
Planning in Polynomial Time:

The SAS-PUBS Class

Christer B�ackstr�om

Dept. of Computer Science,

Link�oping University

S-581 83 Link�oping,

Sweden

Phone: +46 13282429

email: cba@ida.liu.se

Inger Klein

Dept. of Electrical Engineering,

Link�oping University

S-581 83 Link�oping,

Sweden

Phone: +46 13281665

email: inger@isy.liu.se

This article appears in Computational Intelligence, 7(3):181{197, Aug. 1991.

Abstract

This article describes a polynomial-time,O(n3), planning algorithm for a
limited class of planning problems. Compared to previous work on complex-
ity of algorithms for knowledge-based or logic-based planning, our algorithm
achieves computational tractability, but at the expense of only applying to a
signi�cantly more limited class of problems. Our algorithm is proven correct,
and it always returns a parallel minimal plan if there is a plan at all.

Keywords: Planning, Knowledge Representation, Complexity

1

1 Introduction

Almost all previous papers about planning and temporal reasoning has focussed
either on implementations of planners or on theoretical aspects of the represen-
tation of time and actions. The bulk of papers in the �rst of these groups re
ect
the evolution of 'classical' constraint-posting planners from STRIPS (Fikes and
Nilsson, 1971) to SIPE (Wilkins, 1988),the latter of these usually being consid-
ered as state of the art in planning. Unfortunately, these papers do not provide
any deep theoretical analyses of the planning algorithms employed so not much
is known about correctness and complexity of these algorithms. Wilkins (1988),
for example, admits that it is hardly possible to carry out such an analysis of
SIPE. He gives some arguments about complexity behaviour in test applications
but there is no formal analysis and the �gures presented are probably not worst-
case �gures. The second group consists mainly of papers on various temporal
logics where those by Allen (1981; 1984) and Shoham (1987) are among the most
prominent within AI. These papers do, however, usually not address computa-
tional aspects at all but only representational issues. We will brie
y discuss some
of the few papers that have tried to bridge this gap between theory and practice.

Chapman (1987) has designed a planning algorithm, TWEAK, that captures the
essentials of most constraint-posting non-linear planners like STRIPS and SIPE
while being clean enough to allow theoretical analysis. TWEAK is proven correct
and complete, but does not always terminate. Chapman has proven that the class
of problems TWEAK is designed for is undecidable.

Dean and Boddy (1988) have investigated some classes of temporal projection
problems with propositional state variables. They report that practically all
but some trivial classes are NP. It should be noted, however, that they make
the somewhat strange assumption that an action occurs successfully if its pre-
conditions are satis�ed and otherwise does not occur at all. Since all actions
are processed in this way independently of whether the preceding actions have
occurred or not, it is not obvious that this result is applicable to many real
problems.

The majority of papers on temporal logics discuss representation of problems,
and results about complexity and computability are almost non-existent. Tem-
poral predicate logics are usually more expressive than FOP, so we could hardly
hope for decidability without hard restrictions on the expressibility. Classical
propositional logics are, however, decidable, so there might be some hope for re-
stricted propositional temporal logics. Unfortunately, most temporal logics use
some kind of non-monotonic reasoning to reason about change, thus making them
undecidable. An implementation of a restricted version of one such logic, ETL
(Sandewall, 1988b; Sandewall, 1988c; Sandewall, 1988d; Sandewall, 1989), is re-

2

ported by Hansson (1990). His decision procedure solves temporal projection in
exponential time, but is not guaranteed to terminate for planning.

All these results seem very disappointing, but how bad is the situation really?
Chapman (1987) says: `The restrictions on action representation make TWEAK
almost useless as a real-world planner.' However, he also says: `Any Turing
machine with its input can be encoded in the TWEAK representation.' It might
seem as if any useful class of planning problems is necessarily undecidable. Our
opinion, however, is that a planner that is capable of encoding a Turing machine
is much more expressive than most problems require. It seems that TWEAK
is too limited in some aspects but overly expressive in other aspects. We think
that �nding classes of problems that balance such aspects against each other,
thus being decidable or even tractable, is an important and interesting research
challenge. On the other hand, we should probably not have much hope of �nding
one single general planner with such properties. The research task is rather to
�nd di�erent classes of problems which are strong in di�erent aspects so as to be
tuned to di�erent kinds of application problems.

We have focussed our research on problems where the action representation is
even more restricted than in TWEAK, but where we can prove interesting theo-
retical properties. Our intended applications are in the area of sequential control
and discrete event systems within control theory, where a restricted problem rep-
resentation is often su�cient but where the size of the problems make tractability
an important issue. It is naturally desirable to be able to analyse discrete control
systems as rigorously as can be done for ordinary continous systems. Obviously,
correctness can be a very important issue here and real-time requirements rise
the question of complexity. More on this issue can be found in section 7.

Our general research strategy is to �rst �nd a restricted but tractable class of
planning problems and to then gradually extend this class while establishing its
properties after each such step. This is a very usual strategy in most disciplines
of science, and it is in distinction to the paradigm `tackle a hard problem and
fail' which is too often employed in AI. A similar strategy has been advocated
by Brachman and Levesque (1984; 1985) who have studied the trade-o� between
expressibility and tractability in knowledge representation languages.

This article presents our �rst step of this strategy. We have identi�ed a class of
planning problems, the SAS-PUBS class, for which we have devised a planner
which �nds parallel minimal plans. The planner is proven sound and complete
and runs in polynomial time, O(n3), in the number of state variables. Compared
to previous work on complexity of algorithms for knowledge-based or logic-based
planning, our algorithm achieves computational tractability, but at the expense
of only applying to a signi�cantly more limited class of problems. The algorithm
employs a strategy that slightly resembles the means-ends analysis used in GPS

3

(Newell and Simon, 1972). It �rst �nds the actions necessary to transform the
initial state into the goal state. These action are not necessarily executable, so the
algorithm then �nds the extra actions necessary to transform the initial state into
a state where these �rst actions are executable plus actions to redo these e�ects
again. However, these new action are not necessarily executable either, so this
process is repeated until all actions in the plan are executable or we know that
there is no plan at all. This latter condition is actually very simple and is implicit
in the algorithm and it is thus implicitly proven correct since the algorithm is
proven correct. This description of the algorithm is somewhat simpli�ed since
it does not work on complete states but rather on partial states treating each
state variable separately. There is thus no search over the state space involved
but the algorithm rather works in a kind of parallel way on subgoals expressed
by partial states. Unfortunately, the SAS-PUBS class is probably too simple to
be of other than theoretical interest. However, even very moderate extensions
to this class would probably be su�cient to tackle a lot of problem classes that
occur frequently in practice, for example in process control. A discussion of the
restrictions of the SAS-PUBS class can be found in section 6.

Although this article is very theoretical with many pages of de�nitions, theorems
and proofs, it should be possible for a reader to get the main ideas by reading
only the english text and skipping the formal parts.

2 Ontology of Worlds, Actions and Plans

This section de�nes our planning ontology with the main concepts being: (world)
states, actions and plans. The world is understood as the abstraction of the real
world that we use for planning. Although presented in a slightly di�erent way, the
ontology is essentially action structures as described by Sandewall and R�onnquist
(1986a; 1986b). The major di�erence is that we do not use explicit time points
but order the actions themselves instead. We can still express that actions are
allowed to occur in parallel but we cannot say for example that an action starts
during the occurrence of another action. Because of this di�erence, we call our
ontology simpli�ed action structures or simply SAS.

The reason we use action structures instead of more traditional planning for-
malism is that action structures imposes more structure on actions. Although
limiting expressivity, this extra structure is advantageous for computational rea-
sons. One could, at least when considering only sequential plans, reformulate our
ontology in a more traditional notation. However, this would lead to consider-
ably more awkward and unclear de�nitions and proofs so we do not �nd this a
good idea even if many readers would feel more comfortable with such a nota-

4

tion. We have also tried to keep our notation close the one used by Sandewall
and R�onnquist in order not to introduce yet another new notation.

2.1 World Description

We assume that the world can be modelled by a �nite number of features, or state
variables, where each feature can take on values from some �nite discrete domain
or the values u and k. The value u means unde�ned and should be interpreted as
'don't care' while the value k, contradictory, is introduced for technical reasons,
that is, to get a lattice. The combination of the values of all features is called a
partial state, and if no values are unde�ned the state is also called a total state,
that is, a total state is also a partial state. If it is clear from the context or if it
does not matter whether a state is total or not, we simply call it a state. An order,
v, re
ecting information content, is de�ned on the feature values such that the
unde�ned value contains less information than all other values, the contradictory
value contains more information than all other values and the de�ned values
contain equal amount of information and are mutually incomparable. The order
v is also straightforwardly extended to states.

