Computational Intelligence, Volume 11, Number 4, 1995

COMPLEXITY RESULTS FOR SAST PLANNING

CHRISTER BACKSTROM

Department of Computer and Information Science, Linkoping University, S-581 83 Linkoping,
Sweden. E-mail: cba@ida.liu.se

BERNHARD NEBEL

Department of Computer Science, Unwversity of Ulm, D-89069 Ulm, Germany.
E-mail: nebel@informatik. uni-ulm.de

We have previously reported a number of tractable planning problems defined in the SASt
formalism. This article complements these results by providing a complete map over the complexity
of SAST planning under all combinations of the previously considered restrictions. We analyze the
complexity both of finding a minimal plan and of finding any plan. In contrast to other complexity
surveys of planning we study not only the complexity of the decision problems but also of the
generation problems. We prove that the SAST-PUS problem is the maximal tractable problem
under the restrictions we have considered if we want to generate minimal plans. If we are satisfied
with any plan, then we can generalize further to the SAST-US problem, which we prove to be the
maximal tractable problem in this case.

Key words: Planning, Algorithms, Computational Complexity, Simplified action structures

1. INTRODUCTION

Planning is the reasoning problem of finding a (totally or partially ordered) set
of operators that achieves a specified goal from a given initial state.! It is well
known that this problem is computationally intractable? in general (Chapman 1987;
Bylander 1994; FErol et al. 1992). In fact, domain-independent planning systems
that are guaranteed to find a solution if there exists one, i.e., complete planners, are
bogged down by the huge search space.® One way to deal with this problem is to use
heuristic search techniques and to sacrifice completeness. Another way is to give up
on expressiveness of the planning formalism in order to achieve efficiency.

Focusing on the latter alternative, we have previously studied planning problems
closely related to problems in the area of sequential control.* Using the SAS and
SAST formalisms,® which can be viewed as variants of propositional STRIPS (Fikes
and Nilsson 1971) or ground TWEAK (Chapman 1987), we considered a number of
local and global restrictions and analyzed the resulting complexity of the planning
problem. The overall goal of this research has been to identify successively more
and more expressive, computationally tractable planning problems, with the hope of
ultimately finding problems which are relevant to practical applications, especially
in the area of sequential control.

The restrictions we considered can be informally characterized as follows:

1In other words, by “planning” we mean classical, single-agent, non-parallel planning.

2As customary, we call a problem computationally intractable if it is NP-hard (Garey and Johnson
1979).

3This is indicated, for instance, by the empirical data reported by Kambhampati and Hendler (1992,
Fig. 12) and by Hanks and Weld (1992, Fig. 5).

4Sequential control is a subdisciplin of automatic control, concerned mainly with generation and analysis
of sequences of control actions for industrial processes etc. Hence, the area includes many planning-like prob-
lems. A more in-depth discussion of the relationship between planning (especially our work) and sequential
control can be found in Klein (1993).

5SAS is an acronym for Simplified Action Structures, denoting that the formalism is a restriction of the
action structure formalism (Sandewall and Rénnquist 1986).

© 1995 Blackwell Publishers, 238 Main Street, Cambridge, MA 02142, USA, and 108 Cowley Road, Oxford, OX4 1JF, UK.

2 COMPUTATIONAL INTELLIGENCE

Post-uniqueness: For each effect there is at most one operator that achieves this
effect. In other words, desired effects determine the operators to be used in a
plan.

Single-valuedness: Preconditions such that the corresponding state variables are
not changed by the operator must all have the same value, when defined. For
instance, if a certain operator requires the light to be on, no other operator must
use the precondition that the light is off without also changing the state of the
light.

Unariness: Each operator affects only one state variable.

Binariness: All state variables have exactly two possible values.

The two former restrictions are global in the sense that they apply to a set of
operators. Post-uniqueness, is a very severe restriction that simplifies the planning
process considerably because for each value of a state variable there is at most one
operator that can achieve this value. Single-valuedness resembles the restriction that
only positive preconditions are allowed (Bylander 1991; FErol et al. 1992), but is
slightly more general in that single-valuedness only applies to the preconditions such
that the corresponding state variables are not changed. The two latter restrictions
are local to the operators. Binariness is just the restriction we find in propositional
STRIPS and ground TWEAK, namely that each state variable can be either true
or false. Unariness, finally, means that we have only one postcondition for each
operator, a restriction also considered by other authors (Bylander 1991).

Starting with the SAS formalism and imposing all of the restrictions sketched
above, we get the SAS-PUBS® planning problem—the first problem we proved to be
solvable in polynomial time (Backstrém and Klein 1990 1991b). Applying a bottom-
up strategy, we then generalized this result by removing restrictions, resulting in the
more expressive, but still tractable, SAS-PUS (Béackstrom and Klein 1991a) and
SAST-PUS (Béckstrom 1992a 1992b) problems.

Having started from one tractable problem and generalized twice to new tractable
problems it is interesting to ask how much further we can generalize and stay tractable
by simply removing restrictions. This article answers that question by providing an
exhaustive map over the complexities for generating both optimal and non-optimal
plans for all possible combinations of the P, U, B and S restrictions. It turns out that
the SAST-PUS problem is the maximally expressive tractable problem if we insist
on generating optimal plans (i.e., plans of minimal length). Whichever of the three
restrictions on this problem we drop, the resulting problem is intractable. On the
other hand, if we do not require the solutions to be minimal, then we can generalize
somewhat further; if we remove the P restriction, resulting in the SAST-US problem,
we can still plan in polynomial time, although we are no longer guaranteed to generate
optimal plans. However, if we further remove either of the two restrictions on the
SAST-US problem, it becomes inherently intractable to generate a plan since there
may then be minimal plans of exponential length.

The remainder of this article is structured as follows. The next section contains a
description of the SAST formalism and an example showing how to model planning
problems. Section 3 defines the different planning problems we analyze in this article
and provides a survey of our complexity results. In Section 4, we prove the hardness
results and in Section 5, we specify an algorithm for the SAST-US plan generation

5We use the first letter of the names of a restrictions in order to denote what kind of subproblem we
mean.

COMPLEXITY RESULTS FOR SAST PLANNING 3

problem. Finally, in Section 6, we summarize and discuss the results of our analysis.

2. THE SAST FORMALISM

The SAST formalism is in principle a slight variation on the propositional STRIPS
formalism (Fikes and Nilsson 1971). This section briefly recasts the main differences
between the two formalisms and gives a formal definition of the SAST formalism.
The reader is referred to our previous publications (Backstrom and Klein 1991a
1991b; Béckstrom 1992a 1992b) for further background, motivation and examples.

2.1. World Modeling in the SAST Formalism

There are mainly two details that differ between the SAST formalism and the
STRIPS formalism. Instead of propositional atoms we use multi-valued state variables
and instead of using only pre- and post-conditions (or add- and delete-lists) for
operators we also use a prevail-condition, which is a special kind of pre-condition.

A multi-valued, discrete state variable can, in principle, be simulated by a number
of propositional atoms, but there are at least three good reasons for using multi-
valued state variables. First, many applications are more naturally described in this
way, especially in sequential control. Secondly, we have been able to isolate certain
restrictions on planning problems that seem relevant for real problems and which
reduce the computational complexity considerably. These restrictions would most
likely have been very hard to isolate using the traditional STRIPS formalism. Thirdly,
it will be a smaller step to generalize the state variables to structured domains such as
subsets of the integers or interval-valued domains.” Re-expressing these restrictions
in a traditional formalism is, in principle, possible, but the result is very complicated
and unintuitive (Backstrém 1992a; Nebel and Backstrém 1994). Furthermore, recent
research (Backstrém 1994b) has shown that there may be a considerable loss of
efficiency if solving state-variable planning instances by first re-encoding them as
propositional STRIPS instances.

Each state variable has some discrete domain of mutually exclusive defined values
and in addition to these we also allow it to take on the undefined value. The undefined
value is interpreted as ‘don’t care’—that is, the value is unknown or does not matter.
A total (world) state assigns defined values to all state variables, while a partial
(world) state may also assign the undefined value. We will often use the term state
when it is clear from the context or does not matter whether the state is partial or
total.

Plans consist of actions (or plan steps), each action being an instantiation of some
operator (or action type). Since all operators in the SAST formalism are ground and
we only consider total-order plans in this article, we need not distinguish between
operators and actions. The main difference in contrast to the traditional STRIPS
modeling is that the (STRIPS) pre-condition is split into two conditions, depend-
ing on whether the variables are changed by the operator or only required to have
some specific value. The ‘behavior’ of an operator is modeled by its pre-, post- and
prevail-conditions—all three being partial states. The post-condition of an operator
expresses which state variables it changes and what values these variables will have

“We have previously presented a variant of action structures with interval-valued state variables (
Backstrom 1988a 1988b).

4 COMPUTATIONAL INTELLIGENCE

after executing the operator, if executed successfully. The pre-condition specifies
which values these changed variables must have before the operator is executed. The
prevail-condition specifies which of the unchanged variables must have some specific
value before the execution of the operator and what these values are.® Both the pre-
and prevail-condition of the operator must be satisfied for the operator to execute
successfully.

Definition 1. An instance of the SAST planning problem is given by a tuple II =
(V, 0, s0, s,) with components defined as follows:

o V = {v,...,v,} is a set of state variables. FEach variable v € V has an
associated domain D,, which implicitly defines an extended domain D} =
D, U {u}, where u denotes the undefined value. Further, the total state
space Sy = D,, X...x D, and the partial state space Syt = D;"l X ... X D;"m
are implicitly defined. We write s[v] to denote the value of the variable v in a
state s.

e O is a set of operators of the form (pre, post,prv), where pre,post,prv € Sy
denote the pre-, post- and prevail-condition respectively. O is subject to the
following two restrictions: For every operator (pre, post, prv) € O,

(R1) for all v € V, if pre[v] # u, then pre[v] # post[v] # u,
(R2) for all v € V, post[v] = u or prv[v] = u.
o 50 €Syt and s, € Sy denote the initial state and goal state respectively.

Restriction R1 essentially says that a state variable can never be made undefined,
once made defined by some operator. Restriction R2 says that the prevail-condition
of an operator must never define a variable which is affected by the operator.

A variable v is defined in a state s iff s[v] # u. We write s C ¢ if the state s
is subsumed (or satisfied) by state ¢, i.e. if s[v] = u or s[v] = {[v]. We extend this
notion to whole states, defining

sCtiff forall v eV, s[v]=u or s[v]=t[v].

If o = (pre, post, prv) is a SAST operator, we write pre(o), post(o) and prv(o) to denote
pre, post and prv respectively.

