To appear in Current Trends in Al Planning: EWSP’95-3rd European Workshop on Planning, Assisi, Italy, 1995.
IOS Press.

Tractable Planning for an Assembly Line*

Inger Klein
Department of Electric Engineering
Linkoping University
S-581 83 Linkoping, Sweden
email:inger@isy.liu.se
phone: +46 13 281665
fax: +46 13 282622

Peter Jonsson and Christer Backstrom
Department of Computer and Information Science
Linkoping University
S-581 83 Linkoping, Sweden
email:{petej,cba}@ida.liu.se
phone: +46 13 282415, +46 13 282429

Abstract. The industry wants formal methods for dealing with
combinatorial dynamical systems that are provably correct and fast.
One example of such problems is error recovery in industrial processes.
We have used a provably correct, polynomial-time planning algorithm to
plan for a miniature assembly line, which assembles toy cars. Although
somewhat limited, this process has many similarities with real industrial
processes. By exploring the structure of this assembly line we have
extended a previously presented algorithm making the class of problems
that can be handled in polynomial time larger.

1 Introduction

AT planning in its general form is known to be very hard. STRIPS planning is undecid-
able in the first-order case [Chapman, 1987, Erol et al., 1992b], and PSPACE-complete
in the unrestricted propositional case [Bylander, 1991]. Complexity results have also
been reported for a number of restricted cases [Bylander, 1991, Bickstrom and Nebel,
1993, Erol et al., 1992a, Gupta and Nau, 1992, most of these being computation-
ally difficult. However, these results apply to the complexity of planning in various
restricted versions of certain formalisms. The results do not say anything about the
inherent complexity of naturally arising planning problems. For instance, the ubiq-
uitous blocks-world problem in its standard form can be encoded in the propositional
STRIPS formalism, where plan existence is PSPACE-complete. Yet, plan existence for
the blocks-world problem per se is only NP-complete [Gupta and Nau, 1992], for find-
ing an optimal plan, or even tractable [Gupta and Nau, 1992], if we do not require an
optimal plan. Furthermore, the modified problem where several blocks can have iden-
tical labels cannot be naturally modelled in propositional STRIPS, yet this problem is

*This work was supported by the Swedish Research Council for Engineering Sciences (TFR), which
is gratefully acknowledged.

also NP-complete [Chenoweth, 1991]. That is, the problem lies within NP, but it can-
not be reasonably encoded even in a PSPACE-complete (standard) planning formalism.
Finding the restrictions on planning formalisms that capture the inherent structure and
complexity of interesting applications problems is thus an interesting challenge.

The usual way to tackle the complexity of planning problems is to use a general-
purpose domain-independent planner and add heuristics that are tailored specifically to
the problem at hand. Unless the problem is inherently tractable, this method cannot
guarantee improved performance, but only result in a better average-case complexity.
Alternatively, it can improve the worst-case complexity figure, but at the expense of
incompleteness, ie. possibly missing that a problem has a solution.

For many applications we may be satisfied with an incomplete algorithm or with
a good average-case complexity, despite intractability in the worst case. The latter of
these situations is also a form of incompleteness since the intractable worst cases can
be reagarded as unsolvable in practice. On the other hand, there are also applications
where we do need correct solutions promptly. Such applications arise, for instance, in
the area of sequential control within automatic control, where many problems can be
viewed as planning problems and we often need to find solutions correctly and promptly.
Automatic control has a long tradition of using mathematically well-founded methods
with provable properties. Researchers in this area see the lack of such theories as one
of the major problems with AI planning [Passino and Antsaklis, 1989]. Furthermore,
Benveniste and Astrom [1993] present a study of how computer software is used in large-
scale control applications such as the process industry and metro traffic networks. One
of their findings was that the industry wants more mathematical tools for modelling
dynamical systems of combinatorial nature. Using formal methods is a way to improve
formal guarantees and reduce the complexity of the resulting code. That is, we have to
aim at more formal methods than heuristics, whenever possible.