De�nition 2.1

1. M is a �nite set of feature indices.

2. Si, where i 2 M, is the domain for the i:th feature. Si must be �nite.
S+i = Si[fui; kig where i 2 M is the extended domain for the i:th feature.
S =

Q
i2M Si is the total state space.

S+ =
Q

i2M S+i is the partial state space.

3. s[i] for s 2 S and i 2 M denotes the value of the i:th feature of s and is
called the projection of s onto i. A state s 2 S+ is said to be consistent if
s[i] 6= ki for all i 2M.

4. The function dim : S+ ! 2M is de�ned s.t. for s 2 S+, dim(s) is the set of
all feature indices i s.t. s[i] 6= ui. If i 2 dim(s) then i is said to be de�ned
for s.

5. vi is a re
exive partial order1 on S
+
i de�ned as

8x; x0 2 S+i (x vi x
0 $ x = ui _ x = x0 _ x0 = ki)

1By partial order we understand a relation that is antire
exive and transitive, and by re
exive

partial order we understand a relation that is re
exive, antisymmetric and transitive. The
terminology for partial orders is very confused in the mathematical literature, but this de�nition
is practical for our purposes and it agrees with Mendelson's (1987) de�nition.

5

hS+i ;vii forms a
at lattice for each i.

6. v is a re
exive partial order over S+ de�ned as

8s; s0 2 S+(s v s0 $ 8i 2 M(s[i] vi s
0[i]))

2

Both hS+;vi and all hSi;vii form lattices so the operations t (join) and u (meet)
are de�ned in the usual way.

We will henceforth drop the subscripts of ui, ki and vi and simply write u, k and
v since no confusion is likely to occur.

Example 2.1 Let M = f1; 2g and S1 = S2 = f0; 1g, then S+1 = S+2 =
f0; 1; u; kg , S = S1�S2 and S+ = S+1 �S

+
2 . The lattices hS

+
1 ;vi = hS+2 ;vi and

hS+;vi are shown in �gures 1 and 2.

Further suppose that we have three states s1 = hu; 1i; s2 = h0; 1i and s3 = h1; ki,
all in S+. For these states:

1. s1[1] = u and s1[2] = 1.

2. Only states s1 and s2 are consistent.

3. dim(s1) = f2g and dim(s2) = dim(s3) = f1; 2g

2

2.2 Action Types and Actions

Plans are constituted by actions, the atomic objects that will have some e�ect on
the world when the plan is executed. Each action in a plan is a unique occurrence,
or instantiation, of an action type, the latter being the speci�cation of how the
action `behaves'. Actions and action types can be thought of as the steps and
step templates respectively in TWEAK (Chapman, 1987). Two actions are of the
same type i� they behave in exactly the same way. The `behaviour de�nition'
of an action type is de�ned by three partial state valued functions, the pre-,
post- and prevail-condition. Given an action, the conditions of its corresponding
type are interpreted as follows: the pre-condition states what must hold at the
beginning of the action, the post-condition what will hold at the end of the
action and the prevail-condition states what must hold during the action. The

6

intuition behind these conditions is that the pre- and post-conditions express
what e�ect the action has upon the world, that is, what feature(s) of the world it
changes. The prevail-condition expresses which features must be constant during
the execution and what the values must be for these features. An action changing
a certain feature cannot be concurrent with another action also changing that
same feature or specifying it to be constant in its prevail-condition. However, two
actions de�ning the same feature in their prevail-conditions can be concurrent if
they specify the same value for this feature. Making an analogy with operating
systems theory, pre- and post-conditions can be thought of as expressing non-
sharable resources and prevail-conditions as expressing sharable resources. There
is, however, no such clear correspondence with the resources in SIPE (Wilkins,
1988). The consumable resources in SIPE could, at least to some extent, be
represented with the pre- and post-conditions. Non-consumable resources can,
on the other hand, not be represented in the SAS-formalism as described in
this article, but they can be handled in action structures with keep-conditions
(B�ackstr�om, 1988a; B�ackstr�om, 1988b).

If we were not considering parallel plans, the prevail-conditions would not be
strictly necessary; a feature that is required for the execution of an action but
not changed by it could be expressed either as de�ned in the pre-condition and
unde�ned in the post-condition or de�ned with the same value in both pre- and
post-condition. In fact, if taking the latter of these two approaches prevail-
conditions would not even be necessary for parallel plans, but we �nd the theory
much cleaner and clearer if such conditions are separated out as prevail-conditions
so these are rather an asset than a burden.

De�nition 2.2

1. H is a set of action types.

2. b : H ! S+ gives the pre-condition of an action type

3. e : H ! S+ gives the post-condition of an action type.

4. f : H ! S+ gives the prevail-condition of an action type.

2

We further require our setH of action types to conform with the following axioms:

Axiom 2.3 8h 2 H8i 2 M(b(h)[i] 6= k ^ e(h)[i] 6= k ^ f(h)[i] 6= k)

7

Axiom 2.4 8h 2 H(dim(b(h)) = dim(e(h)))

Axiom 2.5 8h 2 H8i 2 dim(b(h))(b(h)[i] 6= e(h)[i])

Axiom 2.6 8h 2 H(dim(b(h))\ dim(f(h)) = ?)

Axiom 2.7 8h; h0 2 H(b(h) = b(h0) ^ e(h) = e(h0) ^ f(h) = f(h0)! h = h0)

Axiom 2.3 expresses that all features must be consistent for all conditions of an
action type. This is because the value k was introduced to make the domains
form lattices and it is not really used. Axiom 2.4 requires all features de�ned in
the pre-condition to be de�ned also in the post-condition and vice versa. This
is admittedly a restriction since there might be applications where one wants to
model actions that sets a feature to a certain value independently of its initial
value. One might also want to model actions that require a feature to have a
certain value when it starts executing but which leaves that feature unde�ned
upon termination. It is out of the scope of the current article to investigate
such extensions, but Sandewall (1988a) has paid some attention to this matter.
Axiom 2.5 says that a feature that is de�ned in the pre-condition must have a
di�erent value in the post-condition. This is no real restriction since a feature
that is de�ned but not changed by the action should be de�ned in the prevail-
condition. The only problem could be if we want to model actions that require
a feature to have a certain value when it starts executing and leaves that feature
at the same value upon termination but where this feature is a�ected by the
action during its execution and thus unde�ned there. Obviously this problem
disappears if we restrict ourselves to sequential plans. It is far outside the scope
of this article to deal with such a detailed representation of actions, but action
structures with keep-conditions (B�ackstr�om, 1988a; B�ackstr�om, 1988b) can be
seen as a �rst step in this direction. Axiom 2.6 expresses that no feature can be
de�ned in both the prevail-condition and the pre-condition (and thus implicitly
also in the post-condition) of an action. This conforms to the previous discussion
of the di�erent purposes of pre- and post-conditions and the prevail-condition
respectively. Finally, axiom 2.7 assures that the pre-, post- and prevail-conditions
are the only properties of an action type so that two distinct action types must
di�er in at least one of these conditions.

Example 2.2 Given the domains in example 2.1, we let H = fh1; h2; h3; h4g
with b, e and f de�ned as in table 1.

We observe that h1 violates axioms 2.3 and 2.4, and h2 violates axioms 2.5 and
2.6. Neither h3 nor h4 contradicts any of the axioms, but, assuming that h3 6= h4,
the set H contradicts axiom 2.7 since h3 and h4 agree on all conditions. 2

8

Since two actions of the same type are only di�erent occurrences of the same
action type, we only need some identi�cation making these occurrences unique.
Hence, an action consists of an action type and a unique label, the latter being
the identi�cation making this particular action unique. We also let an action
`inherit' the conditions from its associated action type.

De�nition 2.8

1. L is an in�nite set of action labels.

2. A set A � L � H is a set of actions i� no two distinct elements in A have
identical �rst components (same labels). An element of a set of actions is
referred to as an action.

3. If A is a set of actions we de�ne two functions: label : A ! L and type :
A ! H s.t. if hl; hi 2 A then label(hl; hi) = l and type(hl; hi) = h.

4. The function type is generalized to sets of actions in the following way:
type(A) = ftype(a) j a 2 Ag

5. If A is a set of actions then we also extend the functions b, e and f s.t.
b(a) = b(type(a)), e(a) = e(type(a)) and f(a) = f(type(a)) for all a 2 A.

