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Abstract. It seems to have been generally assumed in the planning commu-
nity that it is easy to compute a least-constrained partially ordered version of a
total-order plan. However, it is not clear what this concept means. Five candi-
dates for this criterion are defined in this paper, and it turns out that the only
ones giving some reasonable optimality guarantee are NP-hard to compute. A
related problem is to find a shortest parallel execution of a plan, also proven
NP-hard. Algorithms can be found in the literature which are claimed to solve
these problems optimally in polynomial time. However, according to the NP-
hardness of the problems, this is impossible unless P=NP, and it is explained in
this paper why the algorithms fail. The algorithms are, instead, reconsidered
as approximation algorithms, but it is shown that neither algorithm gives any
constant performance guarantee. This is not surprising, however, since both
problems turn out not to be approximable within a constant ratio.

1. Introduction

A total-order plan (linear plan) is a totally ordered set of actions, that is, a sequence of
actions, where the order is the intended execution order. A partial-order plan (non-linear
plan), on the other hand, is a partially ordered set of actions; that is, some actions may
be left unordered with respect to each other. That two actions are unordered does not
imply that they can be executed in parallel—it only means that they can be executed
in either order. The main advantage of a partial-order plan over a total-order one is
that the former can be post-processed by a scheduler subject to additional information.
For instance, the final execution order of two unordered actions may be chosen such
that a deadline can be met and some of the unordered actions may be executable in
parallel, thus decreasing the total execution time of the plan.

A total-order planner is a planner that maintains and works on a total-order plan, by
modifying or extending it. Such a planner is over-committed in the sense that it mostly
introduces stronger ordering constraints than is necessary. The early Al planners were
total-order planners, eg. STRIPS [6]. A partial-order planner maintains and works on
a partial-order plan, thus being less committed to ordering the actions until necessary,
typically leaving many actions unordered in the final plan. Partial-order planning was



first introduced in NOAH [22], with the motivation that less commitment would lead
to less backtracking and, thus, efficiency gains. Most planners since NOAH have been
partial-order planners and it has generally been assumed that partial-order planning is
more efficient than total-order planning. For simple action languages this assumption
seems to hold, in principle, [16, 17], although choosing a good commitment strategy for
partial-order planners is non-trivial [4, 13, 15, 16, 17]. It has further been argued that
partial-order planning becomes very hard if introducing context-dependent effects, in
some cases leading to a revival of total-order planning.

At least two examples [20, 25] can be found in the literature where this argument
motivates using a total-order planner and then convert the resulting plan into a partial-
order plan—the purpose being to exploit possible parallelism according to some further
criteria. In both these cases algorithms are presented for converting a total-order plan
into a partial-order plan, claimed to be a least constrained plan or allowing a shortest
parallel execution respectively. However, although often used in the literature, it is
unclear what the term least constrained plan means; some candidate criteria for this
concept are, thus, defined and analysed in this paper. Further, a concept of optimal
parallel execution of plans is defined. The complexity results for these problems are
disappointing, under reasonable optimality criteria, they are NP-hard. In the light of
this, the algorithms from the literature, mentioned above, are analysed wrt. to these
criteria. Not surprisingly, they are found not to guarantee optimality wrt. to these
criteria. Hence, the algorithms are reconsidered as approximation algorithms for the
same problems, unfortunately also with disappointing results. However, this is not
only due to problems with the algorithms themselves, since it is also shown that both
problems are intrinsically hard to approximate.

2. Basic Definitions

This section defines plans and related concepts. In order to make the definitions and re-
sults as general and formalism independent as possible, only a minimum of assumptions
about the underlying formalism will be made. Any planning formalism may be used
that defines some concept of a planning problem, a domain of entities called actions
and a validity test. It will be assumed that the planning problem consists of planning
problem instances (ppi’s)', with no further assumptions about the inner structure of
these. Given a ppi. Il and a sequence of actions (a,...,a,), the validity test may be
true or false. The intuition behind the validity test is that if the test is true, then the
action sequence (ay,...,a,) solves 1. The inner structure of the ppi’s and the exact
definition of the validity test are, of course, crucial for any specific planning formalism.
However, for the results to be proven in this paper it is sufficient to make assumptions
only about the computational complexity of the validity test. For instance, some re-
sults will depend on whether this test is tractable or not. Based on these concepts, the
notion of plans can be defined in the usual way.