The manufacturing process industry is one example of application areas where Al
planning can be useful. The problem is not primarily to find the plan for normal
operation of the plant. That is usually done once and for all and can probably be done
better manually, since time is not critical in this case. Automated planning is more
likely to enter the scene when something goes wrong. Since there are many ways in
which a large process may go wrong, we can end up in any of a very large number of
states. It is not realistic to have pre-compiled plans for recovering from any such state
so it would be useful to find a plan automatically for how to get back to a safe state,
where normal operation can resume. It is important that such a plan is correct and
we also want to find it fast since the costs accumulate very quickly when large-scale
industrial processes are non-operational. Automated plan generation is also important
if the initial state is not fully specified until the plan is neeeded. As in the error recovery
case it is important that the plan is correct and that it is found resonably fast.

What we ideally need is a provably correct planner that runs in polynomial time.
No general-purpose such planner can exist, however, but we may be able to find such
planners for certain restricted planning problems with practical use. We have run a
project for over five years trying to identify such restricted, tractable planning prob-
lems. Starting with a test problem in sequential control, we identified a number of
inherent restrictions of this problem which, taken together, result in tractability. We
defined a formal planning problem, the SAS-PUBS problem, based on these restric-
tions, proved this problem tractable and devised a provably correct, polynomial-time
algorithm for it [Klein and Béckstrém, 1991, Biickstrom and Klein, 1991b]. We removed
restrictions successively which resulted in more general yet tractable planning problems
[Biickstrom and Klein, 1991a, Bickstrom, 1992, Bickstrém and Nebel, 1993,Jonsson

and Bickstrom, 1994]. Our general research methodology has been to to use a bottom-
up strategy, starting with a tractable problem and remove or replace restrictions such
that the resulting problem is either more expressive than or different than the original
problem, but still tractable.

We report in this paper how we can plan for a semi-realistic miniature version of
an industrial process, the LEGO! car factory [Stromberg, 1991]. This is a realistic
miniature version of real industrial processes in many respects. Modelling this process
as a tractable planning problems has thus been one of our primary goals. We show
in this paper that by exploiting the inherent structure of the problem, we can model
it and use a polynomial time planning algorithm to solve it. More precisely, we use a
simple and provably correct modification to our previosly presented algorithm for the
SAS*-TIAO problem [Jonsson and Biickstrom, 1994]. The basic idea is to partition the
problem such that one part fits in the SAST-TAO class and its solution becomes a plan
skeleton that can be straightforwardly filled in with operators from the second part.

The rest of this paper is structured as follows. In Section 2 we describe the formal-
ism we use and in Section 3 we introduce restrictions forming the SAST-TIAO class of
planning problems. The planning algorithm is described in Section 4. The LEGO car
factory is described in Section 5 and we show how to model it using the SAS formal-
ism. In Section 6 we apply the planning algorithm to the LEGO car factory. Section 7
contains the conclusions.

2 The SASt Formalism

We use the SAST planning formalism [Bickstrom and Nebel, 1993, Jonsson and Bick-
strom, 1994] which can be viewed as a variation on the propositional version of the
STRIPS formalism. The SAS* formalism is, in fact, equivalent, under polynomial
reduction, to most other common variants of propositional STRIPS [Béckstrom, 1995].
Yet, the formalisms have different modelling properties, making them conceptually
different. Some problems are more naturally expressed in one of the formalisms than in
the other. For instance, control engineers seem to find the SAS™ formalism much more
appealing than the STRIPS formalism.
First we define the SAS™ planning problem.

Definition 1 An instance of the SAS™ planning problem is given by a quadruple 11 =
(V, O, s¢, sx) with components defined as follows:

eV = {uy,...,vn} is a set of state variables. FEach variable v € V has an
associated domain of values D,,, which implicitly defines an extended domain
D, = D, U{u}, where u denotes the undefined value. Further, the total state
space S =D, x ... x D, and the partial state space S* =D} x ... x D}
are implicitly defined. We write s[v] to denote the value of the variable v in a
state s.

e O is a set of operators of the form (pre,post,prv), where pre,post,prv € S+
denote the pre-, post- and prevail-condition respectively. O is subject to the
following two restrictions

(R1) for all {pre,post,prv) € O andv € V if pre[v] # u, then pre[v] # post[v] # u,
(R2) for all {pre,post,prv) € O and v € V, post[v] = u or prv[v] = u.

'LEGO is a trademark of the LEGO company.

e 50 € ST and s, € 8* denote the initial and goal state respectively.