2

Example 2.3 Let L be the natural numbers and H = fh1; h2; h3g, then fh1; h1i;
h2; h2i; h3; h1ig is a set of actions, but fh1; h1i; h1; h2i; h2; h3ig is not a set of
actions. 2

2.3 Plans

An ordered set of actions is a plan from one total state to another total state i�,
when starting in the �rst state, we end up in the second state after executing the
actions of the plan in the speci�ed order. The plan is linear if the set is totally
ordered and non-linear if it is partially ordered. A non-linear plan is a parallel
plan if its unordered actions can be executed in parallel without interfering with
each other. That two actions are unordered in a non-parallel non-linear plan
only means that they can be executed in either order but not in parallel, that
is, such a plan must always be strengthened to a linear plan when executing it.
Furthermore, a plan is minimal if there is no other plan solving the same problem
using fewer actions.

9

The basic concept behind our formal de�nition of plans is the relation 7�! which
expresses how a sequence of actions can take us from one state to another. The
basic concept behind parallel plans is the notion of independence; two actions are
said to be independent i� they can be executed in parallel without interfering with
each other. The persistence handling essentially uses the STRIPS assumption
(Fikes and Nilsson, 1971), and, since the formalism is very restricted, the frame
problem (Hayes, 1981; Brown, 1987) is thus avoided.

De�nition 2.9

The relation 7�!� S � 2(L�H) � 2(L�H)
2

� S is de�ned s.t. if s; s0 2 S, 	 is a
set of actions and � is a total order on 	 then 7�! is de�ned as

1. s
?;?
7�! s

2. s
fag;?
7�! s0 i� b(a) t f(a) v s, e(a) t f(a) v s0 and s[i] = s0[i] for all

i 62 dim(b(a)t f(a))

3. s
	;�
7�! s0 where j	j � 2 i� a1; : : : ; an are the actions in 	 in the order � and

there are states s1; : : : ; sn 2 S s.t. s = s0, s0 = sn and sk�1
fakg;?
7�! sk for

1 � k � n.

2

We will usually write s
a
7�! s0 as an abbreviation for s

fag;?
7�! s0. We will also

frequently violate that � � 	2 and implicitly understand the restriction of � to
	2.

De�nition 2.10 Assuming that 	 � L � H is a set of actions, � � 	2 and
so; s? 2 S we de�ne:

1. h	; �i is a linear plan from so to s? i� � is a total order on 	 and so
	;�
7�! s?

2. h	; �i is a non-linear plan from so to s? i� � is a partial order on 	 and
h	; �i is a linear plan for any total order � on 	 s.t. � � �.

2

Since the non-linear plans include the linear plans we will often write plan instead
of non-linear plan.

10

De�nition 2.11 A plan h	; �i from so to s? s.t. type() � H is minimal w.r.t
H i� there is no other plan h�; �i from so to s? s.t. type(�) � H and j�j < j	j.

2

We will usually only say that a plan is minimal and understand the set H im-
plicitly from the context.

De�nition 2.12 Two actions a and a0 are independent i�, for all i 2 M, all of
the following conditions hold:

1. b(a)[i] = u or b(a0)[i] = u,

2. b(a)[i] = u or f(a0)[i] = u,

3. b(a0)[i] = u or f(a)[i] = u and

4. f(a)[i] v f(a0)[i] or f(a0)[i] v f(a)[i]

2

De�nition 2.13 A non-linear plan h�; �i from so to s? is a parallel plan i� all
pairs of actions a; a0 2 � s.t. neither a�a0 nor a0�a are independent. 2

De�nition 2.14 A planning problem is a tuple hM;S1; : : : ;SjMj;H; so; s?i where
M is a set of feature indices, S1; : : : ;SjMj are domains, H is a set of action types
so is the initial state and s? is the goal state. The planning problem is to �nd a
set of actions 	 and a partial order � on 	 s.t. type() 2 H and h	; �i is a plan
from so to s?. 2

The set H and the states so and s? must of course be compatible with the choice
of M and S1 : : :SjMj.

3 Classes of Planning Problems

The class of planning problems de�nable in our ontology so far is referred to as
the SAS (Simpli�ed Action Structures) class.

De�nition 3.1 The class of planning problems with M; S1; : : : ; SjMj; and H as
de�ned in section 2 and with no further restrictions than those mentioned in that
section is referred to as the SAS class. 2

11

We want to talk about more restricted classes, so we de�ne some useful properties
that can be ascribed to problem classes. We say that a domain is binary if it has
exactly two elements and a planning problem is binary if all its domains are
binary. A set of action types is unary if all its action types change exactly one
feature. A set of action types is post-unique if it does not have two distinct
action types changing the same feature to the same value. A set of action types
is single-valued if whenever two di�erent of its action types de�ne the same feature
in their prevail-conditions, they also de�ne the same value for this feature. A set
of action types is prevail minimal if it does not have two di�erent action types
that di�er only in their prevail-conditions and the prevail-condition of one of
these is subsumed by the prevail-condition of the other.

The remainder of this article studies the subclass of the SAS class that exhibits all
of these restrictions. This subclass is called the SAS-PUBS class where PUBS is
an acronym for Post-unique, Unary, Binary and Single-valued. Prevail-minimality
is implied by these four restrictions. The practical implications of the restrictions
are discussed in section 6. It could, however, be pointed out already that single-
valuedness is probably the most serious restriction and it is crucial for the results
in this article.

De�nition 3.2 The domain Si, where i 2 M, is binary i� jSij = 2. The state
space S is binary i� Si is binary for all i 2 M. 2

De�nition 3.3 An action type h 2 H is unary i� dim(b(h)) is a singleton. A
set of action types H is unary if all actions in H are unary. 2

De�nition 3.4 A set of action types H is post-unique i�

8h; h0 2 H(9i 2 M(e(h)[i] = e(h0)[i] 6= u)! h = h0)

2

De�nition 3.5 A set H of action types is single-valued i�

9c 2 S8h 2 H(f(h) v c)

2

De�nition 3.6 A set H of action types is prevail minimal i�

8h; h0 2 H(b(h) = b(h0) ^ e(h) = e(h0)^ f(h) v f(h0)! h = h0)

2

12

Theorem 3.7 If H is unary and post-unique, then H is prevail minimal. 2

Proof: Suppose H is unary and post-unique. Further suppose there are
h; h0 2 H s.t. b(h) = b(h0), e(h) = e(h0) and f(h) v f(h0). By de�nition
3.3, there is some i 2 M s.t. e(h)[i] 6= u, so e(h)[i] = e(h0)[i] 6= u. De�nition 3.4
give that h = h0, so we have b(h) = b(h0)^ e(h) = e(h0)^ f(h) v f(h0)! h = h0,
which is the de�nition of prevail minimality. 2

De�nition 3.8 A planning problem hM;S1; : : : ;SjMj;H; so; s?i is in the SAS-
PUBS class i� it is SAS, Si is binary for all i 2 M and H is unary, post-unique
and single-valued2 . 2

4 Planning for SAS-PUBS Problems

This section presents some results about plans for SAS-PUBS problems, how to
�nd such plans andthe complexity of �nding such plans. The �rst subsection
presents some auxiliary de�nitions needed. The second subsection presents a
criterion for the existence of minimal parallel plans for the SAS-PUBS class and
a proof that this criterion is correct. The third subsection presents an algorithm
for �nding such plans and a correctness proof for the algorithm. The section
concludes with a complexity analysis of the algorithm.

The main de�nitions are 4.5 and 4.6 stating the existence criterion for parallel
minimal SAS-PUBS plans and algorithm 4.1 presenting an algorithm for �nding
such plans. The main theorems are 4.25, proving the correctness of the existence
criterion, 4.36 proving that the algorithm �nds a parallel minimal plan i� there
is a plan at all and 4.38, 4.41 and 4.42 stating some complexity results for the
algorithm.

The reader is advised to �rst take a look at algorithm 4.1 and then go through the
example in section 5 before reading this section more carefully. The more prac-
tically oriented reader could skip the whole section and read only the de�nitions
and theorems mentioned above.

2Note that the SAS-PUBS class is implicitly prevail-minimal.

13

4.1 Auxiliary De�nitions

We start by de�ning a few useful concepts. We say that an action a�ects those
features that it changes. For binary domains, we introduce the concept of inverse
such that the inverse of a de�ned value is the other de�ned value of the domain
while the unde�ned and contradictory values are not a�ected by inversion. The
inverse of a state is a state where all features are the inverses of the corresponding
features in the �rst state. We also talk about the inverse of an action meaning
an action with pre- and post-conditions being the inverses of those of the �rst
action. Given a planning problem we also de�ne set and reset actions. A set
action for a certain feature is an action that changes that feature from its value
in the initial state to the inverse value and a reset action for the same feature is
an action that changes the value back to its value in the initial state. Finally, a
set/reset pair for a certain feature is pair consisting of a set action and a reset
action for that feature.