Definition 2.1 A total-order plan (t.o. plan) is a sequence P = (ay, ..., a,) of actions,
which can alternatively be denoted by the tuple ({aq, ..., a,}, <) where for 1 <k, 1 <n,

1This is the complexity theoretic terminology for problems. What is called an instance of a planning
problem in this paper is often called a planning problem in the planning literature.



ap < ap iff k < 1. Given a ppi. Il, P is said to be Il-valid iff the validity test is true for
IT and P.

A partial-order plan (p.o. plan) is a tuple P = (A, <) where A is a set of actions and
< is a strict ( ie. irreflexive) partial order on A. A t.o. plan (A’,<') is a linearization
of P iff A = A and <C=’, ie. <" is a total order on A obeying the partial order <.
The validity test is extended to p.o. plans s.t. given a ppi. I, P is l-valid iff all
linearizations of P are Il-valid.

The actions of a t.o. plan must be executed in the specified order, while unordered
actions in a p.o. plan may be executed in either order. That is, a p.o. plan can
be viewed as a compact representation for a set of t.o. plans. There is no implicit
assumption that unordered actions can be executed in parallel; parallel plans will be
defined in Section 4. P.o. plans will be viewed as directed acyclic graphs in figures with
the transitive arcs tacitly omitted to enhance readability.

The framework outlined above is very general and abstract and will be used mainly
for definitions and tractability results, in order to make these as generally applicable
as possible. Otherwise, the propositional STRIPS framework, sometimes further re-
stricted, will be used, especially to make examples simple and to make hardness results
as strong as possible. The usual propositional STRIPS model (see for instance Bylander
[3]) will be used where actions have a precondition, an add-list and a delete-list. In
figures, actions will be shown as boxes. Atoms to the left of an action box are members
of its precondition and atoms to the right are members of its add-list (or the delete-list
if negated). Furthermore, all problems considered in this paper concern reordering the
actions in plans, not changing the set of actions Hence, a STRIPS ppi. will be written
as a tuple (I, G) where [ is the initial state and (' is the goal state, tacitly omitting
the implicit and, in this context irrelevant, atom and operator sets.

3. Least Constrained Plans

It seems to have been generally assumed in the planning community that there is no
difference between t.o. plans and p.o. plans in the sense that a t.o. plan can easily be
converted into a p.o. plan and vice versa. However, while a p.o. plan can be trivially
converted into a t.o. plan in low-order polynomial time by topological sorting, it is
less obvious that also the converse holds. At least two polynomial-time algorithms for
converting t.o. plans into p.o. plans have been presented in the literature [20, 25] (both
these algorithms will be analyzed later in this paper). The claim that a t.o. plan can
easily be converted into a p.o. plan is of course, vacuously true since any t.o. plan is
also a p.o. plan, by definition. Hence, no computation at all needs to be done. This is
hardly what the algorithms were intended to compute, however. In order to be useful,
such an algorithm must output a p.o. plan satisfying some interesting criterion, ideally
some optimality criterion. In fact, both algorithms mentioned above are claimed to
produce optimal plans according to certain criteria. For instance, Veloso et al. claim
[25, p. 207] their algorithm to produce least constrained plans. They do not define what
they mean by this term, however, and theirs is not the only paper in the literature using
this term without further definition.

Unfortunately, it is by no means obvious what constitutes an intuitive or good cri-
terion for when a p.o. plan is least constrained and, to some extent, this also depends



on the purpose of achieving least-constrainment. The major motivation for producing
p.o. plans instead of t.o. plans (see for instance Tate [24]) is that a p.o. plan can be
post-processed by a scheduler according to further criteria, such as release times and
deadlines or resource limits. Either the actions are ordered into an (ideally) optimal se-
quence or, given criteria for parallel execution, into a parallel plan that can be executed
faster than if the actions were executed in sequence. In both cases, the less constrained
the original plan is, the greater is the chance of arriving at an optimal schedule or
optimal parallel execution respectively. Both of the algorithms mentioned above are
motivated by the goal of exploiting possible parallelism to decrease execution time.

There is, naturally, an infinitude of possible definitions of least-constrainment. Some
seem more reasonable than others, however. Five intuitively reasonable candidates are
defined and analyzed below. Although other definitions are possible, it is questionable
whether considerably better definitions, with respect to the purposes mentioned above,
can be defined without using more information than is usually present in a t.o. or p.o.
plan.

Given a p.o. plan P = (A, <), let the relation 7 be implicitly defined s.t. for distinct
a,b € A, a?bh iff neither @ < b nor b < a. Further, let the function length be defined
s.t. length(P) is the number of actions in the longest action chain in P. The notation
P C" P’ will be used to denote that a p.o. plan P is less constrained than another p.o.
plan P’ wrt. a ppi. II. In particular, the following five definitions of least constrainment
will be considered.