The prevail-condition can be thought of as the part of the pre-condition that is not
changed by the operator. Restriction R1 essentially says that a state variable can never
be made undefined, once made defined by some operator. Restriction R2 says that the
post- and prevail-conditions of an operator must never define the same variable. We
further write s C ¢ if the state s is subsumed (or satisfied) by state t, ie. if s[v] = u or
s[v] = t[v]. We extend this notion to states, defining

s C tiff forallv € V, s[v] = uor s[v] = t[v].

For o = (pre, post, prv) is a SAS™ operator, we write pre(o), post(o) and prv(0) to denote
pre, post and prv respectively. A sequence (o4, ..., 0,) € Seqs(O) of operators is called
a SAST plan (or simply a plan) over II.

A plan is a solution to a planning problem if it is executable in the initial state, and
it leads to the goal state.

Definition 2 Given two states s,t € ST, we define for allv € V,

(s® O] = { el if fo] £

s[v], otherwise.

The ternary relation Valid C Seqs(O) x 8T x 8 is defined recursively s.t. for

arbitrary operator sequence (oy,...,0,) € Seqs(Q) and arbitrary states s,t € ST,
Valid({o1, ..., 0n), s, t) iff either

1. n=0andtC s or

2. n>0, pre(o1) C s, prv(o1) C s and
Valid ({02, ..., 0n), (s @ post(o1)),).

A plan (o1,...,0,) € Seqs(O) is a solution to II iff Valid({o1,...,0n), S0, Ss)-
The function Result returns the state resulting from executing a plan, ie.,
t = Result({o1,...,0n),s) if either t € S and Valid({o1,...,04),8,t) or
t=<(u...u).

3 Restrictions

To be able to design polynomial time algorithms we must somehow restrict the problem
class. This paper uses the IAO restriction [Jonsson and Biickstrom, 1994] and we repeat
its definition in this section.

For the definitions below, let IT = (V, O, s, s.) be a SAS™ instance.

Definition 3 An operatoro € O is unary iff there is exactly onev € V s.t. post(o)[v] #
u.

A value xz € D, where = # u for some variable v € V is said to be requestable if
there exists some action o € O such that o needs z in order to be executed.

Definition 4 For each v € V and O’ C O, the set RS of requestable values for O’
is defined as

RY = {prv(o)[v] s.t. o€ O} U
{pre(0)[v], post(0)[v] s.t. 0 € O" and o non-unary }

—{u}.

Obviously, R® C D, for all v € V. For each state variable domain, we further define
the graph of possible transitions for this domain, without taking the other domains into
account, and the reachability graph for arbitrary subsets of the domain.

Definition 5 For each v € V, we define the corresponding domain transition graph
Gy as a directed labelled graph G, = (D}, T,) with vertex set D)} and arc set T, s.t.
for all z,y € Df and o € O, (x,0,y) € T, iff pre(o)[v] = x and post(o)[v] = y # u.
Further, for each X C D, we define the reachability graph for X as a directed graph
GY = (X, Tx) with verter set X and arc set Tx s.t. for all z,y € X, (z,y) € Tx iff
there is a path from z to y in G,.

Alternatively, G can be viewed as the restriction to X C D; of the transitive closure
of GG,, but with unlabelled arcs. When speaking about a path in a domain-transition
graph below, we will typically mean the sequence of labels, ie. operators, along this
path. We say that a path in G, is via a set X C D, iff each member of X is visited
along the path, possibly as the initial or final vertex.

Definition 6 An operator o € O is irreplaceable wrt. a variable v € V iff removing
an arc labelled with o from G, splits some component of G, into two components.

Definition 7 A SAS™ instance (V, O, s, S.) is:

(I) Interference-safe iff every operator o € O is either unary or irreplaceable wrt.
every v € V it affects.

(A) Acyclic iff vao is acyclic for each v € V.

(O) prevail-Order-preserving iff for each v € V, whenever there are two x,y € D,
s.t. Gy has a shortest path (o1, ...,0pm) from x to y via some set X C RY and it
has any path (0|, ..., ol) from x to y via some setY C RS s.t. X CY, there exists
some subsequence (..., 05 ,...,0; ,...) s.t. prv(og) E prv(o},) for 1 <k <m.