De�nition 4.1

1. An action type h 2 H a�ects the feature i 2M i� i 2 dim(b(h)).

2. An action a a�ects the feature i 2 M i� type(a) a�ects i.

3. If 	 is a set of actions and i 2 M, then the set 	[i] denotes the set of all
a 2 	 s.t. a a�ects i.

2

De�nition 4.2

If Si is binary and x 2 Si then x, the inverse of x, is de�ned s.t. x 2 Si and
x 6= x. The inverse is extended to S+i s.t. u = u, k = k and x is de�ned as above
for x 2 Si. The inverse is further extended to states s.t., for s 2 S+i , s[i] = s[i]
for all i 2 M. 2

De�nition 4.3

Assuming Si is binary for all i 2 M and given a set A of actions, if for any
action a 2 A there is a unique action a0 2 A s.t. b(a0) = b(a), and thus implicitly
e(a0) = e(a), then a0 is is called the inverse of a and is denoted a. 2

De�nition 4.4

Given a planning problem hM;S1; : : : ; SjMj;H; so; s?i where Si is binary for all

14

i 2 M we say that an action a s.t. type(a) 2 H and b(a)[i] = so[i] is a set action
for feature i. An action a s.t. type(a) 2 H and e(a)[i] = so[i] is called a reset
action for feature i, and a pair of actions a; a0 s.t. a is a set action for i and a0 is
a reset action for i is called a set/reset pair for i. 2

4.2 Existence of SAS-PUBS Plans

We �rst de�ne the set �(so; s?) of necessary and su�cient actions for a minimal
plan solving a SAS-PUBS problem, and we then de�ne the execution order �� on
this set. These two de�nitions together form the existence criterion for parallel
minimal plans mentioned in the introduction to this section. The rest of the
subsection is devoted to proving that the tuple h�(so; s?); ��i indeed is a parallel
minimal plan from so to s? and that this tuple exists i� there is a plan at all from
so to s?.

De�nition 4.5 Given a SAS-PUBS problem, the set �(so; s?) of necessary and
su�cient actions for a plan from so to s? is recursively de�ned as follows:

1. A = fhg(h); hi j h 2 Hg where g : H ! L is an arbitrary injection.

2. (a) For each i 2 M s.t. so[i] 6= s?[i] there is exactly one action a 2 A s.t.
b(a)[i] = so[i], e(a)[i] = s?[i] and a 2 P0.
No other actions belong to P0.

(b) T0 = P0

(c) A0 = A � P0

3. For k � 0:

(a) For each a 2 Pk and for each i 2 M if f(a)[i] 6v so[i] and there is
no a0 2 Tk s.t. e(a0)[i] = f(a)[i] then there are exactly two actions
a1; a2 2 Ak s.t. b(a1)[i] = so[i], e(a1)[i] = f(a)[i] = b(a2)[i], e(a2)[i] =
s?[i] and a1; a2 2 Pk+1.
No other actions belong to Pk+1.

(b) Tk+1 = Tk [Pk+1

(c) Ak+1 = Ak � Pk+1

4. �(so; s?) = [1k=0Pk

2

15

The �rst part of de�nition 4.5 says that A is a set containing exactly one action
of each type in H, it will turn out later that a minimal SAS-PUBS plan contains
at most one action of every type. The set �(so; s?) is then recursively de�ned as
the union of an in�nite sequence P0; P1; : : : of sets of actions. The set P0 contains
exactly those actions that are required in order to change those features that di�er
between so and s?. The sets P1; P2; : : : contain set/reset pairs for those features
that are not to be changed permanently but have to be changed temporarily to
ful�l the prevail-conditions of other actions in the plan. In other words, if Pk
contains an action a whose prevail-condition for some feature i is not ful�lled by
any action in P0[: : :[Pk then Pk+1 contains a set/reset pair for the i:th feature.
This accomplishes that the i:th feature is temporarily set to the value required
by the prevail-condition of a and then changed back to its original value again,
which must also be the value of feature i in s? since there was no action in P0
a�ecting this feature. The set �(so; s?) is de�ned as the union of all Pk .

We de�ne the execution order �� for the actions in �(so; s?) using the orders

and �. These are de�ned s.t. a
a0 if a sets some feature to the value required
by the prevail-condition of a0 and we say that a 'enables' a0. We also de�ne that
a0�a if a changes some feature from the value required by the prevail-condition of
a0 to some other value and we say that a 'disables' a0. The order � is de�ned as
the transitive closure of the union of the orders
 and � and if a�a0 we say that
a 'precedes' a0.

De�nition 4.6 Suppose � is a set of actions or action types, then the relation
�� on � is de�ned as:

1. 8a; a0 2 �(a
�a0 $ 9i 2 M(e(a)[i] = f(a0)[i] 6= u))

2. 8a; a0 2 �(a��a
0 $ 9i 2 M(f(a)[i] = b(a0)[i] 6= u))

3. �� =
� [��

4. �� = �+�

2

Below follows the proof that the the above de�nitions characterize exactly the
parallel minimal plans, which is stated in theorem 4.25. To ease the burdens
of notation somewhat we will usually write � and implicitly understand this as
�(so; s?) and we will also omit the subscripts to the relations
, �, � and � if it
is clear from context which set they refer to. We will furthermore also implicitly
understand that all plans are plans from so to s? unless otherwise stated.

16

De�nition 4.7 A function r : L ! L is called a relabelling i� it is a permutation
on L. If r is a relabelling it is extended to also be a function r : L �H ! L�H
de�ned as r(hl; hi) = hr(l); hi, and it is further extended to be a function r :
2L�H ! 2L�H de�ned for sets of actions as r(A) = fr(a) j a 2 Ag. 2

De�nition 4.8 Two sets of actions A and A0 are isomorphic i� there exists a
bijection g : A! A0 s.t. type(a) = type(g(a)) for a 2 A. 2

Theorem 4.9 If A is a set of actions and r is a relabelling then r(A) is a set of
actions isomorphic to A. 2

Proof: Suppose A is a set of actions, then A � L � H and by de�nition also
r(A) � L � H. Since A is a set of actions, all a 2 A have unique labels, so,
since r is a permutation on L, all a 2 r(A) also have unique labels. It follows, by
de�nition 2.8, that r(A) is a set of actions.
To prove that r(A) is isomorphic to A we �rst de�ne an inverse r�1 to r as fol-
lows: r�1(r(l)) = l, r�1(hl; hi) = hr�1(l); hi and r�1(A) = fr�1(a) j a 2 Ag. It
is easily veri�ed that r�1 exists if r exists, so r is a bijection and it follows that
r(A) is isomorphic to A. 2

Lemma 4.10 If h	; �i is a plan and � exists then there is a relabelling r s.t.
r(�) � 	. 2

Proof: We prove that for all actions a 2 � we can choose a unique action
a0 2 	 s.t. type(a) = type(a0). Using the fact that � = [1k=0Pk we make a proof
by induction on k.

Basis: Let D = fi 2 M j so[i] 6= s?[i]g. By de�nition 4.5 P0 contains exactly one
action for each i 2 D and no other actions, so jP0j = jDj. Let a1; : : : ; ajDj be an
enumeration of P0. Since H is unary, 	 must contain at least one action for each
i 2 D in order to change so to s?. Select one such action from 	 for each i 2 D

and let a01; : : : ; a
0
jDj be an enumeration of these actions s.t., for 1 � j � jDj, a0j

and aj a�ect the same feature. Since H is post-unique there are no alternative
ways to change so[i] to s?[i] for any i 2 D, so type(aj) = type(a0j) for 1 � j � jDj.
We de�ne a relabelling r0 s.t. r0(label(aj)) = label(a0j) for 1 � j � jDj and r0(a)
is unde�ned for a 62 P0. It follows that type(r0(a)) = type(a) for all a 2 P0 and
therefore also that r0(P0) � 	.