Definition 3.1 Given a ppi. Il and two -valid p.o. plans P = (A, <) and P' =
(A, <"):

LCL: PCY P iff A= A" and <C </,

LO2: PCI P iff A=A and | < | < | <],

LC3: PCY P iff A=A and 7' C 7,

LCY: PCY P iff A=A and || < |7,

LC5: PCY P iff A= A’ and length(P) < length(P').

Obviously, the criteria LC3 and LC4 are redundant since P C' P’ iff P CIl P’ and
P Eg[ Pt P EE P’. Furthermore, T, is likely to be a reasonable substitute for Cj
since when computing £, the ‘cost’ of chains will be quadratic in their length and a
long chain can, thus, dominate over many shorter chains. Hence, this paper will focus
on least constrainment defined as minimality wrt. either LC1 or LC2.

Definition 3.2 Given a ppi. Il and a ll-valid p.o. plan P = (A, <),
1. P is T ominimal iff there is no other ll-valid plan P’ = (A, <"y s.t. PPCH P,
2. P s EE’A-mmimal iff PCY P for all M-valid p.o. plans P’ = (A, <').

The definitions for Ci-minimality and Cy-minimality look different since Ty is a
(reflexive) partial order while C, is a pre-order. It should also be noted that the E{I—
minimal plans for some plan P are incomparable wrt. C;, while all C;-minimal plans
form an equivalence class under Cy. Furthermore, Co-minimality is a stronger criterion
than Ci-minimality, but is harder to compute.



Theorem 3.3 Cy-minimality implies Cq-minimality, but not vice versa.
Proof: Trivial. O

Theorem 3.4 If validity can be tested in polynomial time for p.o. plans, then any II-
valid p.o. plan (A, <) for some ppi. 1 can be converted into a E?’A-mmimal -valid
p.o. plan (A, <"} in polynomial time.

Proof sketch: Given ap.o. plan (A, <), repeatedly select some non-transitive ‘arc’ in
~< that can be removed without making the plan invalid and remove this arc. Terminate
when no more such arc exists in <. O

Definition 3.5 The problem LC2-MINIMAL PLAN (LC2MP) is defined as follows:

Given a ppi. 1, a ll-valid p.o. plan (A, <) and a positive integer k, decide whether
there exists some l-valid p.o. plan P' = (A, <) s.t. | <" | < k.

Theorem 3.6 The problem LC2-MINIMAL PLAN is NP-hard if the action language
is at least as expressive as propositional STRIPS with empty delete lists and it is further
NP-complete if also p.o. plans can be tested for validity in polynomial time.

Proof: Proof by transformation from the MINIMUM COVER problem [7, p. 222],
which is NP-complete. Let S = {p1,...,pa} be a set of atoms, C = {Cy,...,C,} a
set of subsets of S and k < |C'] a positive integer. A cover of size k for S is a subset
C'C Cst. |C < kand S C UpeerT. Using propositional STRIPS, construct, in
polynomial time, the ppi. Il = (&, {r}) and the l-valid t.o. plan P = (a1,...,apn, as)
where addlist(ay) = C for 1 < k < m, precond(as) = S and addlist(as) = {r}.
Obviously, S has a minimum cover of size k iff there exists some Il-valid p.o. plan
P = {ay,...,am,as},<) s.t. | <| = k. Membership in NP is immediate in the case
where p.o. plans can be tested for validity in polynomial time. a

It follows immediately that the corresponding search problem, that is, the problem of
generating an EE’A—minimal plan is also NP-hard (and even NP-equivalent [7] if validity
testing is tractable).

4. Parallel Plans

Most of the results in this paper are about or are motivated by the problem of finding
efficient parallel executions of plans. Hence, the concept of parallel plans must be added
to the previous planning framework.

Definition 4.1 A parallel t.o. plan is a sequence P = (Sy,...,S,), where Sq,...,95,
are disjoint sets of actions. For 1 < k < n, the set Sy is referred to as the kth slice
of P. A linearization of P is a t.o. plan P' = ay;...;a,, where the symbol ; denotes
sequence concatenation and for 1 < k < n, ap is a permutation sequence of S. There
is assumed to exist a validity test also for parallel t.o. plans with the restriction that if
a parallel t.o. plan P is ll-valid for some ppi. 11, then all linearizations of P are also

1-valid.