A SAS™ instance fulfilling the restrictions above is denoted a SAST-TAO instance.
Whether a SAS™ instane satisfies the TAO restriction or not can be tested in polyno-
mial time. Further, we have previously presented a polynomial time plan generation
algorithm for the SAST-TAO class [Jonsson and Bickstrém, 1994] which is proven to
be correct.

4 Planning algorithm

In this section we present a formally correct extension of the SAS*-TAO algorithm [Jon-
sson and Bickstrém, 1994], which is sufficient for modelling the LEGO car factory. The
basic idea is to partition the original SAS™ instance into two separate instances, both
being SAST-TAO instances. This instance can then be solved in polynomial time and

its solution constitutes a skeleton to be filled in by solving subproblems from the second
instance. This process is referred to as interweaving and can be viewed as a restricted
variant of the more general concept refinement, as used in hierarchical state abstraction
[Knoblock, 1991]. In fact, the whole method we use can be viewed as a restricted vari-
ant of two-level state abstraction. However, while state abstraction is a general method
which is not formally well understood—it can at some occasions speed up planning
considerabley [Knoblock, 1991] and at other occasions be disastrous [Bickstrém and
Jonsson, 1995]—our, more restricted method, is provably correct, guaranteed not to
make things worse and runs in polynomial-time.

First we show how a SAS™ problem instance can be restricted to take only a subset
of the variables into account.

Definition 8 Let [T = (V, O, sg, 5.) be a SAST instance, s € ST and V' C V. Then,
the restrictions for states and operators are defined as follows:

e sV = (s[vy],...,sv,]) where V' ={v;,...v; }
o Let o € O. Then, omV' = (pre(o) m V', post(o) m V', prv(o) m V').
e OmV ={omVlo e O}.
The restriction ILM V' can now be defined as IRV = V', ORV', so MV, s.m V).

This can be used to partition a SAST problem instance into two independent problems
based on a partition of V in two disjoint sets.

Definition 9 Let IT = (V, 0, s¢, s.) be a SAST instance and let Vi, Vs be disjoint
subsets of V. Then, V; is independent of Vs, iff

e cvery operator o € O affecting some variable in V; satisfies pre(o) MV, = post(o) M
Vo = prv(o) M Ve = (u,...,u).

e cvery operator o € O affecting some variable in Vy satisfies pre(o) MV, = post(o) M
Vi = (u,...,u).

Reachability means that every problem instance can be solved regardless of the initial
and goal states.

Definition 10 Let IT = (V, O, sq, s.) be a SAS" instance. Then 11 is reachable if for
any two states sy, s € S the planning problem (V, O, s1, s9) is solvable.

Thus, reachability is the same as a strongly connected state transition graph. Note that
even if reachability only depends on V and O we say that I is reachable for convenience.

We can now show that if a planning problem II is split into two independent problems
then the original problem can be solved if the two new problem instances can be solved.

Theorem 1 Let 1T = (V,0, s, s.) be a SAST instance and let Vi, Vs be disjoint subsets
of V such that Vi UV, = V. If V) is independent of Vo, II MV is reachable and TT MV,
18 solvable then I is solvable.

Proof (Sketch): Suppose there exists a plan w = {o01;...;0,) solving II @M V,. Let
wp be a plan solving the SAS™ instance (Vy, O, sq, prv(o1)) M V. Define recursively wy,
1 < k <n—1 such that w; is a solution to the instance

V1,0, Result((wo; - .. ;wik_1), So M V1), prv(ogs1)) M V.

Finally, let w, be a solution to the instance
V1, O, Result((wo; - - . ;wn_1), So M V), S.) M V.

Since IT m V; is reachable, wy,...,w, exists. Now, let us consider the plan W' =
(wo;01; W15+ Wn_1; 0p; wy). By the construction of wy,...,w, 1, all pre- and prevail-
conditions of oy, ..., 0, are satisfied because w = (01;...;0,) is a valid plan by assump-
tion. Furthermore, all pre- and prevail-conditions of the operators in (wp;...;w,) are
satisfied because (wp;...;wy) is a valid plan and V; is independent of V,. It remains to
show that s, C Result(w', sp). This follows immediately since we know that (o01;...;0y)
is a valid plan for [TmV;, and (wp; . .. ;w,) is a valid plan for [TM); and V; is independent
of VQ.