17

Induction: Suppose there is a relabelling rj s.t. rj(Pj) � 	 for j > 1. By
de�nition 4.5, Pj+1 is either empty or consists of set/reset pairs. The case where
Pj+1 = ? is trivial. For the other case, let a11; a12; a21; a22; : : : ; an1; an2 be an
enumeration of Pj+1 s.t., for 1 � m � n, am1; am2 is a set/reset pair for some
unique feature i 2 M. For each m, am1 is in Pj+1 because of some action
am 2 Pj s.t. f(am)[i] 6v so[i] and there is no action a0m 2 Tj s.t. e(a0m)[i] =
f(am)[i]. The action am2 is in Pj+1 for the same reason, and with purpose of
resetting feature i to assure so[i] = s?[i]. By the induction hypothesis, rj(Pj) � 	
and thus also rj(am) 2 	. Hence there must be two actions a0m1; a

0
m2 2 	 s.t.

e(a0m1)[i] = f(rj(am))[i] = b(a0m2)[i] in order to ful�l the prevail-condition of
rj(am) and to assure that so[i] = s?[i]. Since S is binary and H is post-unique,
type(am1) = type(a0m1) and type(am2) = type(a0m2). It is thus possible to de�ne
a relabelling rj+1 s.t. rj+1(am1) = a0m1 and rj+1(am2) = a0m2 for am1; am2 2
Pj+1, rj+1(a) = rj(a) for a 2 Tj and rj+1 is otherwise unde�ned. Obviously,
type(rj+1(a)) = type(a) for a 2 Pj+1 and it follows that rj+1(Pj+1) � 	 which
proves the induction step.

Now, for k � 0, rk(Pk) � 	 for Pk as de�ned in de�nition 4.5 and rk as de�ned
above. We de�ne r1 = [1k=0rk. Since, for k > 0, rk+1 always agree with rk on
arguments in Tk and rk is always unde�ned for arguments not in Tk+1, it follows
that r1 is a function. Furthermore, since all rk are relabellings, r1 is also a
relabelling. Consequently, r1(Pk) � 	 for k � 0 and, since � = [1k=0Pk, it
follows that r1(�) � 	, which proves the lemma. 2

Corollary 4.11 If h	; �i is a plan and � exists then there is a relabelling r s.t.
� � r(). 2

Proof: We know from theorem 4.10 that there is a relabelling r0 s.t. r0(�) � 	.
We know from the proof of lemma 4.9 that all relabellings have an inverse, so we
let r0�1 be the inverse of r0. Obviously � � r0�1() 2

Lemma 4.12 If there is a plan then � exists. 2

Proof: Suppose that there is a plan h	; �i and also suppose that there is no
set � ful�lling de�nition 4.5. The non-existence of � can be for either of two
reasons; either the set P0 does not exist or there is a k > 0 s.t. Pk does not
exist. Suppose that P0 does not exist. The only possible reason for this is that

18

there is an i 2 M s.t. so[i] 6= s?[i] but there is no a 2 A s.t. b(a)[i] = so[i] and
e(a)[i] = s?[i]. It follows from the construction of A that for each h0 2 H there
is a unique a0 2 A s.t. type(a0) = h0. Consequently, there can be no h 2 H s.t.
b(h)[i] = so[i] and e(h)[i] = s?[i], and, since H is post-unique, there is no other
h00 2 H s.t. e(h00)[i] = s?[i]. However, since h	; �i is a plan from so to s? and
so[i] 6= s?[i] there must be an action a00 2 	 s.t. e(a00)[i] = s?[i] and therefore also
a h000 2 H s.t. e(h000)[i] = s?[i]. This is a contradiction, so P0 must exist. The
proof for the existence of Pk for k > 0 is analogous. This means that Pk exists
for all k � 0 and, by de�nition 4.5, also � must exist. 2

Lemma 4.13 If h	; �i is a plan from so to s? and there is a non-empty set � � 	
s.t. e(a) v s? for all a 2 �, then there are two states s; s0 2 S and an action

a0 2 	 s.t. s
a0

7�! s0, e(a) v s0 for all a 2 � and type(a0) = type(a) for some
a 2 �. 2

Proof: Let I� = fi 2 M j a 2 � ^ e(a)[i] 6= ug, and let S0 be the set of all states
s 2 S s.t. s[i] = s?[i] for all i 2 I�. Since � � 	 is non-empty, there must be
some action a 2 	 and two states s; s0 2 S s.t. s 62 S0, s0 2 S0 and s

a
7�! s0. That

e(a0) v s0 for all a0 2 � is immediate, and, since a obviously a�ects some j 2 I�
and H is post-unique, it also follows that type(a) = type(a0) for some a0 2 �. 2

Lemma 4.14 If there is a plan h	; �i from so to s? and � exists then � is a
partial order. 2

Proof: Suppose that � is not partially ordered. Then � is either not an-
tire
exive or not antisymmetric since it is transitive by de�nition. However,
non-antisymmetry implies non-irre
exivity so � is either not antire
exive but
antisymmetric, or not antisymmetric.

1. Suppose that � is not antire
exive but antisymmetric. Then there must be
an action a 2 � s.t. a�a, and, by antisymmetry and transitivity, we get
a�a. This means that either a
a or a�a, that is, either e(a)[i] = f(a)[i] 6= u

or f(a)[i] = b(a)[i] 6= u for some i 2 M both of which are contradicted by
axioms 2.4 and 2.6.

2. Suppose � is not antisymmetric. Then there are two di�erent actions a0; a00 2
� s.t. a0�a00 and a00�a0. It follows from de�nition 4.6 that there is a sequence

19

a1; : : : ; an 2 � � r() of actions s.t. ak�ak+1 for 1 � k � n and an�a1
where � � � and r is a relabelling s.t. � � r() (exists by corollary 4.11).
There are now three cases: � � �, � �
 or neither of these two.

(a) Suppose � � � so that ak�ak+1 for 1 � k � n and an�a1. Once again,
there are two cases; either e(ak) v s? for 1 � k � n or not.

i. Suppose e(ak) v s? for 1 � k � n. We know, by lemma 4.13,
that there are two states s; s0 2 S s.t. for some action a 2 	,
s0

a
7�! s, e(ak) v s for 1 � k � n and type(a) = type(al) for some

l s.t. 1 � l � n. By assumption there is an m s.t. al�am, i.e.
f(al)[i] = b(am)[i] 6= u for some i 2 M. Furthermore, f(al)[i] =
f(a)[i] v s[i], so b(am)[i] = s[i]. By hypothesis and axiom 2.4
we have e(am)[i] = s[i], so b(am)[i] = e(am)[i] which contradicts
axiom 2.5.

ii. Suppose that e(al) 6v s? for some l s.t. 1 � l � n. It is obvious
from de�nition 4.5 that al 62 P0 and that al is a set action for some
feature i 2 M. From the same de�nition it also follows that there
is an action a 2 � s.t. e(al)[i] = f(a)[i] 6= u. From the hypothesis
we know that for some m s.t. 1 � m � n we have am�al and thus
also f(am)[j] = b(al)[j] 6= u for some j 2 M. Unariness gives
i = j, and by axiom 2.5 we get b(al)[i] 6= e(al)[i], so u 6= f(a)[i] 6=
f(am)[i] 6= u which contradicts the single-valuedness of H.

(b) The case where � �
 is analogous to the previous case.

(c) Suppose that neither � � � nor � �
, then there are k, l and m s.t.
1 � k; l;m � n, ak�al and al
am. Hence f(ak)[i] = b(al)[i] 6= u and
e(al)[j] = f(am)[j] 6= u for some i; j 2 M, but H is unary, so i = j.
Now, axiom 2.5 gives b(al)[i] 6= e(al)[i] so f(ak)[i] 6= f(am)[i] which
contradicts the single-valuedness of H.

2

De�nition 4.15 In order to increase readability of the following proofs we de�ne
~P = [1k=1Pk. 2

Lemma 4.16 Given a feature i 2 M, a set 	 of actions s.t. none of its actions

a�ects i, and a total order � on 	; if s
	;�
7�! s0 for some s; s0 2 S then s[i] = s0[i].

2

20

Proof: Proof by induction over the size of 	.

Basis: Suppose 	 = ?, then, by def 2.9, s
	;�
7�! s0 i� s = s0, so s[i] = s0[i].