The intuition behind the definition of parallel t.o. plans is that the actions within a
slice can be executed yielding the same result independently of whether the actions
are executed in sequence, overlapping or in any other temporal order (more precisely,
the intervals occupied by the actions may be related by any set of relations in Allen’s
interval algebra [2]).

Definition 4.2 A parallel p.o. plan is a triple P = (A, <,#), where (A, <) is a
p.o. plan and # is an irreflevive, symmetric relation on A. A parallel t.o. plan
P = (5,...,5,) is an n-step parallel execution of P iff Si,...,S, is a partitioning
of A and for any two actions a € S, and b € S;, where 1 < k.l < n, if a < b, then
kE <1 and if a#b, then k # 1. P’ is further an optimal parallel execution of P if it
is a parallel execution of P and P has no parallel execution in less than n steps. The
validity test is extended to parallel p.o. plans s.t. given a ppi. 1, P is Il-valid iff all
parallel executions of P are Il-valid.

Intuitively, a parallel p.o. plan is a p.o. plan extended with an extra relation, #,
(a non-concurrency relation) expressing which of the unordered actions must not be
executed in parallel, te. must not belong to the same slice in any parallel execution.
There are no restrictions on the relation # in addition to those in Definition 4.2. For
instance, a < b does not imply that a#b.

This framework for parallel plans admits expressing possible parallelism only; neces-
sary parallelism is out of the scope of this paper and requires a planner having access to
and being able to make use of additional information. It will be further assumed that
all actions take unit time and that all actions within a slice are executed perfectly in
parallel, that is, each slice takes unit time. Since this is a special case of more general
parallelism, the hardness results in this paper carry over implicitly to more general
formalisms.

An interesting computation for a parallel plan is to find its shortest parallel execution.
If the ultimate goal for finding a least-constrained plan is to exploit possible parallelism
to minimize the execution time, then it is better to find the plan admitting the shortest
parallel execution rather than the least-constrained plan. This is the only way to
guarantee optimality, but it requires access to the additional information supplied by
the non-concurrency relation.

Definition 4.3 Given a ppi. 1, a parallel p.o. plan P = (A, <,#) is [l-reordering
of a parallel p.o. plan P' = (A", < #") iff A = A, # = #' and both P and P' are
[I-valid. P is further an n-step ll-reordering of P’ if it also admits a parallel execution
in n steps and it is an optimal Il-reordering of P’ if no other ll-reordering of P’ admits
a parallel execution in fewer steps.

Definition 4.4 The decision problem OPTIMAL PARALLEL PLAN (OPP) is defined
as follows. Given a ppi. 11, a parallel p.o. plan P and an integer k, decide whether P
has a k-step Il-reordering.

Theorem 4.5 The problem OPTIMAL PARALLEL PLAN is NP-hard and it is further
NP-complete if parallel t.o. plans can be tested in polynomial time.

Proof: Hardness is proven by transformation from the GRAPH K-COLOURABILITY
problem (GC) [7, p. 191], which is NP-complete. Let G = (V| FE) be an arbitrary



undirected graph. Construct, in polynomial time,* the parallel plan P = (V. @, F)
that is valid for some ppi. 1I. It is obvious that G is k-colourable iff P has a k-step
[I-reordering since each colour of GG will correspond to a unique slice in the parallel
execution of P (note that (V, <’  E) could not have a shorter execution than P for
any order <'). It remains to prove membership in NP in the case parallel t.o. plans
can be validated in polynomial time. Given a ppi. II and a Il-valid parallel p.o. plan
P = (A, <,#), P has a k-step Il-reordering iff there exists a II-valid parallel t.o. plan
(S7 U...Sk) satisfying the # relation and having S; U...S; = A. Since such a plan
can be guessed and validated in polynomial time, it follows that OPP is in NP. O

5. Analysis of the VPC Algorithm

Veloso et al. [25] have presented an algorithm (called VPC below) for converting t.o.
plans into p.o. plans. The algorithm is used in the following context: first a total-order
planner is used to produce a t.o. plan, then the VPC algorithm converts this plan into
a p.o. plan and, finally, the resulting p.o. plan is analyzed to determine which actions
can be executed in parallel. The action language used is a STRIPS-style language
allowing quantifiers and context-dependent effects. However, the plans input to the
VPC algorithm must be fully instantiated and they can hardly be allowed to contain
context-dependent effects either,® thus being propositional STRIPS plans. The VPC
algorithm is presented in Figure 1.