Given a variable » and two values z,y € D,, s.t. either x = u or y = u the
operation U is defined as

_ x if y =u,

vy = { y if x=u

(note that ullu = u). The U operator is extended to states s.t. given two states s
and ¢, (s U t)[v] = s[v] U t[v] for all v € V.

Furthermore, an operator o affects a variable v € V iff post(o)[v] # u. Given a
set of operators O the restriction of O to v is written O[v] and is defined as the
set of all operators in O that affect v.

It should be noted that the SAST planning model allows not only the goal state
and the pre-conditions to be partial but also the initial state. This allows for a
rudimentary modeling of uncertain initial states. Most standard variants of STRIPS
do not allow for this.

81f it is possible to execute actions in parallel, the prevail-conditions are additionally required to hold
during the execution of an action (Backstrom 1988a). However, this is not relevant in our case.

COMPLEXITY RESULTS FOR SAST PLANNING 5

2.2. Plans

According to usual definitions in planning a total-order (or linear) plan is a se-
quence of actions and a partial-order (or non-linear) plan is a partially ordered set
of actions. The actions in a partial-order plan can be executed in any total order
consistent with the partial order of the plan, that is, a partial-order plan can be
viewed as a compact representation for a set of total-order plans. In this article we
will only consider total-order plans. Since several instances of the same operator are
uniquely determined by their positions in a total-order plan, we do not distinguish
between actions and operators in the following.

The restriction to total-order plans is reasonable since any planning problem is
solved by some total-order plan iff it is solved by some partial-order plan.? This
means that all our hardness results for total-order planning apply to partial-order
planning as well.

Definition 2. Given a set of variables V and a set of operators O over V., a plan
over O is a sequence & = (01, ...,0,) of operators s.t. o € O for 1 <k < mn.

The length of @ is denoted |a| and is defined as the number of operators in @,

i.e. |{(01,...,0,)] = n. Given a plan & = (oq,...,0,) the notation a/k denotes the
plan (o1,...,0x). Furthermore, each of the sequences () and a/k for all 1 <k < nis
called a prefix of a. -

Two plans @ = (01,...,0,) and 3 = (0},...,0)) can be concatenated, which
is written (@;3) and defined as (&;8) = (01,...,0m,0},...,0,,). Given a plan a

and an operator o, we write (@;0) and (o;&) as abbreviations for (a;(o)) and ({(0);@)
respectively. Furthermore, since the concatenation operator is obviously associative
we will usually omit grouping parentheses.

Definition 3. Given two states s,t € SyT, (s @ t) denotes that s is updated by t
which is defined s.t. for all v € V,

(s&)[i] = { tlv] if t[v] # u,

s[v] otherwise.

The function result gives the state resulting from executing a plan and is defined
recursively as

result(s,()) = s,

_ result(s,a) @ post(o) if (pre(o) U prv(o)) C result(s,),
result(s, (a;0)) = { 3 (o)) otlgerw(isi.lo) (o)

This definition of the result function ‘solves’ the frame problem by employing the
STRIPS assumption, which is sufficient in this restricted formalism.

An operator o is admissible in a state s iff (pre(o) U prv(o)) C s. A plan
a = (o01,...,0,) is admissible in a state s iff either a is empty or o is admissible in
result(s,a/(k—1)) for all 1 <k <mn.

9 Any partial-order plan can be trivially converted into a total-order plan by using topological sorting,
which takes low-order polynomial time. However, contrary to some claims in the literature, converting total-
order plans into partial-order plans subject to some useful minimization criterion is not as easy (Backstrom
1993).

10This is an arbitrary choice; since we are only interested in plans where all operators have their pre-
and prevail-conditions satisfied, it does not matter which result we specify in this case.

6 COMPUTATIONAL INTELLIGENCE

Given a set V of variables, a set O of variables over V and two states s, € Sy™,
we say that a plan @ over O is a plan from s to tiff

1. @ is admissible in s and
2. tC result(s,a).

Sometimes, we also say that such a plan solves the SAS™ instance (V, O, s,t). Fur-
ther, a plan @ from s to t is optimal if there exists no plan from s to ¢ containing
fewer operators. That is, we make the assumption that all operators have the same
cost, which is reasonable for hardness results; a hardness result will automatically
carry over to the case where operators may have different costs. In the only case
where we prove an upper bound for optimal plan generation, the SAST-PUS prob-
lem, the assumption does not matter either; there is no choice of actions in this
case.

We say that a plan a from some state s to some state ¢ passes a state s’ iff
result(s, 3) = &' for some possibly empty prefix of @. Further given some index v € V
and some value x € D} we say that a passes z iff result(s,3)[v] = z for some
possibly empty prefix of a.

2.3. An Example: The Cappucino Brewer

Below we will illustrate the SAST formalism using an example based on a simple
idea of how an automatic cappucino brewer could work. This example is chosen for
illustrative purpose only. The brewer (see Figure 1) consists of a steam container, a
coffee supply, a coffee filter and a milk steamer. In order to brew a cup of espresso
there must be fresh coffee in the filter and steam in the steam container. If the milk
in the milk steamer has been steamed to foam we might also top the espresso with
milk foam, thus getting a cappucino (ignoring sugar and cocoa powder). We assume
there is always coffee in the coffee supply and always milk or milk foam in the milk
steamer. The state variables and their domains are described in Table 1.

Steam
Containe o~

Milk
Steamer

Coffee
Filter

FiGure 1. A simplified cappucino brewer

COMPLEXITY RESULTS FOR SAST PLANNING 7

Index Description Domain
1 Steam Pressure {High, Low}
2 Coffee in filter ~ {Fresh,Used, None}
3 Cup content {Nothing, Espresso, Cappucino}
4 Milk steamed {True, False}

TABLE 1. State variables for the cappucino brewer

States are written as four-tuples of state variable values. For instance,
(H,F,u,F)

denotes the state where the steam pressure is high (i.e., sufficiently high for opera-
tion), there is fresh coffee in the filter, we do not know what is in the cup (or if there
is anything at all in it) and there is milk, not foam, in the milk steamer.

We further assume that the set of operators in Table 2 is available. We have
assumed that the operator HEAT-STEAM heats the steam (or water) in the steam
container until reaching operational pressure, whatever pressure (or water temper-
ature) it starts from. Similarly, the operator STEAM-MILK can be executed even if
there is already foam in the milk steamer. The operator FILL-FILTER dispenses fresh
coffee into the coffee filter and can be executed only if the filter is empty. To the
contrary, the operator EMPTY-FILTER will empty the coffee filter even if it was pre-
viously empty. The operator BREW-ESPRESSO brews espresso and dispenses it into
the cup subject to the condition that the steam pressure is sufficient and there is
fresh coffee in the filter. Finally, the operator TOP-wiTH-FOAM fills the cup with
milk foam.

action type pre post prv
HEAT-STEAM (uyu,u,u) (Hyu,u,u) (u,u,u,u)
FILL-FILTER (u,N,u,u) (u,Fu,u) (u,u,u,u)
EMPTY-FILTER (uyu,u,u) (u,N,u,u) (u,u,u,u)
BREW-COFFEE (u,F,N,u) (u,U,E,u) (H,u,u,u)
STEAM-MILK (uyu,u,u) (u,u,u, T) (H,u,u,u)
TOP-WITH-FOAM (u,u,E,u) (u,u,C,u) (u,u,u,T)
TABLE 2. Operators for the cappucino brewer
We assume the initial state is
So = <u7 N7 N7 U>,

that is, we know nothing about the steam pressure and we do not know if there is
milk or foam in the milk steamer. We do know, though, that both the coffee filter

8 COMPUTATIONAL INTELLIGENCE
and the cup are empty. To brew an espresso we set the goal
sg = (u,u, E,u)
and to make a cappucino we set the goal
s¢ = (u,u, C,u).

In both cases we only specify the content of the cup and leave all other state variables
undefined (‘don’t care’)—that is, both sg and s¢ are partial goal states.

There are several constraints that must be satisfied for a plan to be valid for
making a cup of cappucino. For instance, the filter must be filled with fresh coffee
before brewing and it must not be emptied until after brewing, if at all. The filter
may even be emptied any number of times without refilling it in between. Since we
do not initially know whether the steam pressure is high enough, we further have to
ensure this by heating the steam before brewing espresso. We must also ensure that
the coffee is brewed (released into the cup) before releasing the milk foam into the
cup, otherwise the result will not be a cappucino—but more like a café au lait. Both
the operator sequences

(FILL-FILTER, HEAT-STEAM, BREW-ESPRESSO, STEAM-MILK,
TOP-WITH-FOAM)

and

<HEAT—STEAM7 FILL-FILTER, EMPTY-FILTER, FILL-FILTER,
BREW-ESPRESSO, EMPTY-FILTER,STEAM-MILK,
EMPTY-FILTER, TOP—WITH—FOAM>

are valid plans for making a cup of cappucino (according to our modeling!!), while
the following plan is not valid,

(FILL-FILTER, HEAT-STEAM, BREW-ESPRESSO, EMPTY-FILTER,
TOP-WITH-FOAM)

For further examples of problem modeling in the SAS formalism appear in other
publications (Backstrém 1992a; Jonsson and Backstrém 1994b).

3. SAST PLANNING PROBLEMS

When analyzing the computational properties of planning, one is usually inter-
ested in the problem of generating a plan from the initial to the goal state. More
specifically, one may be interested in generating either an arbitrary or a minimal
plan. In the following, these problems are called plan generation and optimal
plan generation, respectively. Corresponding to these search problems, one can
define the decision problems of determining whether there exists a plan at all, the
plan existence problem, and the problem of deciding whether there exists a plan
of prespecified length, the bounded plan existence problem. Although decision

11 Our modeling does not take temporal or dynamic aspects into account, for instance.

COMPLEXITY RESULTS FOR SAST PLANNING 9

problems are usually tightly related to their corresponding search problems (Garey
and Johnson 1979), there are some subtleties to be considered. While it is clear that
a search problem is always as hard as the corresponding decision problem, it is not
guaranteed that the search problem is always as easy as the corresponding decision
problem. In particular, if the length of the solution cannot be guaranteed to be poly-
nomial, tractability of the decision problem does not imply that the search problem
can be solved in polynomial time, simply because writing down the solution may
take too much time. For this reason, we consider the search as well as the decision
problems in the following.