Induction: Suppose the lemma holds for j	j � k, and let � be any set of actions
s.t. j�j = k + 1 and � contains no actions a�ecting i. Now, let a be the last

action in �, according to the order �, and let �0 = � � fag. If s
�;�
7�! s0, then

there must also be a state s00 2 S s.t. s
�0;�
7�! s00 and s00

a
7�! s0. It follows from the

induction hypothesis that s[i] = s00[i] and from de�nition 2.9 that s00[i] = s0[i], so
s[i] = s0[i]. Consequently, the lemma holds for all totally ordered sets of actions
not a�ecting i. 2

Lemma 4.17 For each i 2 M, one of three cases occur: �[i] = ?, �[i] = P0[i] =
fag or �[i] = ~P [i] = fa; ag, where, in the two latter cases, a is set action for i.
2

Proof: The case �[i] = ? occurs when so[i] = s?[i] and for all actions a 2 �,
f(a)[i] v so[i]. For the other cases, suppose that �[i] 6= ?, and let m be the
minimal k � 0 s.t. Pk[i] 6= ?. Suppose m = 0, then P0[i] 6= ? so so[i] 6= s?[i]
and there is a set action a for i in P0, and, by de�nition 4.5, P0[i] = fag. Now
suppose thatm > 0, then, by de�nition 4.5, Pm[i] = fa; ag where a is a set action
for i. Furthermore, for all k > m � 0, Pm � Tk, so there is a set action a for i
in Tk, and, by de�nition 4.5, Pk [i] = ?. Hence, �[i] = Pm[i], so, when �[i] 6= ?,
either �[i] = P0[i] = fag or �[i] = ~P [i] = fa; ag where a is a set action for i. 2

Lemma 4.18 If � exists and � is a partial order on �, then there is a state
s 2 S s.t. h�; �i is a plan from so to s. 2

Proof: We prove that, for any total order � s.t. � � �, h�; �i is a linear plan,

which amounts to proving so
�;�
7�! s.

Let n = j�j and let a1; : : : ; an be the actions in � as ordered under �. We prove

by induction on k that, for 1 � k � n, there are sk�1; sk 2 S s.t. sk�1
ak7�! sk .

Basis: Suppose b(a1)t f(a1) 6v so, then either b(a1) 6v so or f(a1) 6v so.

1. Suppose b(a1) 6v so, then there is an i 2 M s.t. u 6= b(a1)[i] 6= so[i]. Si
is binary, so, by axiom 2.5, we get e(a1)[i] = so[i]. Hence, a1 62 P0, which

21

means that a1 2 ~P and, furthermore, a1 must be a reset action for i and,
by de�nition 4.5, there is some action a 2 � s.t. f(a)[i] = b(a1)[i]. This
gives a�a1 which implies a�a1 and also a�a1, which contradicts that a1 is
the �rst action in � under the order �. Consequently, b(a1) v so.

2. Suppose f(a1) 6v so, then there is an i 2 M s.t. u 6= f(a1)[i] 6= so[i]. By
de�nition 4.5 there must be an action a 2 � s.t. e(a)[i] = f(a1)[i], which
implies a
a1 and thus also a�a1. This contradicts that a1 is the �rst action
in � under �, so f(a1) v so.

Since both b(a1)[i] v so and f(a1)[i] v so there must be some state s1 2 S s.t.
so

a17�! s1.

Induction: For 1 � k < n, suppose that there are states sk�1; sk 2 S s.t.

sk�1
ak7�! sk , and also suppose that b(ak+1) t f(ak+1) 6v sk .

1. Suppose that b(ak+1) 6v sk, then there is some i 2 M s.t. u 6= b(ak+1)[i] 6=
sk[i]. There are now two cases:

(a) Suppose sk [i] = so[i], then, by axiom 2.5 and binariness of Si, e(ak+1)[i] =
so[i], so ak+1 is a reset action for i and, since P0 contains only set
actions, ak+1 2 ~P . Hence, there must be an action a 2 � s.t.
f(a)[i] = b(ak+1)[i], so a�ak+1 and also a�ak+1. We further know,
by lemma 4.17, that �[i] = fak+1; ak+1g. Now, e(ak+1)[i] = f(a)[i],
so ak+1�ak+1. It follows from the induction hypothesis and lemma 4.16
that sk[i] = e(ak+1)[i], but e(ak+1)[i] = b(ak+1)[i], which contradicts
the assumption.

(b) Suppose sk[i] 6= so[i], then b(ak+1)[i] = so[i] and ak+1 must be a set
action for i. De�nition 4.6 and lemma 4.17 give that there is no action
a 2 � s.t. a�ak+1 and a a�ects i, so lemma 4.16 give that sk[i] = so[i],
which contradicts the assumption.

Consequently, b(ak+1) v sk .

2. Now suppose that f(ak+1) 6v sk , which means that u 6= f(ak+1)[i] 6= sk [i]
for some i 2M. There are two cases:

(a) Suppose f(ak+1)[i] = so[i]. Now, if there is some action a 2 � s.t.
b(a)[i] = so[i] = f(ak+1)[i] then ak+1�a and thus also ak+1�a. Lemma
4.16 give sk [i] = so[i] = f(ak+1)[i], contradicting the assumption.

(b) Suppose f(ak+1)[i] 6= so[i], then, by de�nition 4.5, there is a set action
a 2 � for i s.t. e(a)[i] = f(ak+1)[i], and thus also a
ak+1 and a�ak+1.

22

Either a 2 P0 and then �[i] = fag, or a 2 ~P and then �[i] = fa; ag.
In the latter case, b(a)[i] = f(ak+1)[i], so a�ak+1 and thus also a�ak+1.
In either case is a the only action that a�ects i and is ordered before
ak+1. By lemma 4.16 and induction hypothesis, sk [i] = e(a)[i] 6= so[i],
so f(ak+1)[i] = sk [i], which contradicts the assumption.

Consequently, f(ak+1) v sk .

Since both b(ak+1) v sk and f(ak+1) v sk , there is a state sk+1 s.t. sk
ak+1
7�! sk+1,

which ends the induction step.

Putting s = sn concludes the proof. 2

Lemma 4.19 If h�; �i is a plan from so to s for some state s 2 S then s = s?.
2

Proof: We prove that if h�; �i is a plan from so to s for an arbitrary total

order � s.t. � � �, then s = s?. This amounts to proving that if so
�;�
7�! s then

s = s?. We �rst de�ne D = fi 2 M j so[i] 6= s?[i]g and divide the proof into two
parts, the �rst for features in D and the second for features not in D.

For the �rst part, we observe from de�nition 4.5 that for each i 2 D there is
exactly one action in P0 a�ecting i. For i 2 D, lemma 4.17 give �[i] = P0[i] = fag
where a is a set action for i. Let �� = fa0 2 � j a0�ag and �+ = fa0 2 � j a�a0g.

There must, by de�nition 2.9 be states s1; s2 2 S s.t. so
��;�
7�! s1, s1

a
7�! s2 and

s2
�+;�
7�! s, and, by lemma 4.16, s[i] = s2[i] = e(a)[i] = s?[i].

For the second part, we �rst observe that ~P = � � [i2D�[i] = [i62D�[i], so
�[i] � ~P for all i 62 D. It follows from lemma 4.17 that, for i 62 D, either
�[i] = ? or �[i] = fa; ag. Suppose �[i] = ?, then it is immediate from 4.5 that
s?[i] = so[i] and from lemma 4.16 that s[i] = so[i], so s[i] = s?[i]. Now suppose
that �[i] = fa; ag where a is a set action for i. According to de�nition 4:5 there
must be some action a0 2 � s.t. e(a)[i] = f(a0)[i] = b(a)[i]. Hence a
a0 and
a0�a from which follows that a�a and also a�a. We de�ne �� = fa0 2 � j a0�ag,
� = fa0 2 � j a�a0 ^ a0�ag and �+ = fa0 2 � j a�a0g. Now, there must be states

s1; s2; s3; s4 2 S s.t. so
��;�
7�! s1, s1

a
7�! s2, s2

�;�
7�! s3, s3

a
7�! s4 and s4

�+;�
7�! s.

It follows from de�nition 2.9 and lemma 4.16 that s[i] = so[i], and, by de�nition
4.5, also s[i] = s?[i].

23

Consequently, s[i] = s?[i] for all i 2 M, and thus also s = s?. 2

Theorem 4.20 If � exists and � is a partial order then h�; �i is a plan. 2

Proof: Immediate from lemmata 4.18 and 4.19. 2

It is worth noticing that theorem 4.20 holds also if H is not single-valued.

Theorem 4.21 If there is a plan then � exists and h�; �i is a plan. 2

Proof: Immediate from lemmata 4.12, and 4.14 and from theorem 4.20. 2

Theorem 4.22 If � exists and h�; �i is a plan then h�; �i is a minimal plan.
2

Proof: Lemmata 4.10 and 4.12 gives that if h	; �i is a plan then � exists and
there is a relabelling function r s.t. r(�) � 	. By theorem 4.9, � and r(�) are
isomorphic so j�j = jr(�)j. It follows that j�j � j	j, so if � exists and there is
a partial order � on � s.t. h�; �i is a plan, then h�; �i is a minimal plan. 2

Theorem 4.23 All minimal plans contains at most one action of each type in
H. 2

Proof: It follows from lemma 4.10 and theorems 4.21 and 4.22 that all minimal
plans contains the same number of each action type as � so the theorem follows
from lemma 4.17. 2

Theorem 4.24 If � exists then h�; �i is a parallel plan. 2

24

Proof: Suppose there is a pair of distinct actions a; a0 2 � s.t. neither a�a0

nor a0�a and a and a0 are not independent. De�nition 2.12 give that either of the
following cases must apply.