VPC is a greedy algorithm which constructs an entirely new partial order by analysing
the action conditions, using the original total order only to guide the greedy strategy.
The algorithm is claimed [25, p. 207] to produce a least-constrained p.o. plan, although

It is assumed that the formalism at hand use reasonable encoding schemes [7].

3At least, there is nothing in the paper or the algorithm suggesting that context-dependent ef-
fects can be handled by VPC. Furthermore, it is questionable whether the algorithm would still be
polynomial, were this the case; plan validation is NP-hard for conditional plans in the general case
[5, 18, 19].

4Veloso (personal communication, Oct. 1993) has pointed out that the published version of the
VPC algorithm is incorrect and that a corrected version exists. This does not affect the problem
analysed in this paper, however.

1 procedure VPC;

2 TInput: a ppi. IT and a [-valid t.o. plan {ay,...,a,)

3 Output: A II-valid p.o. plan

4 for1<:<n do

5 for p € precond(a;) do

6 Find max k < ¢ s.t. p € addlist(ay);

7 if such a k exists then

8 order aj < a;;

9 for p € deletelist(a;) do
10 for 1 <k < ns.t. p € precond(a;) do
11 Order ap < ay;

12 return ({a1,...,a,}, <);

Figure 1: The VPC algorithm
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Figure 2: The p.o. plans in the failure example for VPC.

no definition is given of what this means.? In the absence of such a definition from its au-
thors, the algorithm will be analysed with respect to Cy-minimality and C,-minimality.
It is then immediate from Theorem 3.6 that VPC cannot produce Cy-minimal plans,
unless P=NP. What is more surprising is that it does not even produce Ci-minimal
plans although this is a trivial tractable problem.

To see this, consider the following propositional STRIPS example. Suppose a total-
order planner is given the ppi. Il = (@, {r, s}) as input. It may then return either of the
[I-valid t.o. plans (a,b,c) and (a,c,b), with action conditions as shown in Figure 2. If
given as input to the VPC algorithm, the two t.o. plans will give quite different results.
VPC will convert the plan (a,c,b) into the p.o. plan P; in Figure 2, a plan which is
both C;-minimal and Cy-minimal. If instead given the plan {a, b, ¢), it will output the
p.o. plan P in Figure 2, a plan which is neither C;-minimal nor Cy-minimal (note that
transitive arcs are not shown in the figure). The reason that VPC is not guaranteed
to find C-minimal plans is that it is greedy; whenever it needs to find an operator «
achieveing an effect required by the precondition of another operator b it chooses the
last such action ordered before b in the input t.o. plan. However, there may be other
actions having the same effect and being a better choice.

6. Analysis of the RF Algorithm

Based on the motivation that it is easier to generate a t.o. plan than a p.o. plan
when using complex action representations, Regnier and Fade [20, 21] have presented
an algorithm (called RF below) for converting a t.o. plan into a p.o. plan. The
resulting plan has the property that all unordered actions can be executed in parallel.
The authors of the algorithm further claim that the algorithm finds all pairs of actions
that can be executed in parallel and, hence, the plan can be post-processed to find
an optimal parallel execution. The RF algorithm is presented in Figure 3, with all
implementation-dependent details irrelevant to analyzing the algorithm removed. The
original algorithm returns a p.o. plan (A, <), but since this plan has the property that
all unordered actions can be executed in parallel it corresponds to the parallel p.o. plan
(A, <,2).

It seems that the RF algorithm is intended to compute a restriction of the problem
OPTIMAL PARALLEL PLAN, with the non-concurrency relation implicitly defined

by the predicate parallelizable. This predicate determines whether two actions may be

Veloso (personal communication, Oct. 1993) has confirmed that the term “least constrained plan”
was used 1n a “loose sense” and no optimality claim was intended. However, if this term is not defined,
then we do not even know what problem the algorithm is supposed to solve.



procedure RF;
Input: a ppi. I and a II-valid t.o. plan {a1,...,ap)
Output: A II-valid parallel p.o. plan
for 1<i:<j3<n do
if not parallelizable(a;, a;) then
Order a; < ay;
return (4, <,J);

=~ O O = W N =

Figure 3: The RF algorithm

executed in parallel or not, that is, whether they interfere or not. Regnier and Fade use
STRIPS operators where the conditions are sets of possibly negated object-attribute-
value triples. For the results in this paper it is sufficient to consider the special case of
ground triples, ie. propositional literals. Two sets S and T of atoms are contradictory
iff there exists some atom p s.t. p € S and —p € T. Regnier and Fade defined the
parallelizability criterion to be true of two actions a;,a; in a t.o. plan (ay,...,a,) iff

1. both pre(a;) and pre(a;) hold in the state preceding the execution of a; and «a;,

2. all the pairs (pre(a;),pre(a;)); (pre(a;),post(a;)); (post(a;),pre(a;)) and
(post(a;), post(aj)) are non-contradictory,

3. it 2 < 5+ 2, then for some ¢ < k < 7, a and ayyq are parallelizable.