3.1. Subproblems of the SAST Planning Problems

In some of our previous publications (Backstrom and Klein 1991a 1991b) we
used a more restricted variant of the SAST formalism—the SAS formalism. There
are two differences between SAS and SAST. The first one is that both the initial
and goal states must be total for instances of the SAS planning problem. The second
is that an operator cannot change a state variable from undefined to some defined
value, only from one defined value to another defined value.

Definition 4. An instance II = (V, 0, sg,s,) of the SAST planning problem is an
instance of the SAS planning problem iff it satisfies the following two restrictions:

(R3) s0,8+ € Sy.
(R4) for all 0 € O, pre(o) = u iff post(o) = u.

We will also be interested in four other restrictions that we have previously stud-
ied (Béckstrom and Klein 1991a 1991b). An instance of the SAST (bounded) plan
existence or (optimal) plan generation problem is post-unique (P) iff no two distinct
operators can change the same state variable to the same value and the instance is
unary (U) iff each operator changes exactly one state variable. It is, further, binary
(B) iff all state variable domains are two-valued. Finally, the instance is single-valued
(S) iff any two operators that both require the same state variable to have some spe-
cific value during their respective occurrences must require the same defined value.
For example, single-valuedness prevents us from having two operators such that one
requires a certain room to be lit during its occurrence while the other requires the
same room to be dark.

Definition 5. Let 11 = (V, 0, sq,84) be an instance of a SAST planning problem.
For all v € V, the domain D, is

(B) binary iff |D,| = 2.
The set O is

(P) post-unique iff for each v € V and = € D, there is at most one o € O s.t.
post(o)[v] =

(U) unary iff for all 0 € O, post(o)[v] # u for exactly one v € V;

(S) single-valued iff there exist no two operators 0,0’ € O and v € V s.t. prv(o)[v] #

u, prv(o')[v] # u and prv(o)[v] # prv(o’)[v].

These definitions are extended to I s.t. Il is binary iff D, is binary for all v € V', and 11
is post-unique, unary and single-valued iff O is post-unique, unary and single-valued
respectively.

10 COMPUTATIONAL INTELLIGENCE

These four restrictions were identified by studying a test example in automatic
control (the tunnel problem (Béckstrom 1992a, pages 16-17)), thus complementing
the usual problems from the Al world. For a somewhat more elaborate discussion of
the restrictions, see Béckstrém and Klein (1991a) or Béackstrém (1992a).

The above restrictions, R3, R4, P, U, B and S, induce a space of subproblems
of the SAST problems. We name these subproblems systematically as follows. The
SAST problems restricted to instances satisfying R3 and R4 are called the SAS
problems. The SAS or SAST problems restricted to instances that satisfy some
subset of the restrictions P, U, B and S is named by appending the corresponding
letters to the name. For example, the SAST-PS problems are restricted to instances
that are post-unique and single-valued while the SAS-UBS problems are restricted
to instances that satisfy the restrictions R3 and R4 and which are also unary, binary
and single-valued. For example, the cappucino brewer in the previous section is an
instance of the SAST-PS problem, while not satisfying any further restrictions (i.e.
it is not an instance of either the SAS-PS, SAST-PBS or SAST-PUS problem!?).

For single-valued operator sets, there is obviously only one defined value in each
variable domain that can appear in the prevail-conditions of operators. In order
to be able to refer to these values collectively we introduce the term global prevail
condition.

Definition 6. Given a single-valued set O of operators, we define the global prevail
condition of O as prv(Q) = U,coprv(o). Similarly, given a plan & over O we define

prv(a) = Uoesprv(o).

For instance, the global prevail-condition of the operator set for the cappucino
brewer is the partial state (H,u,u, T).

3.2. Overview of Complexity Results

We already know (Backstrom 1992a 1992b) that we can generate optimal (in
the sense of minimal length) plans for SAST-PUS instances in polynomial time.
Since this problem is a generalization of the previously studied, tractable SAS-
PUBS (Béackstrém and Klein 1991b) and SAS-PUS (Béackstrém and Klein 1991a)
optimal plan generation problems, it is interesting to ask whether we can generalize
even further, staying tractable. Unfortunately, it turns out that we cannot remove
any of the three restrictions (P, U and S) and still generate optimal plans tractably.

Figure 2 summarizes the complexity results for optimal plan generation using a
lattice defined by the possible combinations of the restrictions in Definition 5. It turns
out that all complexity results presented in this article hold irrespectively of whether
we are studying SAS instances or SAST instances. Hence, we do not distinguish the
SAS cases from the SAST cases in the problem lattices.

When removing the P restriction from the SAST-PUS problem, optimal plan
generation becomes NP-equivalent!'®, as follows by Theorem 7. Removing any other

12 A slightly simplified version does fit in the SAST-PUS problem, though, (Backstrom 1992a; Backstrom
1992b).

13For the intractability results we distinguish between those problems that are inherently intractable, 7. ¢.
can be proven to take exponential time, and those which are NP-equivalent, :.e. intractable unless P = N P.
We cannot use the term NP-complete in this context since we consider the search problem (generating a
solution) and not the decision problem (whether a solution exists). A search problem is NP-easy if it can be
Turing reduced to some NP-complete problem, NP-hard if some NP-complete problem can be Turing reduced
to it and NP-equivalent if it is both NP-easy and NP-hard. Loosely speaking, NP-equivalence is to search

COMPLEXITY RESULTS FOR SAST PLANNING 11

Unrestricted

Provably
Intractable

~
PB us

Exponential p|)g PUS >
solutions N NP-equivalent
solutions

PUBS

FiGURE 2. Complexity of optimal plan generation for SAS/SAS™ and restrictions.

restriction leads to the situation that the solution cannot be bounded polynomially
in the size of the problem instance, i.e., the plan to be generated can have a length
exponential in the size of the input (see Theorems 2 and 3). Here we encounter what
Garey and Johnson called the “second source of intractability” (Garey and Johnson
1979, p. 11), namely, that a problem cannot be solved in polynomial time simply
because writing down the solution can take exponential time. Instead of giving up at
this point, one may hope to achieve a weak tractability result of the form that plans of
“reasonable” size (if they exist) can be generated in time polynomial in the size of the
solution. More formally, one wants to generate optimal plans of a prespecified length
k in time polynomial in k, i.e., one aims for pseudo-polynomial algorithms (Garey
and Johnson 1979). Unfortunately, however, even such a weak form of tractability
cannot be achieved, as follows from our results concerning the complexity of the
bounded plan existence problem, which are summarized in Figure 3.

Tractability of the SAST-PUS bounded plan existence problem follows from the
above cited results (Béckstrom 1992a 1992b). NP-completeness of the SAS-UBS up
to SAST-US is demonstrated by Theorem 7, and PSPACE-completeness of SAS-UB

problems what NP-completeness is to decision problems. See Garey and Johnson (1979) or Johnson (1990)
for formal details.

12 COMPUTATIONAL INTELLIGENCE

Unrestricted

PB PU PS UB BS US
. ‘ I ‘
stongly g PBS PU UBS
NP-hard NP-complete
P
PUBS

FiGURE 3. Complexity of bounded plan existence for SAS/SAS™T and restrictions.

and SAS-BS (and all problems above in the lattice) is demonstrated by Corollary 2.
Finally, Corollary 3 demonstrates that SAS-PUB and SAS-PBS bounded plan ex-
istence is NP-hard in the strong sense (Garey and Johnson 1979), i.e., even if the
runtime is measured in the magnitude of the length parameter (and not in its rep-
resentation), the problem is NP-hard. This implies that we cannot hope to find a
pseudo-polynomial algorithm for the bounded existence problem for the SAS-PUB
and SAS-PBS restrictions.

While the SAST-PUS problem was found to be the maximal tractable problem
for optimal plan generation (wrt. the restrictions in Definition 5), this is no longer the
case if we consider also non-optimal solutions. It turns out that we can find a solution
in polynomial time even if we remove the P restriction, i.e., if we have alternative ways
of achieving an effect (see Section 5). On the other hand, the intractability results
concerning the length of the solution for SAS-PUB and SAS-PBS (Corollary 1) hold,
of course, also for non-optimal plan generation, so SAST-US is the unique maximal
tractable plan generation problem wrt. the P, U, B and S restrictions. Figure 4
summarizes the complexity results for the plan generation problems.

Considering the corresponding decision problem, the plan existence problem, the
tractability results carry over, of course. Further all the PSPACE-completeness re-

COMPLEXITY RESULTS FOR SAST PLANNING 13

Unrestricted

Provably
Intractable

N Tractable

PB Us

Exponential pjg
solutions

Polynomial
solutions

PUBS

FIGURE 4. Complexity of plan generation for SAS/SAS* and restrictions.

sults for bounded plan existence carry over to plan existence. However, we were not
able to determine the complexity for the restrictions between SAS-PBS/SAS-PUB
and SAST-P. On one hand, the post-uniqueness restriction is very strong and seems
to preclude any attempt to reduce an NP-hard problem to these problems. On the
other hand, the fact that the plans can have exponential length seems to preclude
a polynomial algorithm or even a nondeterministic polynomial algorithm right from
the beginning. It may be the case, however, that it is possible to find proofs for
the existence of a plan that are considerably shorter than the plan itself, proofs that
may even be generated in polynomial time. However, even if we would be able to
decide these problems in polynomial time, this would not help very much in practice
because we could not guarantee that a plan is actually generated in polynomial time
since the generated plan may have exponential length. Nevertheless, the determi-
nation of the complexity of the SAST-PUS and SAST-PBS existence problems is an
interesting open problem, and an answer might point out the direction for finding
new restrictions, which may allow for polynomial time generation algorithms. The
complexity results for plan existence are summarized in Figure 5.

14 COMPUTATIONAL INTELLIGENCE

Unrestricted

Open

PSPACE-complete
problems

Tractable

PUBS

FiGURE 5. Complexity of plan existence for SAS/SAS™ and restrictions. Open problems are
marked by a grey area.

4. COMPUTATIONAL COMPLEXITY OF RESTRICTED SAS*
PLANNING PROBLEMS

4.1. Plan Length

First, we show that minimal plans for SAST-US instances have only polynomial
length. For this purpose, we introduce the notion of a v-chain, which is a special
type of operator sequence we will need in some of the proofs below. Intuitively, a
v-chain for some variable v € V is a sequence of operators all affecting v and having
the property that they form an admissible plan wrt. variable v—but not necessarily
if also other variables are taken into account.