1. Suppose b(a)[i] 6= u and b(a0)[i] 6= u, then lemma 4.17 give a; a0 2 ~P [i]
and a0 = a. It follows from de�nition 4.5 that there is some a00 2 � s.t.
b(a)[i] = f(a00)[i] = e(a0)[i] or b(a0)[i] = f(a00)[i] = e(a)[i]. Suppose the �rst
of these holds, then a0
a00 and a00�a so de�nition 4.6 give a0�a. The other
case is symmetrical and result in a�a0 so the assumption is in violated in
either case.

2. Suppose b(a)[i] 6= u and f(a0)[i] 6= u, then either b(a)[i] = f(a0)[i] or
e(a)[i] = f(a0)[i] because of binariness, so either a0�a or a
a0. It follows by
de�nition 4.6 that either a0�a or a�a0 so the assumption is violated.

3. The case b(a0)[i] 6= u and f(a)[i] 6= u is analogous to the previous case.

4. The case f(a)[i] 6v f(a0)[i] and f(a0)[i] 6v f(a)[i] is impossible because of
single-valuedness.

Since neither case apply, there can be no such pair a; a0 so de�nition 2.13 give
that the lemma holds. 2

Theorem 4.25 � exists and h�; �i is a parallel minimal plan i� there is a plan
at all. 2

Proof: The if part follows from theorems 4.21, 4.22 and 4.24. The only-if part
is immediate. 2

4.3 Finding SAS-PUBS Plans

This section presents an algorithm that �nds parallel minimal plans for SAS-
PUBS problems according to the existence criterion stated in de�nitions 4.5 and
4.6. The presentation of the algorithm is followed by a correctness proof.

De�nition 4.26 We assume that the following functions and procedures are
available:

25

Insert(S,a) Inserts the action a into the set S.

Find(S,i,x) Searches the set S for an action a s.t. b(a)[i] = x. Returns a if found,
otherwise returns nil.

R�nd(S,i,x) Like Find, but also removes a from S if it is found.

TransitiveClosure(R) Returns the transitive closure of the relation R.

2

Algorithm 4.1

Input: M, a set of feature indices, A, a set containing exactly one action for
each action type in H, and so and s?, the initial and �nal states respectively.

Output: D, a set of actions, and r, a relation on D.

1 ProcedurePlan(M :set of feature indices;A :set of actions; so; s? :state);
2 var

3 i :feature index;
4 a; a0; a1; a2 :action;
5 P;Q;D :set of actions;
6 r :boolean matrix;
7
8 begin

9 D := ?;
10 P := ?;
11
12 for i 2 Mdo

13 if so[i] 6= s?[i] then
14 a :=R�nd(A; i; so[i]);
15 if a 6= nil then Insert(P; a);Insert(D;a)
16 else fail

17 end fifg
18 endfifg
19 endfforg;
20
21 whileP 6= ?do

22 Q := ?;
23 fora 2 P do

24 for i 2 Mdo

26

25 if f(a)[i] 6v so[i] then
26 a0 :=Find(D; i; so[i]);
27 if a0 = nil then

28 a1 :=R�nd(A; i; so[i]);
29 a2 :=R�nd(A; i; f(a)[i]);
30 if a1 = nil ora2 = nil then fail

31 else Insert(Q; a1);Insert(Q; a2);
32 Insert(D; a1);Insert(D; a2)
33 endfifg
34 endfifg
35 endfifg
36 endfforg
37 endfforg;
38 P := Q

39 endfwhile g;
40
41 r := \jDj � jDj zero matrix";
42
43 fora 2 D do

44 fora0 2 Ddo

45 for i 2 Mdo

46 if e(a)[i] = f(a0)[i] 6= u then r(a; a0) := 1 end;
47 if b(a0)[i] = f(a)[i] 6= u then r(a; a0) := 1 end
48 endfforg
49 endfforg
50 endfforg;
51
52 r := TransitiveClosure(r)
53 return hD; ri
54 end fPlang

The �rst part of the algorithm, lines 12{19, compares the states so and s? and
for each feature that di�ers it searches A for an appropriate action to change this
feature. If such an action is found it is removed from A and inserted into D and
P , and otherwise the algorithm fails. Immediately after line 19, P corresponds to
the set P0 of de�nition 4.5. The next part, lines 21{39, �nds the actions needed
to satisfy the prevail-conditions of the actions in the plan. The variables are used
so that the k:th time through the while loop P = Pk�1 and Q = Pk. The variable
D is the union of all Pk:s so far. The while loop terminates as soon as P = ?,
that is Pk = ? after the k:th time through the loop. It is proven below that this
is su�cient so no in�nite chain of empty Pk :s need be constructed. D = � after
the termination of the while loop. The for loops in lines 43{50 then goes through

27

all pairs a; a0 of actions in D and marks that ara0 if a
a0 or a�a0. Finally r is
set to the transitive closure of itself, so r corresponds to the relation � when the
algorithm terminates.

The algorithm is not optimized since our goal has only been to prove tractability.
However, it is obvious that the algorithm could be further optimized. For exam-
ple, The relation r is probably better stored as an adjacency list. It is also worth
noting that the post-conditions of the actions are never used in the algorithm.
The rest of this subsection presents the correctness proof of the algorithm, which
results in theorem 4.36.

Lemma 4.27 Throughout the execution of the algorithm, A � A and D � A.
2

Proof: Initially A = A and no actions are ever inserted into A, so clearly
A � A. Furthermore, all actions inserted into D are �rst found in A by the
function R�nd, so D � A and thus also D � A. 2

Lemma 4.28 If Pn = ? for some n � 0 then [1k=0Pk = [nk=0Pk . 2

Proof: We prove by induction over k that Pk = ? for k � n. Basis: Pn = ?
by assumption. Induction: If Pk = ? then Pk+1 = ? by de�nition 4.5. Conse-
quently, Pk = ? for k � n, so [1k=0Pk = [nk=0Pk [[

1
k=n+1Pk = [nk=0Pk . 2

Lemma 4.29 If P0 exists according to de�nition 4.5, then P = P0, D = T0 and
A = A0 at line 20 of the algorithm. 2

Proof: This proof concerns the loop in line 12{19 of the algorithm. We �rst
observe that R�nd is called at most once for each i 2 M, so, since H is unary,
no action a 2 A will be searched for in A more than once. Since actions can be
deleted from A only by R�nd, no attempt will ever be made to delete an action
already searched for in A. We will now prove that for each a 2 A we have, at
line 20, a 2 P i� a 2 P0. For the if case, suppose that a 2 P0. Hence, there must
be an i 2 M s.t. so[i] 6= s?[i] and b(a)[i] = so[i], so R�nd will be called to search
for a in A. Since a 2 P0 � A, initially A = A, and, by the observation above, a
has not been searched for earlier, we have a 2 A. Consequently, a will be found

28

and inserted into P . For the only if case, suppose that a 62 P0, and i 2 M is the
feature a�ected by a. Now, since a 62 P0, either so[i] = s?[i] or b(a)[i] 6= so[i],
so either R�nd is never called to search for a, or one failed search for a is per-
formed. In neither case is a inserted into P . Since P is initially empty and no
actions are removed from P , it is obvious that P = P0 in line 20. We furthermore
observe that the actions inserted into D and deleted from A are exactly those
actions inserted into P . Since, initially, D = ? and A = A and since nothing is
inserted into A and nothing is deleted from D, we have D = P = P0 = T0 and
A = A� P = A� P0 = A0 in line 20. 2

Lemma 4.30 For k � 0, if Pk+1 exists according to de�nition 4.5 and if P = Pk,
D = Tk and A = Ak before the k+1:st iteration of the while loop in line 21{39
of the algorithm, then P = Pk+1, D = Tk+1 and A = Ak+1 after the k+1:st
iteration of the loop. 2

Proof: We �rst observe that the value of P is not changed until after the double
for loop in line 23{37, so P = Pk during this loop. Also Q = ? immediately
before the double for loop. We further observe that no actions are deleted from Q

or D and no actions are inserted into A, so Tk � D and A � Ak during the double
for loop. We now prove that for all a00 2 A, a00 2 Pk+1 i� a00 2 Q immediately
after the double for loop.