Unfortunately, there is a serious problem with this definition, wiz. that, because of
the third requirement, it can only be applied to t.o. plans. Hence, it is not possible
to use this criterion to decide whether two actions in a p.o. plan can be executed in
parallel or not. This implies that the parallelizability criterion cannot be used to define
a non-concurrency relation. It is, thus, impossible to decide whether a parallel p.o. plan
is an optimal reordering according to this criterion. The claim that the RF algorithm
finds all pairs of parallel actions is, thus, somewhat questionable since it can only refer
to the actions that are parallelizable according to a criterion on the original t.o. plan;
it is not possible to verify that no ordered actions in the output plan can be executed
in parallel, which seems a more reasonable interpretation of the claim.

The third condition in the parallelizability criterion is not really necessary for decid-
ing whether two actions can be executed in parallel, however. Conditions one and two
together coincide with Horz’ [9] independence criterion, which is intended to express
when two actions in a p.o. plan can be executed in parallel. This criterion is trivially
extendible to sets of unordered actions. Furthermore, any two unordered actions in a
parallel p.o. plan output by the RF algorithm are independent. It thus follows that
the parallelizability criterion is stronger than independence, but is only applicable to
t.o. plans. Even for the purpose of deciding whether two actions in a t.o. plan can be
executed in parallel or not the independence criterion seems the more appropriate of
the two; the parallelizability criterion is simply over-restrictive.

In the plan input to the RF algorithm, all pairs of actions are ordered since it is a t.o.
plan. It is easy to see that the algorithm can only remove orderings. That is, it can make
two previously ordered actions unordered if these are parallelizable. However, it cannot
reorder actions, something which is necessary for producing an optimal reordering, as
will be seen in the following example.
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Figure 4: Plans in the RF failure example (the relation # is not shown).

Let the STRIPS ppi. Il = (@,{r,s}) be given. A total-order planner may return
either of the three Il-valid t.o. plans, (a,b,c,d), {a,d,b,c) and (d,a,b,c) with action
conditions as shown in Figure 4. A total-order planner may output either of these
plans. If RF is given either of the two latter plans as input, it will produce the parallel
p.o. plan P in Figure 4 since actions a and d are parallelizable. On the other hand,
if given the first plan as input, then it will return this plan unchanged, that is, the
plan P, in Figure 4. This is because neither of the action pairs (a, b); (b, ¢) and (¢, d) is
parallelizable and, hence, they remain in the same order as in the input plan. P; admits
a 3-step parallel execution and is an optimal reordering of each of the possible input
plans. P,, on the other hand, admits no shorter execution than 4 steps, and is thus not
an optimal reordering of any of the input plans. The reason that the algorithm fails to
produce an optimal plan in the second case is that it never considers reordering action
d wrt the actions b and ¢. Since d is ordered after b and ¢ in the input, it can either
remain ordered after these or be unordered wrt to them in the output; the algorithm
can never order d before b and ¢, unless this was already the case in the input.

It is obvious from this example that the RF algorithm is intrinsically dependent on in
which order the actions appear in the input plan. This is a problem with the algorithm,
however, not with the parallelizability criterion, since it would give the same result if
using the independence criterion instead. Nevertheless, there are important differences
between the two criteria. Any algorithm using the parallelizability criterion would
return the plan P,, while there can exist algorithms (not necessarily polynomial ones)
using the independence criterion which find the plan P; on input (a,b,¢,d). Further,
Py in Figure 4 is an optimal parallel version of the t.o. plan (a,b,c,d) under the
independence criterion. No similar claim can be made if using the parallelizability
criterion, however, since the concept optimal reordering is then undefined. As remarked
by Regnier and Fade [20], it is trivial to find an optimal parallel execution of the plan
output by the RF algorithm using standard algorithms. However, this is something
very different from optimality wrt. the t.o. plan input to the algorithm.