Definition 7. Given a set V of variables, a set O of operators over V, two states
s,t € SyT and a variable v € V, a plan @ = (0y,...,0,) over O is a v-chain over O
from s to ¢ iff either

1. the following conditions hold:
(a) o affects v for 1 <k < n,
(b) pre(or)[v] C s[v],

(¢) t[v] C post(o,)v],

COMPLEXITY RESULTS FOR SAST PLANNING 15
(d) pre(og)[v] E post(og—1) for 1 <k <n
or
2. ais the empty v-chain () and #[v] C s[v].
A v-chain & = (0q,...,0,) is loop-free iff post(oy)[v] # post(o;)[v] for k # .

Based on this definition, we can prove that minimal SAST-US plans are of a
certain form. For each variable v, the corresponding operators in the minimal plan
form a wv-chainfrom the initial value to the final value of ». This v-chainis further
either loop-free or the concatenation of two loop-free v-chains, passing the global
prevail-condition for v in the latter case.

Lemma 1. Given an instance Il = (V, 0, sg, s,) of the SAST-US (optimal) plan
generation problem, if @ is a minimal solution to II, then for each v € V,

1. if prv(a)[v] = u, then a[v] is a loop-free v-chain from sq to s,
2. if prv(@)[v] # u, then afv] is of the form (F;7) where 5 is a loop-free v-chain from
]

Proof. TLet II = (V, 0, s, ;) be an instance of the SAST-US (optimal) plan gen-
eration problem and suppose @ = (01,...,04) is a minimal solution to II. Let
a[v] = (04,...,0;,). For each v € V, there are three cases, which we prove sepa-
rately.

Case 1: prv(a)[v] = u. Suppose a[v]is not loop-free, i.e. post(o;,)[v] = post(o;,)[v]
for some 1 < k <1 < n. Define 3 as a, but lacking the operators {o;,,,,...,0;} of

a[v]. Obviously, g is also a plan from sg to s, since prv(a)[v] = u and O is unary
and, thus, prv(o)[v] C s[v] for all 0 € @ and all s € Sy™. Furthermore, |8] < |a],
which contradicts that & is minimal. Hence, a[v] must be loop-free.

Case 2: prv(a)[v] # u and sol[v] # prv(a@)[v]. Suppose post(o;,)[v] = post(o;,)[v] =
prv(a)[v] for some 1 < k < [< n. Wlg. assume post(o;)[v] # prv(a)[v] for iy < j < 4.
Obviously prv(o;)[v] = u for all o; in @ s.t. ix41 < j < ¢; because of single-valuedness.
Hence, prv(o;)[v] C result(sg, a/ig)[v] for all o; s.t. i < j < tj41. Define g as a,
but lacking the operators {o;,,,,...,0;} of a[v]. Obviously, 3 is also a plan from
8o to sy. Furthermore, |#| < |a|, which contradicts that @ is minimal and, hence,
post(o;,)[v] = post(o;,)[v] = prv(a)[v] implies k = [. Let k be the unique [s.t.
post(o;,)[v] = prv(a)[v]. The proofs that (o;,...,0;) and (.,0;,) are loop-
free are analogous to the proof of case 1 above.

Case 3: prv(a@)[v] # u and sg[v] = prv(@)[v]. Obviously, the empty sequence () is
a loop-free v-chain from sg to prv(a)[v]. The proof that a[v] is a loop-free v-chain
from prv(a@)[v] to s, is analogous to the proof of case 2 above.

Since either of the cases above holds for each v € V, we conclude that any minimal
solution to 1l satisfies the theorem. [|

Oipirs -

It is an immediate consequence of this theorem that the minimal solutions to
instances of the SAST-US (optimal) plan generation problem are of polynomial size.

Theorem 1. Any minimal solution to an instance Il = (V, O, s, s} of the SAST-US
(optimal) plan generation problem is of length O(3",cy |Dyl).

16 COMPUTATIONAL INTELLIGENCE

Proof. Immediate from Lemma 1 since for all » € V., any loop-free v-chain is of size

O(|Du))- u

This result together with the two following theorems, which show that SAS-PUB
and SAS-PBS instances can lead to exponential plans, establishes the validness of

the dividing line between polynomially and exponentially sized solutions in Figures 2
and 4.

Theorem 2. For each m > 0 there is some solvable instance II of the SAS-PUB
(optimal) plan generation problem s.t. Il is of size |II| = O(p(m)) for some polynomial
p and all minimal solutions to II are of length ©(2™).

Proof. Let m > 0. Define an instance 1l = (V, O, sq, s,) of the SAS-PUB (optimal)
plan generation problem s.t.

o V= {vlv"'vvm};
e D,=40,1} for all v € V;
o O={of,07,...,0t 07} where for | <k <mand1<i<m,
_ 0 ifi=k,
pre(oz)[m] = post(o})[vi] = { u otherwise,
_ 1 ifi=k,
post(oy)[v] = pre(o;)[v] = { u otherwise,
0 ifi<k-1,
prv(of)[v;] = prv(o;)[vi] = 1 ifi=k-1,
u otherwise;

o so[v;] =0 for 1 <i<m;

L1 ife=m,
o sfui]= 0 otherwise.

Obviously II is of size |I[| = O(m?), which satisfies the first claim in the theorem.
Define the operator sequences 072' and a; recursively s.t. for 1 < k < m,

dil_ = <01I_>7
0y = <01_>7
072 = 072_1%02%07;?_1»
O = A0y

It is obvious that the plan a; is the unique, minimal solution to II. Furthermore,

al is a Hamilton path in the state space from sg to s, so |af| = 2™ — 1 and the
theorem follows. [|

If we interpret the states as binary numbers in the proof above, the states are
‘visited” in the same order as they would be enumerated by a Gray code counter.

Theorem 3. For each m > 0 there is some solvable instance 1I of the SAS-PBS
(optimal) plan generation problem s.t. Il is of size |II| = O(p(m)) for some polynomial
p and all minimal solutions to II are of length ©(2™).

COMPLEXITY RESULTS FOR SAST PLANNING 17

Proof. Let Il = (V, O, sq, s,) be an instance of the SAS-PUB (optimal) plan gener-
ation problem s.t. |V| = m. Wlg. assume D, = {0, 1} for all v € V. First define the
inverse T for a value « s.t. for all v € V and z € D,,

0 ifa=1,
T=+< 1 ifaz=0,
u otherwise.

Then define the instance II' = (V', ', 1y, t,) of the SAS-PBS plan generation problem
s.t.

o V' = {U07U1|7J € V}7
e D, ={0,1} for all v € V;

e (O contains one operator o' for each o € O s.t. for all v € V,

pre(o')[vo] = pre(o)[v],
pre(o')[vi] = pre(o)[v],
post(o’)[vo] = post(o)[v],
post(o’)[vl] = post(o).[v],
(@)l) = {4 bl

u
1 if prv(o)[v] =1,
u otherwise;

o forallveV,

tolvo] = so[v];
tolri] = sofv],
tlvo] = si[v],
tv] = si[v].

IT" is obviously an instance of the SAS-PBS problem, so it remains to prove that
II' is solvable and that its minimal solutions are of exponential size in the size of
II'. We prove this by proving that there is a length-preserving bijection between the
solutions for II” and the solutions for II.

We first note that for each v € V either

to[?]o] =1 and to[?]l] =0

or
to[?]o] =0 and to[?]l] =1.

Furthermore, all operators in OO’ are defined such that this holds also for any state
resulting from executing a plan over (' in t5. We will prove that there is a plan @
over O that solves II iff there is a plan § over OO’ that solves II'.

=-: Suppose the plan & = (o1,...,0,) over O solves 1I, i.e., @ is admissible in s
and result(sg, @) = s,. Let g = (0],...,0!) be a plan over O’ s.t. for 1 < k < n, o4
and o), are corresponding operators, according to the reduction. It is obvious that
for 1<k <nandoveV,

result(to, 3/(k — 1))[vo] = result(so, a/(k — 1))[v]

18 COMPUTATIONAL INTELLIGENCE

and

result(to, 3/(k — 1))[v1] = result(so,a/(k — 1))[v],

prv(o},) C result(ty, 3/(k — 1)).

Hence, 3 is admissible in ty and result(ty, 3) = t4, i.e., 3 solves II'.

=: Suppose the plan 3 = (o},...,0l) over O solves II, i.e., # is admissible in

*rUn

to and result(tg, 5) = tx. Obviously, for 1 <k <n and v €V,

result(so, a/(k — 1))[v] = result(to, 3/(k — 1))[v1] = result(to, 3/(k — 1))[vo]

prv(og) C result(sg,a/(k — 1)) iff prv(o},) C result(to, 3/(k —1)).

Hence, a is admissible in sg and result(sg, &) = sy, i.e., & solves II.

It follows that there is a length preserving bijection between the solutions to II’
and the solutions to II so it further follows from Theorem 2 that the minimal plans
solving I’ are of length 2™ — 1. [|

The reduction in the above proof actually satisfies the stronger requirements for
three-stage polynomial reductions (Backstrom 1992a, Chapter 5) and exact structure-
preserving reductions (Béckstrém 1994a).

An immediate consequence of the previous two theorems is that both optimal and
non-optimal SAST-PUB and SAST-PBS plan generation is provably intractable since
we might have to output a solution which is exponentially larger than the problem
instance itself.

Corollary 1. The time complexity of SAS-PUB and SAS-PBS (optimal) plan gen-
eration has a lower bound of Q(2/V]).

Some care should be taken in interpreting these results, though. What we see
here is the second cause for intractability as defined by Garey and Johnson (1979,
p. 11), namely, that minimal solutions may have exponential size. Since it seems to
be unrealistic to execute such plans in reasonable time, they are of little interest from
a practical point of view (Backstrom 1992a, pp. 142-147).

It may very well be the case that it is possible to find a pseudo-polynomial
algorithm or to devise polynomial decision algorithms, i.e., it may be possible to find
a proof of existence in polynomial time. Nevertheless, the results indicate that it is
provably impossible to generate plans in polynomial time for instances of SAS-PUS
and SAS-PBS instances.

4.2. PSPACE-complete Problems

First of all, we prove an upper bound for SAST plan existence.

Theorem 4. SAST (bounded) plan existence is in PSPACE.

Proof. We can guess a plan one operator at a time and verify it step by step using
only polynomial space. Hence, the problem isin NPSPACE and thus also in PSPACE.
This also holds if an upper bound on the plan length is specified. |

COMPLEXITY RESULTS FOR SAST PLANNING 19

Bylander (1991) analyzed the complexity of plan existence in a variant of propo-
sitional STRIPS we will refer to as the PSN (Propositional STRIPS with Negative
Goals) formalism. Translated to our terminology, PSN is a notational variant of
SAST-B with a total initial state. We have earlier shown (Biackstrom 1992a 1992b
1994a) that SAST (bounded) plan existence is equivalent under polynomial reduc-
tion to the (bounded) plan existence problem for PSN and two other variants of
the propositional STRIPS and propositional TWEAK formalisms. Since Bylander
has proven plan existence PSPACE-complete for unrestricted PSN (Bylander 1991),
PSPACE-completeness for unrestricted SAST (bounded) plan existence follows.

