no choice what planto use, and where the size of the problem is the maindi�culty when planning. However, for problems whereH is non-unary or not single-valued, the major prob-lem can be to choose between several di�erent ways ofachieving the goal. In this case, it will usually be impos-sible to make a post-unique formalization of the prob-lem. The most serious restriction for the majority ofpractical applications is, in our opinion, the restrictionthat H is single-valued. As an example, requiring single-valuedness prevents us from modelling a problem whereone action type requires a certain valve to be open andsome other action type requires the same valve to beclosed in their prevail-conditions.The class one gets when relaxing the single-valuednessrestriction is likely to be very interesting from a practicalpoint of view. This class is conjectured su�cient for rep-resenting some interesting classes of real-world problemsin sequential control, a sub�eld of discrete event systemswithin control theory. Examples of application areas areprocess plants and automated manufacturing. A par-ticularly interesting problem here is to restart a processafter a break-down or an emergency stop. After such anevent, the process may be in anyone of a very large num-ber of states, and it is not realistic to have precompiledplans for how to get the process back to normal againfrom any such state. Restarting is usually done manuallyand often by trial-and-error, and it is thus an applica-tion where automated planning is very relevant. It isinteresting to note that such plans are complex because

of their size, not because of complex actions. A processplant like a paper mill can have tens of thousands of sen-sors and actuators, so the number of features can be verylarge. It is easy to realize that the complexity issues arevery important in this kind of applications.Since single-valuedness seems to be the most seriousrestriction, it would be natural to try to eliminate thatrestriction �rst. Unfortunately, it can be shown that theresulting class of problems is intractable. However, thisis because the plans themselves are of exponential sizein the worst case, and such plans are unlikely to be ofpractical interest. We believe that it is possible to re-place single-valuedness with other restrictions that areful�lled for many practical problems, but which reducesthe complexity drastically, and we are currently investi-gating such restrictions.It would also be interesting to try to combine resultsalong the line in this paper with the work on extendedactions structures, allowing interdependent parallel ac-tions or interval-valued features [B�ackstr�om, 1988a;B�ackstr�om, 1988b; B�ackstr�om, 1988c].7 ConclusionWe have identi�ed a class of deterministic planning prob-lems, the SAS-PUS class, which allows non-binary statevariables and parallel actions. We have also presented asound and complete polynomial time algorithm for �nd-ing minimal plans in this class. This result provides akind of lower bound for planning; at least this class ofproblems is tractable. Since the SAS-PUS class is an ex-tension of the previously presented SAS-PUBS class, wehave managed to take a step upwards in expressibilitywhile retaining tractability.References[B�ackstr�om, 1988a] Christer B�ackstr�om. Action struc-tures with implicit coordination. In Proceedings of theThird International Conference on Arti�cial Intelli-gence: Methodology, Systems, Applications (AIMSA-88), pages 103{110, Varna, Bulgaria, September 1988.North-Holland.[B�ackstr�om, 1988b] Christer B�ackstr�om. Reasoningabout interdependent actions. Licentiate Thesis 139,Department of Computer and Information Science,Link�oping University, Link�oping, Sweden, June 1988.[B�ackstr�om, 1988c] Christer B�ackstr�om. A representa-tion of coordinated actions characterized by intervalvalued conditions. In Proceedings of the Third Inter-national Symposium on Methodologies for Intelligentsystems (ISMIS-88), pages 220{229, Torino, Italy, Oc-tober 1988. North-Holland.[B�ackstr�om and Klein, 1990a] Christer B�ackstr�om andInger Klein. Planning in polynomial time: TheSAS-PUBS class. Research Report LiTH-IDA-R-90-16, Department of Computer and Information Sci-ence, Link�oping University, Link�oping, Sweden, Au-gust 1990.[B�ackstr�om and Klein, 1990b] Christer B�ackstr�om andInger Klein. Planning in polynomial time. In Ex-

pert Systems in Engineering: Principles and Appli-cations. International Workshop., pages 103{118, Vi-enna, Austria, September 1990. Springer.[B�ackstr�om and Klein, 1991] Christer B�ackstr�om andInger Klein. Parallel non-binary planning in poly-nomial time: The SAS-PUS class. Research ReportLiTH-IDA-R-91-11, Department of Computer and In-formation Science, Link�oping University, Link�oping,Sweden, April 1991.[van Beek, 1990] Peter van Beek. Reasoning about qual-itative temporal information. In Proceedings of theEighth National Conference on Arti�cial Intelligence(AAAI-90), pages 728{734, Boston, Massachussettes,August 1990. MIT Press.[Brachman and Levesque, 1984] Ronald J Brachmanand Hector J Levesque. The tractability of subsump-tion in frame-based description languages. In Proceed-ings of the Fourth National Conference on Arti�cialIntelligence (AAAI-84), pages 34{37, Austin, Texas,1984.[Brown, 1987] Frank Brown, editor. The Frame Prob-lem in Arti�cial Intelligence, Proceedings of the 1987Workshop, Lawrence, Kansas, April 1987. MorganKaufman.[Chapman, 1987] David Chapman. Planning for con-junctive goals. Arti�cial Intelligence, 32:333{377,1987.[Dean and Boddy, 1988] Thomas Dean and Mark Bod-dy. Reasoning about partially ordered events. Arti�-cial Intelligence, 36:375{399, 1988.[Fikes and Nilsson, 1971] Richard E Fikes and Nils JNilsson. Strips: A new approach to the applicationof theorem proving to problem solving. Arti�cial In-telligence, 2:189{208, 1971.[Hansson, 1990] Christer Hansson. A prototype systemfor logical reasoning about time and action. Licen-tiate Thesis 203, Department of Computer and In-formation Science, Link�oping University, Link�oping,Sweden, January 1990.[Hayes, 1981] Patrick J Hayes. The frame problem andrelated problems in arti�cial intelligence. In Bon-nie Lynn Webber and Nils J. Nilsson, editors, Read-ings in Arti�cial Intelligence, pages 223{230. MorganKaufman, 1981.[Korf, 1987] Richard E Korf. Planning as search: Aquantitative approach. Arti�cial Intelligence, 33:65{88, 1987.[Sandewall and R�onnquist, 1986] Erik Sandewall andRalph R�onnquist. A representation of action struc-tures. In Proceedings of the Fifth National Confer-ence on Arti�cial Intelligence (AAAI-86), pages 89{97, Philadelphia, Pennsylvania, August 1986. MorganKaufman.[Str�omberg, 1990] Jan-Erik Str�omberg. Styrning avLEGO-bilfabrik. 2nd revised edition. Department ofElectrical Engineering, Link�oping University, Febru-ary 1990.