What is positive about the RF algorithm, however, is that it runs in polynomial time,
while the problem of finding an optimal reordering is NP-complete (Theorem 4.5°).
That is, no polynomial-time algorithm can exist that finds an optimal reordering. The
RF algorithm should, thus, be viewed as some kind of approximation algorithm for
OPP. However, it is unclear what it computes and to be useful as an approximation
algorithm, it should give some kind of guarantee on its output—which is the topic of
the next section.

61t is easy to see that the theorem holds also for propositional STRIPS even if the plan P is restricted
s.t. < is a total order on A and the # relation is defined via the independence criterion.



7. Approximation

Since Co-minimality seems to be a reasonable least-constrainment criterion and is NP-
hard to compute, it is interesting to ask whether VPC may at least serve as an approx-
imation algorithm for finding Co-minimal plans.

The terminology for approximation of minimization problems can be briefly recast
as follows (for a more elaborate discussion, see Garey and Johnson [7]). Given some
cost function cost on candidate solutions, the performance ratio ot an algorithm A on a
problem instance Il is defined as Ra(Il) = cost4(I1)/cost,p:(I1), where cost 4(11) is the
cost of the solution returned by algorithm A on instance Il and cost,(Il) is the cost
of the optimal solutions to the instance II. The absolute performance ratio R4 is the
value of R4(II) in the worst case, measured over all instances II of the problem. The
asymptotic performance ratio RY is the value of R4(Il) in the worst case, measured
over all instances Il s.t. cost,,+(Il) > ¢ for some constant ¢. Finally, the best achievable
performance ratios Ryrrn(I1), Rayrn and B3y n denote the minimum values for R4(11),
R4 and RY respectively, measured over all possible algorithms.

Let the cost of a p.o. plan (A, <) be defined as | < |, which is the parameter to
minimize. The question, then, is whether there exists some constant ¢ s.t. Rypc < ¢
or, at least, R{fp < c¢. Unfortunately, this turns out not to be the case and, hence,
VPC gives no constant performance guarantee, even asymptotically.

Theorem 7.1 There exists no constant ¢ s.t. Ryps < c.

Proof: For arbitrary n > 0 let the set A = {ao,...,a,} of actions be defined s.t.
addlist(ag) = {p1,...,pn} and for 1 < k < n, precond(ay) = {pr} and addlist(ay) =
{pk,qx}. Consider the ppi. Il = (@,{¢1,...,¢,}) and the t.o. plan P = (ag,...,a,) =
(A, <). Any C - minimal IT-valid plan P’ = (A, <') obviously satisfies | <’ | = n, while
VPC would ‘rediscover” and output the plan P, ie. the input. Since | < | = (n? —n)/2
it follows that Ri'pq is O(n). O

Since the RF algorithm fails to solve optimally the problem it was designed for it
is interesting to ask also for this algorithm whether it may serve as an approximation
algorithm. The cost for a parallel p.o. plan in this case is defined as the number of steps
in its shortest parallel execution. Unfortunately, the situation is just as bad as for the
VPC algorithm; the RF algorithm does not exhibit a constant performance guarantee,
even asymptotically.

Theorem 7.2 There exists no constant ¢ s.t. Ry < c.

Proof: For arbitrary n > 0, construct the ppi. I, = (@, {r1,r2,...,7.}) and the
t.o. plan P = (a1,b1,c1,a9,b2,¢0y ... ap, by, cy), where for 1 < i < n, pre(a;) = @,
post(a;) = {pi,~qi-1}, pre(b;) = {pi}, post(b;) = pre(e;) = {¢;} and post(c;) = {r}.
Obviously there exists a parallel version of P admitting the 3-step execution (5, 53, S3),
where for 1 <7 < n, a; € Sy, b; € S and ¢; € S5 (see Figure 5). The RF algorithm,
on the other hand, will fail to reorder the actions and will return its input, ie. the
plan P, admitting no parallel execution in fewer than 3n steps. Hence, the absolute
performance guarantee for RF is > n. For the asymptotic performance guarantee it
is sufficient to observe that the above construction can be repeated s.t. for arbitrary
m,n > 0, there exists a t.o. plan P’ = aq;...;a,, where each «; is isomorphic to the



ap |21 P1 by 0 11 et 1

C2

as [P2 P2 by 42 42 T2

r
b q3 q3 ¢s 3

as [P3

Figure 5: Optimal reordering of the input plan for n = 3 in the proof of Theorem 7.2.

plan P above, but extended with extra conditions s.t. for 1 < ¢ < m, all actions in «;
must be executed before the actions in «;41. Obviously, the shortest parallel execution
for P’ is of length 3m, while RF may return the plan P’ having no shorter parallel
execution than length 3mn. It follows that R%r > m and the theorem follows. O

Neither of the two results above are surprising, however, since there can exist no
algorithms solving these problems with constant performance guarantee.