Here we will prove the stronger result that even SAS-BS plan existence is PSPACE-
hard. This result is very similar to Bylander’s Corollary 3.2 (1994, p. 180), which
states that plan existence for PSN, where all operators have at most two positive
pre-conditions and two arbitrary post-conditions, is PSPACE-complete. However,
SAS-BS is not directly comparable with PSN. SAS-BS is on one hand more liberal
since the single-valuedness applies only to unchanged state variables. On the other
hand, SAS-BS is more restrictive because we require that the goal state is total and
that any state variable appearing in a post-condition has a defined value prior to the
execution, while a PSN goal state can be partial and values may be changed from

undefined to defined.
Theorem 5. SAS-BS (bounded) plan existence is PSPACE-hard.

Proof. Analyzing the proof of Bylander’s Theorem 3.1 (1994, p. 179-180) stating
that PSN plan existence is PSPACE-hard, it turns out that the claim can be sharp-
ened to the statement that SAST-BS plan exvistence with each operator having at
most 2 pre-conditions, a total initial state and a goal state consisting of only one
variable/value pair that is not used in any precondition is PSPACE-hard.

However, it is straightforward to reduce this problem to a SAS-BS plan existence
problem. Assume the state variables p; and the special goal state variable ¢, which
all have the domain {0,1}. The partial goal state requires g to be 1.

Now we construct a SAS-BS instance by using the same initial state, a total goal
state with ¢ = 1, p; = 0, and the set of operators of the original instance extended
by operators that set all variables p; = 0 and have g = 1 as their prevail-condition.
The resulting operator set does not necessarily satisfy the SAS restriction R4 because
some operators may change an undefined value to a defined one. However, since the
number of pre-conditions is bounded by a constant, it is straightforward to transform
the operator set to one that satisfies R4.

It is obvious that there exists a plan for the new SAS-BS instance if, and only
if, there exists a plan for the original instance. Furthermore, the reduction is obvi-
ously polynomial. Hence, SAS-BS plan existence is PSPACE-hard. Further, because
bounded existence is at least as hard as existence, also the SAS-BS bounded existence

problem is PSPACE-hard. |

We can further prove that also bounded and unbounded SAS-UB plan existence
is PSPACE-hard, a result similar to Bylander’s Theorem 3.3 (1994, p. 180). Again,
the only difference to our result is that we require a total goal state.

Theorem 6. Bounded and unbounded SAS-UB plan existence is PSPACE-hard.

Proof sketch. Analyzing the proof of Bylander’s Theorem 3.3, it becomes obvious
that an analogous reduction can be applied to the proof of our Theorem 5. |

20 COMPUTATIONAL INTELLIGENCE

The following corollary is immediate from the above theorems and definitions of
the various problems.

Corollary 2. Both bounded and unbounded plan existence are PSPACE-complete
for SAST, SAS-UB, SAS-BS and all problems ordered between these in the lattice.

4.3. NP-hard Bounded Existence Problems

Bylander (1994, Theorem 4.2) showed that PSN bounded existence is NP-complete
if all operators have only positive pre-conditions and one post-condition. From that
it follows immediately that SAST-UBS bounded plan existence is NP-hard. In order
to prove the more restricted bounded existence problem SAS-UBS to be NP-hard,
we will use a reduction from the minimum cover problem (Garey and Johnson 1979,
page 222), which is defined as follows.

Definition 8. An instance of the minimum cover problem is given by a set X =
{z1,...,xn},aset C ={Cq,...,C,} of subsets of X and an integer K. The question
is whether there exist a cover for X, i.e., a subcollection €' C C s.t. Ug, ecr Ok = X
and |C"] < K.

Lemma 2. Bounded plan existence for SAS-UBS is NP-hard.

Proof. Proof by reduction from minimum cover. Let X = {xy,...,2,,} be a set,
let C = {C,...,C,} be a set of subsets of X and let K be an integer. Define a
SAS-UBS instance Il = (V, O, sg, s4) s.t.

V=Aap |1 <k<miU{er|1 <k <n};
D, ={0,1} for all v € V;

° (’):{0:,0;|1§kgn}u{okﬂlgkgn and z; € Ci}, where for 1 < k <n
and v € V,

- 0 if v = ¢y,
pre(ol ol = post(o)le] = { 0 DSk
_ 1 if v =¢p,
post(of)[v] = pre(o;)[v] = { u otherwiske,

prv(of)[v] = prv(o;)[v] = u

and for 1 <k <n,x;€ Cpand v eV,

0 if v= Ty,
pre(og)[v] = { u otherwise,
1 if v=u,
post(o)[v] = { u otherwise,
1 if v =¢p,
prv(og)[v] = { u otherwise:

Soler] = sifeg] = 0 for 1 < k < n,
solzg] = 0 and s, [ag] = 1 for 1 <k < m.

It is obvious that X has a cover C’ such that |C'| < K iff there is a plan of size
|X| 4+ 2K or less solving 1I. [|

COMPLEXITY RESULTS FOR SAST PLANNING 21

We can then prove that bounded plan existence is NP-complete for SAS-UBS
and SAST-US and all problems ‘between’ these in the lattice.

Theorem 7. Bounded plan existence is NP-complete for SAS-UBS, SAS-US, SAS*-
UBS and SAST-US.

Proof. NP-hardness for all four problems follows from Lemma 2, so it remains to
prove that bounded plan existence for SAST-US is in NP. We know from Theorem 1
that minimal solutions are of polynomial size for all four problems. Furthermore,
since all operators are unconditional we can validate a proposed solution in polyno-
mial time. It follows that all four problems are NP-complete. |

We further prove strong NP-hardness for SAS-PUB bounded existence by re-
duction from the NP-complete clique problem (Garey and Johnson 1979, page 194),
which is defined as follows.

Definition 9. An instance of the clique problem is given by a graph G = (V, F') and
a positive integer k < |V|. The question is: Does (¢ contain a clique (i.e., a complete
subgraph) of size k.

Theorem 8. Bounded SAS-PUB plan existence is NP-hard in the strong sense.

Proof. Proof by reduction from the clique problem. Given an instance of the clique
problem consisting of a graph G' = (V, V), where V = {vy,...,v,} and a positive
integer k < n, we construct an instance Il = (V, O, s, s, p) of the bounded SAS-PUB
existence problem, where p = 8n — 2k .

Let V = {a;,b;,¢,d;,v;]1 <i<n} be the state variables, each with domain
{0,1}. The initial state so and the goal state s, are defined s.t. for each 1 < ¢ < n,

sola;] = 0 Sela;] = 1
solb;] = 0 selbi] = 1
sole;] = 0 Selei] = 1
soldi] = 0 se[di] = 1
solvs] = 0O Sefvs] = 0

Further define
/ / / .
0= {OaivOmecm0ci70di70di70w701}i | 1< < n}v

with pre-, post- and prevail-conditions as specified in Table 3.

Now we claim that G contains a clique of size k iff 1I has a solution of size p or
shorter.

“=7 Assume G contains a clique C' C V of size k. Construct a plan with four
phases Py, Py, Ps and Py. For every node v; € V —(include the following subsequence
i Py

ce s 0g, 0g, e
For every node »; € C include
U ¥) ST
in P;. Note that regardless of how these subsequences are put together, the resulting

sequence is always executable and leads to some state s s.t. s[a;] = 1 forall v; € V-C
and s[b;] = 1 for all v; € C.

22 COMPUTATIONAL INTELLIGENCE

op. Pre-cond. Post-cond. Prevail-cond.

04, pre(a;) =0 post(a;) =1 prv(¢;) =1 and prv(d;) =0

op, pre(b;) =0 post(b;) =1 prv(c;) =0 and prv(d;) =1

o, pre(¢;) =0 post(¢;) =1

o, pre(c;) =1 post(c;) =0 prv(v) =1

o4, pre(d;)=0 post(d;) =1

oy, pre(d;) =1 post(d;) =0 prv(w;) =1 forall (v;,w;) ¢ F
oy, pre(v;) =0 post(v;) =1

o, pre(v;) =1 post(v;) =0

TABLE 3. Operators used in reduction from clique to bounded SAS-PUB plan existence. All
variables not explicitly stated to have a specific value in a condition are assumed undefined there.

Phase P, contains the operators o,, for all nodes »; € V' — (' in any order.
Phase P53 contains for each node v; € V — (' the subsequence

/
00,y Oy Obis Oy oo

and for each node v; € C
/
o045 0, 0a;5 Oy - - -

These subsequences are put together in any order.

The operator of type ol in the first kind of subsequence is executable, since the
pre-condition prv[¢;] = 1is produced in phase Py and the prevail-condition prv[v;] = 1
is produced in phase P,. The remaining operators are all obviously executable.

The operator of type Oéli in the second kind of sequences is executable since the
variables w; that are mentioned in the prevail-condition cannot belong to the set
(' because of the definition of the operator. Assuming otherwise would lead to the
conclusion that ' is not a clique, contrary to our assumption. Hence, all defined w;
variables in the prevail-condition of Oili must belong to the set V — (. The remaining
sequence is executable because of the settings in P, and Ps.

Summarizing, after phase P3 we have reached a state s s.t.

sla;] = s[b;] = s[e;] = s[d;] = 1.

Finally, in phase Py, for every node v; € V —C', an operator of type o;, is executed
in order to reset v;.

Analyzing the constructed plan shows that it indeed leads from the initial state
so to the goal state s,. Further, P is of length 2n, P, is of length n — &k, P5 is of
length 4n, and phase Py is of length n — k. Hence, the overall length p is 8n — 2k.

“<" Assume there exists a plan of length 8n — 2k or less. Let ¢ < 8n — 2k denote
the length of the plan.

Note that for every node v; € V one of the following subsequences must be present
in the plan:

P AN X HR | S NI

COMPLEXITY RESULTS FOR SAST PLANNING 23

or

/
cees Oy ey Obyy ey Oy ey Oy e ny Ogisee oy Oy

It may be the case that o ,o., pairs or oéi,odi pairs appear more than once. In this
case, however, it is easy to see that there exists a plan of length ¢’ < ¢ that contains
only one such pair for every node v; and that also solves 1II.