An algorithm that works as indicated in the proof of Theorem 1 is shown in Figure 1.
The sets V; and V, are such that IT m V; and [T m V, satisfies the TAO restriction in
the previous section, and V; is independent of V,. The procedure PlanlAQO solves the
SAS*-IAO planning problem [Jonsson and Bickstrém, 1994].

procedure Plan({V, O, sy, s.));
(01,...,0n) <PlanIAO((Vs, O, sg, S.) M Vs)
wo «PlanTAO((Vy, O, s¢, prv(o1)) m Vy)
for k=1,....n—1 do
wi < PlanTAO((V1, O, Result({wo; . . .;wk_1), So M V1), prv(ok1)) @ V)
end for
wy « PlanTAO((Vy, O, Result({wq; - . .;wWn_1), S0 M V1), S.) @ V)

return (wp; 01;W1;092; .. .3 Wy 1; Op; Wy)

0O ~J O Ul = Wi+

Figure 1: Planning algorithm

It is obvious from the proof of Theorem 1 that the algorithm is correct, and since
PlanIAO is polynomial the resulting algorithm is polynomial.

5 The LEGO Car Factory

Our application example is an automated assembly line for LEGO cars [Stromberg,
1991], which is used for undergraduate laboratory sessions in digital control at the
Department of Electrical Engineering at Linkoping University. The students are faced
with the task of writing a program to control this assembly line using the graphical
language GRAFCET [IEC, 1988]. GRAFCET is tailored to implementing industrial
sequential control and it resembles Petri Nets.

The main operations for assembling a LEGO car are shown in Figure 2. The as-
sembly line consists of two similar halves, the first mounting the chassis parts on the
chassis (see Figure 3) and the second mounting the top (see Figure 4).

The first half of the LEGO car factory is presented in Figure 3. The chassis is
initially stored up-side down in the chassis magazine (¢m). It enters the conveyor belt
by using the chassis feeder (c-feeder), and is transported to the chassis parts magazine
(ecpm) where the chassis parts are fed onto the chassis using the chassis parts feeder
(cp-feeder). The chassis is then transported to the chassis press (¢p), where the chassis
is pressed together. It is then transported to the turn station (¢s) where the chassis is
turned upright and enters the second half of the factory (Figure 4) where it is placed on
the chassis lift (cl). It is lifted up, placed on the conveyour belt (ocvB) and transported

Mounting of chassis ~ Mounting of top Resulting Lego car
AN

i
ﬁ*W*%

*
/3

Figure 2: Assembling a LEGO car.

c-feeder om o - P W s
¢ i
cpm-stop cp-stop
(4]
cp-feeder

Figure 3: The first half of the LEGO car factory.

to the top magazine (¢m) where a top is fed onto the chassis by the top feeder (t-feeder).
The chassis is then transported to the top press (¢p) where the top is pressed tight onto
the chassis. From there it is transported to the end of the conveyour belt (sf) and placed
so that the storage feeder (st-feeder) can push the chassis into a buffer storage (st).

The conveyor belt used to transport the chassis runs continously. Hence, stopper
bars (cpm-stop, cp-stop, tm-stop, tp-stop) are pushed out in front of the chassis at the
four work-stations e¢pm, cp, tm and tp, holding the car fixed, sliding on the belt (see
Figure 3 and Figure 4).

Figure 5 shows one of the work-stations in more detail, namely the one where the
top is put onto the chassis (¢#m in Figure 4). The chassis is held fixed at the top storage
(A) by the stopper bar (B). The tops are stored in a pile and the feeder (C) is used to
push out the lowermost top onto the chassis. When the top is on the chassis, the feeder
is withdrawn and then the stopper bar is withdrawn, thus allowing the chassis to move
on to the next work-station.