Theorem 7.3 There exists no constant ¢ s.t. R n(LC2MP) < ¢, unless NP €

DTIME (npoly 1Og”) and there exists no constant ¢ s.t. Ry n(OPP) < ¢, unless
P=NP.

Proof: Suppose there exists a polynomial-time approximation algorithm A for LC2MP
(OPP) and there exists a constant ¢ s.t. R} < e¢. It is then immediate from the proof
of Theorem 3.6 (4.5) that it is possible to construct an approximation algorithm A’
for MINIMUM COVER (GRAPH K-COLOURABILITY) s.t. R% < ¢. However, it

was proven by Lund and Yannakakis [14] that no such algorithm can exist, unless

NP € DTIME (n poly 1Og”) (P=NP). The theorem follows by contradiction. O

8. Discussion

In this paper, the problems of reordering a plan to become least constrained or having
an optimal (shortest) parallel execution were considered. For the first problem, two cri-
teria called Cq-minimality and C,-minimality were defined. C;-minimality is tractable,
but gives no reasonable guarantee of optimality, while Cy-minimality is NP-hard, but
possibly has some useful flavour of optimality. The problem of finding a reordering of
a plan admitting an optimal parallel execution was also proven NP-hard. Both these
problems may seem somewhat related to precedence constrained scheduling, but there
is an important difference. While a scheduler is only allowed to add ordering relations,
the problems considered in this paper allow any reordering of the actions in a plan.
Hence, these problems are closer related to planning than to scheduling, since they
require reasoning about the validity of plans.

Two algorithms have been presented in the literature for converting a total-order plan
into a least-constrained plan [25] and into a parallel plan having an optimal parallel
execution [20] respectively. In the absence of a definition of least-constrainment from
its authors, the first algorithm was analysed wrt. the least-commitment criteria defined



in this paper. Obviously it cannot produce Cy-minimal plans, unless P=NP, since
this is an NP-hard problem. More surprisingly, however, it does not even guarantee
finding Ci-minimal plans. It is unclear what the algorithm computes, but is unlikely to
compute anything significantly stronger than C;-minimality, which is a very weak least-
constrainment criterion. The second algorithm was similarly found not to guarantee
producing a plan having an optimal parallel execution, which is obvious in the light
of the NP-hardness result for this problem. Also here it remains unclear what the
algorithm really computes. Both algorithms were then reconsidered as approximation
algorithms for finding Cy-minimal plans and plans with optimal parallel executions
respectively. However, it was shown that neither algorithm gives a constant performance
guarantee—both algorithms occasionally return the worst possible solution, namely the
input unchanged (when far better solutions exist).

The results in this paper do, however, not necessarily imply that the method of using
a total-order planner and convert its output into a partial-order plan is bad. Few, if
any, partial-order planners in the literature produce plans that are optimal wrt. to any
of the criteria defined in this paper, so the conversion problem remains. Furthermore,
a partial-order planner guaranteeing such optimality for its solution could not escape
from the complexity problem, it would be inherent in the already difficult planning
process.

To summarize, there are tractable least-commitment criteria, but no such criterion
is likely to give any useful guarantee for putting a scheduler in a better position to
arrive at an optimal schedule. The Cy-minimality criterion gives a considerably better
result, although still not giving any such guarantee—yet it is NP-hard to compute. The
problem of finding an reordered plan having an optimal parallel execution, however,
goes one step further by producing a parallel plan with optimality guarantees for the
execution time. Since this problem is of the same complexity as Cy-minimality it
is probably better to attack it directly than to first try achieveing C,-minimality or
anything similar. However, because of the NP-hardness of the problem nothing but an
approximation can be computed. Even worse, it was shown in this paper that neither
this problem nor the problem of finding Cy-minimal plans can be approximated within
a constant ratio. If insisting on approximations with worst-case guarantees, it could be
worthwhile to exploit the intimate relationship between graph colouring and parallel
executions. The best known graph colouring approximation algorithm to date is due
to Halldérsson [8], giving a performance guarantee of O(n(loglogn)?/log®n). If not
requiring completeness or worst-case guarantees there is also the possibility of using
local search methods for graph colouring [12, 23], sometimes giving good results in
practice.
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