Furthermore, in order to guarantee the executability of the of. and Oili operators
and in order to guarantee that finally v; = 0 for all »; € V, the plan must contain

subsequences of the form

...,OUJ,...,OLJ,...
for all v; € W, where W C V. Again, it may be the case that for one node v; there is
more than one such pair. However, in this case there exists a plan of length ¢” < ¢’
that contains only one such pair for each v; € W.

Assume that vy € V — W. This implies that we have the subsequence
/
ey Oy ey Obpy ey O ey Ocyse s Ops e ey Oy v s

in the plan. The prevail-condition of oilk requires that for some U C V all variables
v € U have the value 1. By construction of the operators, U/ contains only nodes
that are not connected to vg. Hence, since Oélk is executable, v must be connected to
all nodes V' — W. Since vy was an arbitrary node of V' — W, this holds for all nodes
inV —W,s0oV — W must be a clique.

Note that the plan we derived from the original plan has a length of ¢’ = 6n +
2|W| = 8n — 2|V — W]|. Hence, we have

8n—2|V-W|=¢q"<q¢ <q<8n—2Fk,

or

IV —W|> k.

Hence, the existence of a plan of length ¢ < 8n — 2k implies the existence of a clique
in GG of size k.

Finally, since the length parameter ¢ is polynomially bounded by the problem
size, the transformation implies strong NP-hardness. |

We can, finally, prove that bounded SAS-PBS plan existence is NP-hard by re-
duction from the SAS-PUB problem, which we have just proven NP-complete.

Theorem 9. Bounded SAS-PBS plan existence is NP-hard in the strong sense.

Proof. Proof by reduction from bounded SAS-PUB plan existence. Let II =
(V, 0, s0, 54, K) be an instance of the bounded SAS-PUB plan existence problem.
Define the corresponding instance II' = (V', O, 1y, 1, K) of the SAS-PBS bounded
plan existence problem as follows. Let

o V' ={v,|lveV and z € D,},
e D, ={0,1} forall v’ €V

24 COMPUTATIONAL INTELLIGENCE

Further define OO s.t. for each operator o € O, there is a corresponding operator
o' € O s.t. for all v, € V',

if pre(o)[v] = z,
if u# pre(o)[v] #
otherwise ;

if post(o)[v] = =,
if u # post(o)[v] #

otherwise ;

if prv(o)[v] =z,

otherwise .

pre(o)e,] = {

post(o')[v:] = {

C—= co~ c o

pre(o] = {

Finally, define ¢y and ¢, s.t. for all v, € V',

B 1 if so[v] = a,
tolva] = { 0 otherwise;
B 1 if s v] = a,
tlva] = { 0 otherwise;
It is obvious that a plan (oy,...,0,) over O solves II iff the plan (o}, ..., 0l) over
O solves 1I'. [|

The following corollary is immediate from the above theorem.

Corollary 3. Bounded plan existence is NP-hard in the strong sense for SAS-PUB,
SAS-PBS and all problems above these in the lattice.

5. A POLYNOMIAL ALGORITHM FOR THE SAS*-US
GENERATION PROBLEM

In this section we will prove that SAST-US plan generation is tractable by pre-
senting a polynomial-time algorithm for this problem and proving it correct. The
algorithm is a generalization of Bylander’s (1994, p. 183-185) algorithm for deciding
PSN plan existence with all operators restricted to positive pre-conditions and only
one post-condition.

5.1. Algorithm

We will prove below that the following algorithm solves the non-optimal SAST-US
plan generation problem in polynomial time.

Algorithm 1.

1 AchievePrevail(s, N)
2 a<—)

3 t«s

4 loop

5 forvc V- N do

0~

10
11
12
13
14
15

OO0~ Tk Wh —

OO0 ~1 3O UL Wk~

10
11
12

COMPLEXITY RESULTS FOR SAST PLANNING 25

Create the directed graph G = (D}, 0)
Mark s[v] and u
while there is some o € O s.t. pre(o)[v] is marked, post(o)[v] unmarked and
prv(o) C ¢t do
Mark post(o)[v] in G
Insert arc labeled o from pre(o)[v] to post(o)[v] in G
if there is a path from s[v] to prv[v] in ¢ then
{[o] — rv[o]
B — (the labels along the path)
a — (a;p)
until ¢ not changed
return (¢, a)

AchieveGoal(s,t)
&)
s —1
loop
for veV do
if {[v] #u then
Create the directed graph G = (D}, 0)
Mark ¢[v] in G
while there is some o € O s.t. pre(o)[v] is unmarked, post(o)[v] marked
and prv(o) C ¢ do
Mark pre(o)[v] in G
Insert arc labeled o from pre(o)[v] to post(o)[v] in G
if {{v] = u then
s'[v] — s[v]
elsif there is a path from s[v] to ¢{[v] then
s'[v] — s[v]

B — (the labels along the path)
a — (f;a)

until s’ not changed

return (s, a)

Plan(sg, s,)
N—10
loop
(s,a) — AchievePrevail(sg, N)
(t,B) — AchieveGoal(s, s,)
iftC s then
return (a;5)
elsif there is some v € N s.t. t[v] £ s[v] then
reject
else
N — NU{veV|tw] L s[v]}

end loop

On an abstract level, the algorithm can be explained as follows. Plan repeatedly

performs a combined forward and backward search, implemented by AchievePrevail
and AchieveGoal respectively. If these searches meet in some common state, then a

26 COMPUTATIONAL INTELLIGENCE

solution is found and returned. Otherwise, the difference between the states reached
by the forward and backward searches respectively is analyzed. If it can be deter-
mined from this analysis that no solution exists, then Plan rejects, otherwise the
analysis is used to guide and ‘focus’ further searches. Before presenting the formal
correctness proofs for the algorithm, we offer a somewhat more detailed explanation
of how it works.

The function AchievePrevail takes as arguments a state s and a variable set N.
It returns a state ¢t and a plan @ from s to t such that for all v either ¢[v] = s[v] or
s[v] = prv(O)[v]. More precisely, AchievePrevail maximizes the number of variables
v s.t. s[v] = prv(O)[v], subject to the constraints that ¢[v'] = s[v'] for all »' € N and
that there must be a plan from s to ¢ (the plan & returned). AchievePrevail uses an
iterated greedy strategy to achieve ¢[v] = prv(O)[v] for successively more and more
variables v ¢ N. The outer loop is repeated until ¢ is not changed anymore and the
body of this loop works as follows. For each v ¢ N, AchievePrevail builds a DAG
with the domain D} as vertex set and with an, initially empty, set of labeled arcs.
Achieve Prevail then marks the vertices s[v] and u and adds arcs incrementally in the
following way. If there is an operator o such that pre(o)[v] is marked but post(o)[v] is
not marked and, further, prv(o) C ¢, then an arc labeled o is inserted from pre(o)[v] to
post(o)[v] and post(o)[v] is also marked as visited. The graph will eventually become
a forest consisting of two trees, rooted in s[v] and u respectively, plus possibly a
number of isolated one-vertex trees. It is thus trivial to test if there is a path from
either s[v] or u to prv(O)[v]. If such a path exists, then the labels along the path form
a v-chain from s[v] to prv(O)[v] and ¢ and & are changed accordingly. Otherwise,
there are two cases. Either there is no v-chain at all from s[v] to prv(O)[v], in which
case Plan will eventually return with t[v] = s[v]. The other case is that there is
no v-chain from s[v] to prv(Q)[v] which is admissible in the current ¢. This means
that any such v-chain has some operator requiring a prevail-condition which is not
yet achieved in t. However, all operators are unary so no operator affecting v can
make any such v-chain admissible since this would require achieving prv(Q)[v'] for
some v' # v. Hence, the attempt to achieve t[v] = prv(O)[v] is postponed until
t[v'] = prv(O)[v'] has been achieved for at least one further v' # v.

Analogously, AchieveGoal takes two states s and ¢ as arguments and returns
a state s’ and a plan § from s’ to ¢t such that s'[v] = s[v] or s'[v] = t[v] for all
v. More precisely, s’ is the state ‘closest’ to s in the sense that it is the unique
mazimal state, wrt. the number of variables v such that s'[v] = s[v], from which
there is a plan to ¢t. This claim is subject to the further restriction that we only
consider plans where all operators o satisfy that prv[v] C s[v] for all ». This may
seem strange, but AchieveGoal will only be called in cases where the argument s is a
state returned by AchievePrevail. Hence, we can be certain that any plan from sy to
s, will satisfy this restriction (assuming certain properties of N, as will be explained
below). AchieveGoal uses an iterated greedy strategy analogous to the one used by
Achieve Prevail.

The main procedure, Plan, repeatedly calls Achieve Prevail and AchieveGoal until
either a plan from sy to s, is found or we can be sure that no such plan exists. Plan
is sound since whenever it terminates in line 7 returning a plan, then that plan is
a plan from sg to s, because of the way AchievePrevail and AchieveGoal works.
Furthermore, the set N has the property that at any time during the execution of
Plan, we can be certain that no plan from sg to s, can pass prv(O)[v] for any v € N.
This is the reason why it is safe to prevent AchievePrevail from achieving prv(QO)[v]
for all v € N.

COMPLEXITY RESULTS FOR SAST PLANNING 27

This property is trivially true the first time around the loop, since N is initially
empty. To see that the property remains to hold during all subsequent turns requires
an induction argument. Assuming that it holds before a particular turn of the loop,
in which Plan does not terminate, all variables v that are added to IV in line 11 satisfy
that t[v] £ s[v]. This can be for either of two cases. In the first case s[v] = prv(O)[v],
but there is no plan that is admissible in s that can change variable v from prv(Q)[v]
to s,[v]. Hence, we must not attempt to achieve s[v] = prv(O)[v] in the next turn of
the loop, which is prevented by inserting v into N. In the other case, s[v] = sp[v],
but there is no plan that is admissible in s = sy that can change variable v from
s[v] = so[v] to sy[v]. This, however, is required by any plan from sy to s, so no
such plan can exist. Adding v to N then makes Plan reject in the next turn of the
loop. This condition could have been detected already in line 7 by using a more
complicated condition, but is done in this way to make the algorithm simpler.

Finally, N grows strictly for each turn of the loop so Plan must eventually ter-
minate in line 7 or 9 since N is bounded above by V. Furthermore, if Plan rejects in
line 9, then t[v] IZ s[v] for some v € N. It follows from the property of N that there
is no plan from sg to s, passing prv(O)[v], so it does not matter that AchievePrevail
was prevented from achieving s[v] = prv(O)[v]. It further follows from the property
of N and from how AchievePrevail and AchieveGoal work that no plan admissible in
s can change variable v from s[v] to s,[v]. Hence, there can be no plan from sy to
s, since s[v] = sp[v] which together with the termination result above motivates why
Plan is complete.