We continue by modelling the LEGO car factory as a SAS™ instance. The state
variables are shown in Table 1. The variable pos gives the position of the chassis,
and the corresponding positions are given in Figure 3 and Figure 4. The stopper bars
and the corresponding variable names are also marked in these figures, as well as the
variable names for the feeders. For the feeders and the stopper bars the value ezt means
that the feeder (or stopper bar) is extended, while rtr means that it is retracted. The
variable turner tells if the turner (¢s in Figure 3) is turned towards the first half of
the factory (A) or towards the second half of the factory (B). The two variables cp-
status and t-status give the status of the chassis parts and the top, respectively, while
the variable c-status denotes the status of the chassis and is mainly needed since we

st-feeder

och —> tm — tp — S;
N Ll

ﬂ SRR

tm-stop tp-stop

m st

t-feeder Storage

Figure 4: The second half of the LEGO car factory.

Figure 5: Putting the top onto the chassis.

variable values

pos cm, cpm, cp, ts, cl,
ocvB, tm, tp, sf, st

turner A B

cp-status off, on, pressed

t-status off, on, pressed

c-status prepared, not-prepared

cp-press down, up

t-press down, up

clift down, up

c-feeder, cp-feeder, t-feeder, st-feeder | ext, rtr

cpm-stop, cp-stop, tm-stop, tp-stop ext, rtr

Table 1: State variables V and their associated domains of values D,,.

have no sensor detecting if the chassis is just outside the chassis magazine. The other
variables should be obviuos from the table and the figures.

Using the variables defined in Table 1 we can define operators as in Tables 2 and 3.
Additionally there are two operators for each feeder and each stopper bar for restracting
and ectending the feeder or stopper bar. The operators corresponding to the chassis
feeder are denoted extend-c-feeder and retract-c-feeder. The pre-condition is that c-
feeder = rtr, the post-condition is that c-feeder = ext and there is no prevail-condition.
The other operators corresponding to the feeders and stopper bars are denoted in a
similar manner.

6 Planning for the LEGO car factory

We can now apply the planning algorithm in Figure 1 to the LEGO car factory. Using
the variables defined in table 1 we can define two subsets as follows:

V, = {turner,cp — press,t — press, clift,c — feeder,cp — feeder,t — feeder,
st — feeder, cpm — stop, cp — stop,tm — stop,tp — stop}

Vo = {pos, cp — status,t — status, c — status}

This results in that the operators in Table 3 together with all operators for extending
or retracting feeders or stopper bars are the operators that affect variables in V;. The
operators given in Table 2 are the operators that affect variables in Vs, and these two
sets define the partition of the problem.

Operator Pre Post Prevail

cm2cpm pos = cm pos = cpm c-feeder = ext, cp-feeder = rtr,
cpm-stop = ext

cpm2cp pos = cpm pos = cp cpm-stop = rtr, cp-stop = ext
cp-press = up

cp2ts pos = cp pos = ts turner = A, cp-stop = rtr,
cp-press = up

ts2cl pos = ts pos = cl turner = B, clift = down

cl2ocvB pos = cl pos = ocvB clift = up

ocvB2tm pos = ocvB pos = tm tm-stop = ext, t-feeder = rtr

tm2tp pos = tm pos = tp tm-stop = rtr, tp-stop = ext
t-press = up

tp2sf pos = tp pos = sf tp-stop = rtr, st-feeder = rtr,
t-press = up

sf2st pos = sf pos = st st-feeder = ext

prepare-chassis | c-status = not-prepared | c-status = prepared | c-feeder = rtr

put-cp cp-status = off cp-status = on pos = cpm,
cp-feeder = ext

press-cp cp-status = on cp-status = pressed | cp-press = down, pos = cp

put-top t-status = off t-status = on pos = tm, t-feeder = ext

press-top t-status = on t-status = pressed pos = tp, t-press = down

Table 2: Operators with prevail-conditions.

Operator Pre Post Prevail
A2B turner = A turner = B -
B2A turner = B turner = A -
cl-down clift = up clift = down -
cl-up clift = down clift = up -

cp-press-down
cp-press-up
t-press-down
t-press-up

cp-press = down | -
cp-press = up -
t-press = down -
t-press = up -

Cp-press = up
cp-press = down
t-press = up
t-press = down

Table 3: Operators without prevail-conditions.