5.2. Soundness and Completeness of the Algorithm

The formal proofs that Algorithm 1 is a sound and complete, polynomial-time
algorithm for the non-optimal SAST-US plan generation problem follow below.

Definition 10. Given two states s, € SyT and a variable set V C V. we say that s
agrees with ¢ for V iff s[v] = ¢[v] for all v € V| and we say that s agrees with
t exactly for V iff s[v] = ¢[v] for all v € V and s[v] # t[v] for v € V. We further
define the state s|} s.t. for all v € V,

8|y[?]] _ { t[v] if vev,

s[v] otherwise.

In order to make the following proofs easier to read we will tacitly assume we
are solving an instance II = (V, O, sq, s.) of the SAST-US plan generation problem.
For instance, it will be implicitly assumed that all plans are plans over 0. We will
further assume that Plan is called with the parameters sy and s,. Finally, we will
use prv as a shorthand for prv(O).

Lemma 3. When called with a state s € Sy™ and a variable set N C V, AchievePre-
vail returns a tuple (¢, @) s.t.

1. ais a plan from s to t,
t= 8|‘F%/ for some VCV — N s.t.

for all V! C V — N, if there exists a plan from s to some state s’ passing prv[v]

for all v € V', then V/ C V.

28 COMPUTATIONAL INTELLIGENCE

Proof. Assume AchievePrevail is called with the parameters s and N, and that it
returns the tuple (¢,&). Claims 1 and 2 are obvious from the algorithm, so let the
variable set V' be defined s.t. t = 5|‘F%/ It remains to prove claim 3, i.e. for all

V' CV— N, if there exists a plan from s to some state s’ passing prv[v] for all v € V|
then V! C V. The proof is trivial for those v € V s.t. so[v] = prv[v], so we assume
wlg. that sg[v] # prv[v] for all v € V. Proof by induction over the size of V.

Basis: The claim holds trivially for the empty set.

Induction: Suppose claim 3 holds for all variable sets S CV — N of size n, where
0 < n < |V|. Further suppose 3 is a plan from s to some state s’ passing prv[v] exactly
for v € T for some variable set 7' C V — N of size n + 1. We are only concerned with
those v for which /8 passes prv[v]; the actual final state s’ is not important for claim
3. Hence, we can wlg. assume that s’ = 5|§Arv and that f is a minimal plan from s to

s'. Note that 3 # () since T # 0. -

Furthermore, there must be some variable v' € T s.t. prv(o)[v] = u for all 0 € 3,
since 3 could otherwise not be admissible. Obviously, g[v'] is a v’-chain from s to
prv[v]. We define U = T' — {v'} and let ¥ be defined as 3 but lacking the operators
in B[v']. Tt is immediate that ¥ is a plan from s to 5|’[3%/ since 3 is a plan from s to
5|;%/ and prv(o)[v'] = u for all o € 3. It is further obvious that 3[v'] is admissible in
5||[D%/ since O is single-valued and 3 is admissible in s. Hence, (7;3[¢]) is a plan from
stos = 8|§Arv = 5||[D%J/{UI} so it follows from the induction hypothesis that U’ C V' and
it, thus, remains to prove that also v € V. -

Suppose to the contrary that o' € V. The v'-chain $[v'] must then be admissible
int= 5|‘F%/ since it is admissible in s = 5||[D%/ and U C V. Hence, AchievePrevail

could not have terminated returning (¢, &) but would rather have found that 5[v'] is
admissible in ¢, thus returning a tuple (#',8) s.t. ¢’ = 5|;/?L\J/{U }. This contradicts the

assumption that AchievePrevail returns (t, @), so it must be the case that v’ € V. It
follows that T' C V', which ends the induction.

We conclude from the induction proof that also claim 3 of the theorem is satisfied.
|

Similarly, it can be proven that AchieveGoal, when called with two states s and ¢,
returns a state s’ and a plan leading from this state to ¢. Furthermore, s’ is the state
closest to s from which the goal can be reached, where closest means that no other
state from which ¢ can be reached agrees with s on more state variables (and not on
any others either). This claim is qualified with the assumption that all operators in
the plans considered must have their prevail-conditions satisfied in s.

Lemma 4. When called with two states s,t € SyT AchieveGoal returns a tuple
(s', @) s.t.

1. @ is a plan from s’ to t,

2. s =1t|! for some V C V,

3. forall V! C {v eV |prv[v] # u} if there exists a plan 7 from some state ¢’ to ¢
s.t. t' agrees with s for V' and prv(%) C s, then V/ C V (i.e. for all v € V, if
t'[v] = s[v], then t[v] = s[v]).

COMPLEXITY RESULTS FOR SAST PLANNING 29

Proof. Analogous to the proof of Lemma 3. The main difference to note is that if
t[v] = u, then ?[v] C s[v], so B[v] = () in this case. m

Lemma 5. At any time during the execution of Plan the set N satisfies thatif v € N,
then there is no plan from sy to s, passing prv[v].

Proof. Let N, denote the value of the variable N immediately before the nth turn
of the loop. Proof by induction over the number of turns of the loop in Plan.

Basis: The claim holds vacuously before the first turn of the loop since Ny = {.

Induction: Suppose the claim holds for Ny for some k > 1 and that Plan does
not terminate in the kth turn of the loop. Prove that then also Nyiiq satisfies the
claim. Assume that in the kth turn of the loop AchievePrevail returns (s,a) and
AchieveGoal returns (t, 3).

We prove for each v € V that if ¢[v] [£ s[v], then either there exists no plan from
8o to s, passing prv[v] or there exists no plan at all from s to s,.

We already know from the induction hypothesis that no plan from s to s, can
pass prv[v] for any v € Ny, so, by clause 3 of Lemma 3, no plan from sy to s, can pass
prv[v] for any v € V s.t. s[v] # prv[v]. Let v € V be an arbitrary variable s.t. ¢[v] £
s[v]. Tt is then immediate form the algorithm that there are two mutually exclusive
cases, either s[v] = prv[v] # so[v] or s[v] = so[v] (and possibly prv[v] = sg[v]).

First suppose that s[v] = prv[v] # sp[v]. It follows from the induction hypothesis
and clause 3 of Lemma 3 that any plan 5 from sg to s, must satisfy that prv(y) C s.
Hence, no plan from sy to s, can pass a state s’ s.t. s'[v] = prv[v] = s[v], since
Lemma 4 says that this would imply t[v] = s[v], thus contradicting the assumption
that ¢[v] # s[v]. Putting v into Ny is thus safe and will prevent Plan from trying
to achieve prv[v] in the next turn.

Instead suppose that s[v] = sg[v]. Further suppose there exists a plan ¥ from s
to s.. Obviously, ¥ passes some state s s.t. §'[v] = s[v] since s[v] = so[v]. Hence,
there exists a plan from s’ to s,. However, clause 3 of Lemma 4 then implies that
t[v] = s[v], which contradicts that t[v] # s[v], i.e. that Plan rejects. Hence, no plan
from sg to s, can exist and it is thus safe to put v into N1 (which will cause Plan
to reject in the next turn).

This ends the induction so we are allowed to conclude that the lemma holds. W

Lemma 6. The set N grows strictly for each turn of the loop in Plan.

Proof. Let N, denote the value of N immediately before the nth turn of the loop
in Plan. We must prove that for any k > 1, if Plan does not terminate in the k first
turns, then Ny_y C Ng. This is obvious, however, since the non-termination of Plan
guarantees that ¢[v] [Z s[v] for some v ¢ Nj_y, which will thus be included in N;. B

Lemma 7. 1If Plan rejects, then there is no plan from sg to s,.

Proof. Assume that in some turn of the loop AchievePrevail returns (s, &), Achieve-
Goal returns (t,) and Plan rejects. There must then be some v € N s.t. t[v] £ s[v]
since Plan rejects.

Suppose there exists a plan ¥ from sg to s.. Since v € N it is immediate from
the algorithm that s[v] = sg[v]. Hence, 7 is a plan from some state s’ s.t. s'[v] = s[v]
to s,. It thus follows from clause 3 of Lemma 4 that ¢[v] = s[v] This, however,
contradicts the assumption that t[v] [Z s[v], i.e. that Plan rejects so there cannot
exist any plan from sg to s,. |

30 COMPUTATIONAL INTELLIGENCE

Theorem 10. 1If there exists a plan from sy to s,, then Plan returns a plan from sg
to sx, and otherwise Plan rejects.

Proof. We first observe that Plan must eventually terminate, i.e. either return a
plan or reject since N C V and Lemma 6 says that N grows strictly.

We first prove that if there is a plan from sg to sy, then Plan returns such a plan.
The converse of Lemma 7 says that if there is a plan from sy to s,, then Plan will
not reject. Hence, AchievePrevail and AchieveGoal will eventually return two tuples
(s,a) and (¢, 3) respectively s.t. t C s. It is obvious from Lemmata 3 and 4 that the
plan (@;8) returned by Plan is a plan from sq to s,.

It remains to prove that Plan will reject if there is no plan from sg to s,. Assume
there is no such plan. Further suppose Plan does not reject. We know from the
first half of this proof that Plan must then eventually return a plan from sy to s,.
However, this contradicts that there is no such plan so Plan must eventually reject.
|

5.3. Time Complexity of the Algorithm

It is obvious that Plan runs in low-order polynomial time. Below we provide an
upper bound on the runtime needed by this algorithm.

Theorem 11. Plan runs in O(|V[*|O|) time.

Proof. We first analyze AchievePrevail and immediately observe that for each v € V),
t[v] is changed at most once, from s[v] to prv[v], so the outer loop makes at most |V|
turns. The for loop obviously makes O(|V|) turns. We assume the graphs created
in line 6 are represented using adjacency lists, thus taking O(|D,|) time to initialize.
Further, we observe that each graph created is a forest consisting of two trees rooted
in s[v] and u respectively (or one tree plus possibly a number of isolated one-vertex
trees if s[v] = u. Hence it takes O(|D,|) time to find a path in such a graph. The
while loop takes O(|O||V|) time. Assuming |D,| € O(|O||V|), which any reasonable
problem encoding can be expected to satisfy, the while loop dominates the body of
the for loop. Hence, AchievePrevail takes O(|V|’|O|) time. Obviously, AchieveGoal
is of the same complexity as AchievePrevail.

Then analyzing Plan, we observe that the loop makes O(|V|) turns, since N CV
and Lemma 5 tells us that N grows strictly. The loop body is dominated by the calls

to AchievePrevail and AchieveGoal so Plan runs in O(|V[*|Q]) time. [|

The algorithm Plan was developed only to prove tractability of SAST-US plan
generation, so no attempts has been made at optimizing it. An obvious modification,
however, would be tolet the test in the while loops of Achieve Prevail and AchieveGoal
search only O[v] instead of the whole (0. This could easily be achieved by storing
each O[v] separately, using negligible O(Q) preprocessing time.

6. DISCUSSION AND CONCLUSIONS

Recently a number of results have been published on the computational com-
plexity of propositional STRIPS planning under various restrictions (Bylander 1991

COMPLEXITY RESULTS FOR SAST PLANNING 31

1992a; Erol et al. 1992). In addition to these we have previously presented a num-
ber of tractable planning problems using the SAST formalism (Backstrom and Klein
1991a 1991b; Backstrom 1992a 1992b). All of these results concern the complexity
of planning in various restricted versions of certain formalisms. One might also inves-
tigate the complexity of planning for specific problems instead of specific formalisms.
This has been done for some variants of the blocks-world problem (Gupta and Nau
1992; Béckstrom 1992a; Backstrém 1992b). Furthermore, the complexity of tem-
poral projection and its relationship to planning has been investigated by Dean and
Boddy (1988) and by ourselves (Nebel and Béckstrém 1994).

Our previous publications on SAS™ planning have concentrated on finding tractable
subproblems of the optimal plan generation problem and trying to extend these while
retaining tractability. This article complements these results by presenting a com-
plete investigation of the complexity for each of the possible combinations of the
previously considered restrictions. We already know (Backstrom 1992a 1992b) that
the SAST formalism is expressively equivalent to a number of ‘standard’ proposi-
tional STRIPS formalisms, including those analyzed by Bylander (1991) and Erol
et al. (1992). One might wonder, then, why we have bothered doing such a complex-
ity analysis for the SAST formalism since the equivalence implies that the previously
known complexity results carry over. There are, however, at least two important
differences between our analysis and the previous ones.

Firstly, Bylander and Erol et al. have only studied local restrictions on opera-
tors. In particular, they have studied restrictions that appear obvious to try from the
way STRIPS operators are defined, like restricting the number of pre-conditions or
disallowing delete-conditions. Binariness and unariness are such a local restrictions,
while post-uniqueness and single-valuedness are global restrictions on the whole set
of operators. Korf (1987) has also studied some computationally interesting global
properties, like independent and serializable subgoals. Unfortunately, finding out
whether a problem instance has serializable subgoals is PSPACE-complete (Bylander
1992b). In contrast to this, all our restrictions can be tested in low-order polynomial
time (Béckstrom 1992a, Theorem 4.8). Furthermore, we have not derived our re-
strictions from the formalism per se but from studying a test example in the area of
automatic control. Using the SAS™ formalism instead of the STRIPS formalism has
facilitated in finding these restrictions, which are interesting from a computational
point of view by resulting in tractability. Furthermore, the equivalence result applies
to the unrestricted versions of the formalisms and does not hold under arbitrary
restrictions.

The second difference is that the previous analyses of planning complexity have
only considered the plan ezistence problem (Bylander 1991), and sometimes also the
bounded plan existence problem (Bylander 1994; Erol et al. 1992). In addition to
this, we also analyze the complexity of actually generating a (possibly optimal) plan,
which is what we are ultimately interested in.

The result of our analysis shows that we have reached the tractability borderline
and we cannot continue to remove restrictions and still have tractability. The most
surprising result for us was that post-uniqueness of operators, which appears to be a
very strong restriction, does not guarantee tractability if considered in isolation. In
case of non-optimal planning, the solution size is prohibitive. In case of optimal plan-
ning, even pseudo-polynomial solutions are ruled out. This should not discourage us,
however. It means that we have will have to start considering alternative restric-
tions or combinations of less restricted variants of the P, U, B and S restrictions.
The proposed research methodology is further described in Backstrém (1992a) where

32 COMPUTATIONAL INTELLIGENCE

also some suggestions for such alternative restrictions are given. There are several
possible ways to continue. For instance, we have recently started investigating more
complex restrictions, based on the structure of the state-transition graph rather than
simple syntactic properties of the set of operators (Jonsson and Backstrém 1994b
1994a). Another way to go is to extend the tractability borderline by sacrificing
completeness, an approach taken by Klein (1993).

ACKNOWLEDGMENTS

Bart Selman and the anonymous referees have provided helpful comments on
earlier versions of this paper. The research was supported by the Swedish National
Board for the Engineering Sciences (TFR) under grant Dnr. 92-143, by the German
Ministry for Research and Technology (BMFT) under grant ITW 8901 8, and by the
European Commission as part of DRUMS-II, the ESPRIT Basic Research Project
P6156.

COMPLEXITY RESULTS FOR SAST PLANNING 33
REFERENCES

AAAT-92 1992. Proceedings of the 10th (US) National Conference on Artificial Intelligence (AAAI-
92), San José, CA, USA. American Association for Artificial Intelligence.

AAAT-94 1994. Proceedings of the 12th (US) National Conference on Artificial Intelligence (AAAI-
94), Seattle, WA, USA. American Association for Artificial Intelligence.

Backstrom, C. (1988a). Reasoning about interdependent actions. Licentiate Thesis 139, Department
of Computer and Information Science, Linkoping University, Linkoping, Sweden.

Backstrom, C. (1988b). A representation of coordinated actions characterized by interval valued con-
ditions. In Ras, Z. W. and Saitta, L., editors, Proceedings of the 3rd International Symposium on
Methodologies for Intelligent systems (ISMIS-88), pages 220-229, Torino, Italy. North-Holland.

Backstrom, C. (1992a). Computational Complexity of Reasoning about Plans. Doctoral dissertation,
Linkoping University, Linkoping, Sweden.

Backstrom, C. (1992b). Equivalence and tractability results for SAS* planning. In Swartout, B.
and Nebel, B., editors, Proceedings of the 3rd International Conference on Principles on Knowl-
edge Representation and Reasoning (KR-92), pages 126-137, Cambridge, MA, USA. Morgan
Kaufmann.

Backstrom, C. 1993. Finding least constrained plans and optimal parallel executions is harder than
we thought. In Backstrom, C. and Sandewall, E.] editors, Current Trends in Al Planning:
EWSP’983—2nd European Workshop on Planning, pages 4659, Vadstena, Sweden. IOS Press.

Backstrom, C. (1994a). Expressive equivalence of planning formalisms. Artificial Intelligence, Special
Issue on Planning and Scheduling. To appear.

Backstrom, C. (1994b). Planning using transformation between equivalent formalisms: A case study
of efficiency. In Wilkins, D., editor, Comparative Analysis of AI Planning Systems. Held in
conjunction with AAAI-94 (1994).

Backstrom, C. and Klein, 1. 1990. Planning in polynomial time. In Gottlob, G. and Nejdl, W.,
editors, Fxzpert Systems in Engineering: Principles and Applications. International Workshop,
volume 462 of Lecture Notes in Artificial Intelligence, pages 103—118, Vienna, Austria. Springer.

Backstrom, C. and Klein, I. (1991a). Parallel non-binary planning in polynomial time. In Reiter
and Mylopoulos (1991), pages 268-273.

Backstrom, C. and Klein, I. (1991b). Planning in polynomial time: The SAS-PUBS class. Compu-
tational Intelligence, 7(3):181-197.

Bylander, T. 1991. Complexity results for planning. In Reiter and Mylopoulos (1991), pages
274-279.

Bylander, T. (1992a). Complexity results for extended planning. In Hendler (1992), pages 20-27.

Bylander, T. (1992b). Complexity results for serial decomposability. In AAAI-92 (1992), pages
729-734.

Bylander, T. 1994. The computational complexity of propositional STRIPS planning. Artificial
Intelligence, 69:165-204.

Chapman, D. 1987. Planning for conjunctive goals. Artificial Intelligence, 32:333-377.

Dean, T. and Boddy, M. 1988. Reasoning about partially ordered events. Artificial Intelligence,
36:375-399.

Erol, K., Nau, D. S., and Subrahmanian, V. S. 1992. On the complexity of domain-independent
planning. In AAAI-92 (1992), pages 381-386.

Fikes, R. E. and Nilsson, N. J. 1971. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189-208.

Garey, M. and Johnson, D. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. Freeman, New York.

Gupta, N. and Nau, D. S. 1992. On the complexity of blocks-world planning. Artificial Intelligence,
56:223-254.

Hanks, S. and Weld, D. 1992. Systematic adaption for case-based planning. In Hendler (1992).

34 COMPUTATIONAL INTELLIGENCE

Hendler, J., editor 1992. Artificial Intelligence Planning Systems: Proceedings of the 1st International
Conference, College Park, MD, USA. Morgan Kaufmann.

Johnson, D. S. 1990. A catalog of complexity classes. In van Leeuwen, J.; editor, Handbook of
Theoretical Computer Science: Algorithms and Complexity, volume A, chapter 2, pages 67-161.
Elsevier, Amsterdam.

Jonsson, P. and Backstrém, C. (1994a). Complexity results for state-variable planning under mixed
syntactical and structural restrictions. In Jorrand, P., editor, Proceedings of the 6th International
Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA-94), Sofia,
Bulgaria. World Scientific Publishing.

Jonsson, P. and Backstrém, C. (1994b). Tractable planning with state variables by exploiting struc-
tural restrictions. In AAAIL-94 (1994).

Kambhampati, S. and Hendler, J. 1992. A validation-structure-based theory of plan modification
and reuse. Artificial Intelligence, 55:193-258.

Klein, 1. 1993. Automatic Synthesis of Sequential Control Charts. Doctoral dissertation, Linkoping
University, Linkoping, Sweden.

Korf, R. E. 1987. Planning as search: A quantitative approach. Artificial Intelligence, 33:65-88.

Nebel, B. and Backstrom, C. 1994. On the computational complexity of temporal projection, plan-
ning and plan validation. Artificial Intelligence, 66(1):125-160. ARTINT 1063.

Reiter, R. and Mylopoulos, J., editors 1991. Proceedings of the 12th International Joint Conference
on Artificial Intelligence (IJCAI-91), Sydney, Australia. Morgan Kaufmann.

Sandewall, E. and Ronnquist, R. 1986. A representation of action structures. In Proceedings of the
5th (US) National Conference on Artificial Intelligence (AAAI-86), pages 89-97, Philadelphia,
PA; USA. American Association for Artificial Intelligence, Morgan Kaufmann.