It is easy to see that IT m V; and IT m V), satisfies the TAO restriction and that V; is
independent of V,. The set V; is such that for every o € OmV; and v € V; prv(o)[v] = u.
Furthermore, for every v € V; there are operators for setting each value (for example
there is one operator for extending the c-feeder and one operator for retracting it).
Obviously IT m V; is reachable, and the algorithm in Figure 1 can be applied.

Depending on how we choose the initial state and the goal state we can plan for
different cases. Here we show a plan for normal operation, ie. the goal is to assembly
a LEGO car. It is straightforward to modify this to plan for error recovery or for a
before execution unknown initial state. The goal state is that the chassis should be
in the buffer storage (pos = st) and the top and chassis parts should be pressed onto
the chassis (cp-status = pressed and t-status = pressed). All other state variables are
undefined and can have any value. Suppose that the initial state is given as follows.
The chassis is placed in the chassis magazine (pos = c¢m, c-status = not-prepared), there
is no chassis parts on the chassis (cp-status = off) and there is no top on the chassis
(t-status = off). Furthermore the turner is turned towards the first half of the factory
(turner = A), all feeders and stopper bars are retracted and the chassis press, the top

press and the chassis lift are in their down position.
Applying the algorithm in Figure 1 results in a plan as in Figure 6.

extend-cp-gtop c-press-up
\ \

extend-cpm-stop ~<
4 A / 4

i extend-c-feeder ¢ _retract-cpm-stop | retract-cp-stop _
! | c-press-up | ! 1 Pt
! A [- |
/ v | M | \/ -7 |
prepare-chassis —#® cm2cmp —» put-cp —# cpm2cp—» press-cp —» cp2ts —» ts2cl v
N A N A N cl-u

S 1 \\ / ™ /ﬂ I P

a 1 _ / |
extend-cp-feeder c-press-down A2B H

X

,--— cl2ocvB

retract-tp-stop <« —- t-press-up y
\\ 4 extend-tm-stop
| / }/
sf2st «——— tp2sf «— press-top «+— tm2tp <«——— put-top «— ocvB2tm
* i A g * A SN \\
N ¥ / s / *I RN
extend-st-feeder t-press-down retract-tm-stop t-press-up extend-t-feeder
~ 7

~
~

extend-tp-stop

Figure 6: Resulting plan. The solid arrows are the output from the SAST-TAO algorithm
solving IT M Vs, and the dashed arrows are the result from the interweaving process.

7 Conclusions

Tsatsoulis and Kayshap [1988] call planning “one of the most underused techniques of
AT” in the context of manufacturing. They list a number of areas within industry where
planning could be applied, but where no or very little attempts have been made at such
applications.

We have applied our previous results on tractable planning to an application exam-
ple in automatic control —an assembly line for LEGO cars. This example does not quite
fit within the restriction of any previoulsy presented tractable planning class. The clos-
est class is the SAST-TAO class, which is sufficient except for the requirement that there
must be no cycles between requestable states. The assembly line does not have this
property. This fact provided feedback for modifying the theory and we have presented
an extended variant of the previous SAST-TAO class and its associated algorithm. Lim-
ited forms of such cycles are now allowed, which is sufficient for modelling the assembly
line. The modified algorithm is also provably correct and runs in polynomial time.

We believe this limited form of cycles to be sufficient for modelling many other
similar applications. However, the modification suggests generalizing the extension in
this paper, allowing more complex cyclic structures, which is a topic for future research.

References

[AAAT-91, 1991] American Association for Artificial Intelligence. Proceedings of the 9th (US)
National Conference on Artificial Intelligence (AAAI-91), Anaheim, CA, USA, July 1991.
AAAT Press/MIT Press.

[Bickstrom and Jonsson, 1995] C. Bickstrém and P. Jonsson. Planning with abstraction
hierarchies can be exponentially less efficient. In Proceedings of the 14th International
Joint Conference on Artificial Intelligence (IJCAI-95), pages 1599-1604, Montreal, Québec,
Canada, Aug 1995.

[Bickstrom and Klein, 1991a] C. Bickstrom and I. Klein. Parallel non-binary planning in
polynomial time. In Reiter and Mylopoulos [1991], pages 268-273.

[Bickstrom and Klein, 1991b] C. Béckstrom and I. Klein. Planning in polynomial time: The
SAS-PUBS class. Computational Intelligence, 7(3):181-197, August 1991.

[Bickstrom and Nebel, 1993] C. Bickstrom and B. Nebel. Complexity results for SAST plan-
ning. In Ruzena Bajcsy, editor, Proceedings of the 13th International Joint Conference on
Artificial Intelligence (IJCAI-93), Chambéry, France, August—September 1993. Morgan
Kaufman.

[Bickstrom, 1992] C. Bickstrom. Equivalence and tractability results for SAS planning. In
Bill Swartout and Bernhard Nebel, editors, Proceedings of the 3rd International Conference
on Principles on Knowledge Representation and Reasoning (KR-92), Cambridge, MA, USA,
October 1992. Morgan Kaufman.

[Bickstrom, 1995] C. Bickstrom. Expressive equivalence of planning formalisms. Artificial
Intelligence, Special Issue on Planning and Scheduling, 1995. To appear.

[Benveniste and Astrom, 1993] A. Benveniste and K.J. Astrom. Meeting the challenge of
computer science in the industrial applications of control: An introductory discussion to
the special issue. IEEE Transactions on Automatic Control, 38:1004-1010, 1993.

[Bylander, 1991] T. Bylander. Complexity results for planning. In Reiter and Mylopoulos
T1991], pages 274-279.

[Chapman, 1987] D. Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333—
377, 1987.

[Chenoweth, 1991] S. V. Chenoweth. On the NP-hardness of blocks world. In AAAI-91 [1991],
pages 623-628.

[Erol et al., 1992a] K. Erol, D. S. Nau, and V. S. Subrahmanian. On the complexity of
domain-independent planning. In Proceedings of the 10th (US) National Conference on
Artificial Intelligence (AAAI-92), pages 381-386, San José, CA, USA, July 1992. American
Association for Artificial Intelligence.

[Erol et al., 1992b] K. Erol, D. S. Nau, and V. S. Subrahmanian. When is planning decidable?
In James Hendler, editor, Artificial Intelligence Planning Systems: Proceedings of the 1st
International Conference (AIPS’92), pages 222-227, College Park, MD, USA, June 1992.
Morgan Kaufman.

[Gupta and Nau, 1992] N. Gupta and D. S. Nau. On the complexity of blocks-world planning.
Artificial Intelligence, 56:223-254, 1992.

[IEC, 1988] IEC. Preparation of function charts for control systems - IEC 848. Technical
Report 848:1988, TEC, Geneve, 1988.

[Jonsson and Bickstrom, 1994] P. Jonsson and C. Bickstrém. Tractable planning with state
variables by exploiting structural restrictions. In Proceedings of the 12th (US) National
Conference on Artificial Intelligence (AAAI-94), Seattle, WA, USA, July-August 1994.
American Association for Artificial Intelligence.

[Klein and Bickstrom, 1991] I. Klein and C. Bickstrom. On the planning problem in se-
quential control. In Proceedings of the 30th Conference on Decision and Control, pages
1819-1823, Brighton, England, 1991. IEEE.

[Knoblock, 1991] C. A. Knoblock. Search reduction in hierarchical problem solving. In AAAT-
91 [1991], pages 686-691.

[Passino and Antsaklis, 1989] K. M. Passino and P. J. Antsaklis. A system and control theo-
retic perspective on artificial intelligence planning systems. Applied Artificial Intelligence,
(3):1-32, 1989.

[Reiter and Mylopoulos, 1991] Ray Reiter and John Mylopoulos, editors. Proceedings of the
12th International Joint Conference on Artificial Intelligence (IJCAI-91), Sydney, Aus-
tralia, August 1991. Morgan Kaufman.

[Stromberg, 1991] J-E. Stromberg. Styrning av lego-bilfabrik. Technical report, Department
of Electrical Engineering, Linkoping University, Linkoping, Sweden, 1991. Manual for
control laboratory session.

[Tsatsoulis and Kayshap, 1988] C. Tsatsoulis and R. L. Kayshap. Planning and its applica-
tion to manufacturing. In Soundar T Kumara, Rangasami L. Kashyap, and Allen L Soyster,
editors, Artificial Intelligence, Manufacturing Theory and Practice, chapter 7, pages 193—
223. Institute of Industrial Engineers, 1988.