For the if case, suppose that a00 2 Q at line 38, then a00 has been inserted into Q

in some iteration of the double for loop. From the algorithm we get that either
b(a00)[i] = so[i] or e(a00)[i] = so[i]. The algorithm further gives that there is an
action a 2 P s.t. f(a)[i] 6v so[i] and there is no action a

0 2 D s.t. e(a0)[i] = f(a)[i].
However, P = Pk throughout the loop and Tk � D, so a 2 Pk and a0 62 Tk.
Since Pk+1 exists, there are, by de�nition 4.5, two actions a1; a2 2 Pk+1 s.t.
b(a1)[i] = so[i] and e(a2)[i] = so[i]. The set A contains at most one action of each
type and H is post-unique, so, obviously, a00 = a1 or a

00 = a2, and thus a00 2 Pk+1
in either case.

For the only if case, suppose that a00 2 Pk+1 and that i 2 M is the feature a�ected
by a00. Since Si is binary, either b(a00)[i] = so[i] or e(a00)[i] = so[i]. By de�nition
4.5, there is an action a 2 Pk s.t. f(a)[i] 6v so[i] and there is no action a0 2 Tk
s.t. e(a0)[i] = f(a)[i]. Now, let m be the number such that the value of the loop
variables of the double for loop are a and i respectively during the m:th iteration
of the double for loop. Such an m exists since a 2 Pk and P = Pk during the
loop. It follows that f(a)[i] 6v so[i] in the m:th iteration, so Find is called to
search D for an action a0 s.t. b(a0)[i] = so[i]. This search either succeeds or fails.

29

Suppose it fails, then R�nd is called to search A for two actions a1 and a2 s.t.
b(a1)[i] = so[i] and b(a2)[i] = f(a)[i]. Since Pk+1 exists, de�nition 4.5 give that
there are two actions a01; a

0
2 2 Ak s.t type(a1) = type(a01) and type(a2) = type(a02).

By construction, A contains at most one action of each type, so a0 = a1 = a01
and a2 = a02, and, hence, a

0; a1; a2 2 Ak. Since the search for a0 in D failed,
a0 2 Ak, A = Ak immediately before the double for loop, and no actions are
deleted from A without being inserted into D, a0 2 A immediately before the
m:th iteration. Furthermore, either both a1 and a2 are deleted from A, or none
of them is, so a2 2 A immediately before the m:th iteration. Consequently, the
search for a1 and a2 in A succeeds, and these actions are thus also inserted into
Q, so a1; a2 2 Q in line 38. Now suppose that the search for a0 in D succeeds.
Since a0 62 Tk and Tk � D, a0 = a1 must have been inserted into D in the l:th
iteration of the double for loop for some l s.t. 1 � l < m. Hence, also a2 has
been inserted into Q in the l:th iteration, so a1; a2 2 Q in line 38. In either case
we have a1; a2 2 Q in line 38 and since a00 = a1 or a

00 = a2 we also have a00 2 Q

in line 38.

Consequently, a00 2 Pk+1 i� a00 2 Q at line 38, so P = Q = Pk+1 immedi-
ately after the k+1:st iteration of the while loop. Furthermore, the actions
inserted into Q are exactly those actions inserted into D and deleted from A, so
D = Tk [Q = Tk [Pk+1 = Tk+1 and A = Ak �Q = Ak � Pk+1 = Ak+1 after the
k+1:st iteration of the while loop. 2

Lemma 4.31 If � exists, then D = � after line 39 of the algorithm. 2

Proof: If � exists, then Pk exists for all k � 0. Using lemma 4.29 as basis and
lemma 4.30 as induction step it is easily proven by induction that P = Pk ,D = Tk
and A = Ak after the k:th iteration of the loop in line 21{39. Furthermore, the
loop terminates as soon as P = ?. Let m be the smallest k s.t. Pk = ?, then the
loop terminates after the m:th iteration, where we understand the case m = 0 as
the case where the loop does not iterate at all. Lemma 4.28 and de�nition 4.5
give that D = Tk = [mk=0Pk = [1k=0Pk = �. 2

Lemma 4.32 If P0 does not exist, then the algorithm fails before line 20. 2

Proof: If P0 does not exist, this must be because there is an i 2 M s.t.
so[i] 6= s?[i], but there is no action a 2 A s.t. b(a)[i] = so[i] and e(a)[i] = s?[i].

30

Since so[i] 6= s?[i], the R�nd call in line 14 will search for an action a0 2 A s.t.
b(a0)[i] = so[i], but, since A � A, Si is binary and H is post-unique, there can be
no such action in A. Hence, R�nd will return nil and the algorithm will fail. 2

Lemma 4.33 If there is a k > 0 s.t. Pk+1 does not exist, then the algorithm
fails in the k+1:st iteration of the loop in line 21{39. 2

Proof: If Pk+1 does not exist, then there is an a 2 Pk s.t. f(a)[i] 6v so[i], there
is no a0 2 Tk s.t. e(a

0)[i] = f(a)[i] and there is either no a1 2 Ak s.t b(a1)[i] = so[i]
or no a2 2 Ak s.t. b(a2)[i] = f(a)[i]. Since Si is binary, H is post-unique and A
contains at most one action of each type, we have a0 = a1 and a2 = a1. We know
that P = Pk during the double for loop, so a 2 P during the whole loop. Either
a1 62 Ak or a2 62 Ak. Suppose a1 62 Ak, then a1 62 A since a0 = a1, a

0 62 Tk and,
from de�nition 4.5, A = Tk [Ak. Because a 2 P , Find will be called to search D

for a0, but, since a0 62 A and D � A, a0 62 D so the search will fail. Consequently,
R�nd will be called to search A for a1, but this search will fail since a1 = a0 and
A � A, so the algorithm will fail. Now suppose that a2 62 Ak. We know a0 62 D

so R�nd will search A for a1 and a2 during some iteration of the double for loop,
but the search for a2 will fail, and so will the algorithm. 2

Lemma 4.34 If � does not exists, then the algorithm fails before line 40. 2

Proof: If � does not exist, then there is a k � 0 s.t. Pk does not exist, so, by
lemmata 4.32 and 4.33, the algorithm will fail before line 41. 2

Lemma 4.35 If � exists, then r = � after line 52. 2

Proof: By lemma 4.34 the algorithm will go through lines 41{53 if � exists.
First, r is initialized as a jDj � jDj zero matrix. For each pair a; a0 of actions in
D, the a; a0 entry in r is marked 1 if either e(a)[i] = f(a0)[i] or b(a0)[i] = f(a)[i],
corresponding to a
a0 and a�a0 respectively. Hence r is a relation matrix for �D
in line 51, and in line 52 r is set to the transitive closure of itself, thus yielding
the transitive closure of �D, i.e. �D. By lemma 4.31, D = � after line 39, so
r=�D = �. 2

31

Theorem 4.36 Algorithm 4.1 returns a parallel minimal plan from so to s? if
there is any plan from so to s? and otherwise it fails. 2

Proof: Straightforward from lemmata 4.31, 4.34, 4.35 and theorems 4.24 and
4.25. 2

4.4 Complexity Results for SAS-PUBS Planning

This subsection is devoted to the complexity analysis of algorithm 4.1. The �rst
result is theorem 4.38 stating the time complexity of the algorithm is polynomial
in the number of features. We also analyse the complexity of deciding whether a
given problem is in the SAS-PUBS class and theorem 4.41 states that the total
complexity of both �nding whether the algorithm is applicable and, if so, apply
it is also polynomial in the number of features. Finally, the space complexity is
stated in theorem 4.42. Our goal is only to prove that the algorithm is tractable,
so no attempts have been made to reduce the complexity �gure further. We
follow the notation used by Baase (1988).

Lemma 4.37 O(jHj) � O(jMj) for SAS-PUBS problems. 2

Proof: H is post-unique, so H contains at most jSij action types a�ecting i for
each i 2 M. Since Si is binary for all i 2 M, jHj � 2jMj, from which the lemma
follows trivially. 2

Theorem 4.38 Algorithm 4.1 runs in O(jMj3) time, worst-case. 2

Proof: As basic operations we take variable assignment, elementary pointer
operations, and comparison of two feature values, all of which are constant time
operations. For simplicity, we assume that states are represented as arrays and
sets as unordered linked lists. Consequently, the number of operations used by
Find and R�nd is linear in the size of the set searched and the number of opera-
tions used by Insert is constant.

1. Initializing D and P takes a constant number of operations.

32

2. The for loop in line 12{19 does jMj iterations and, in the worst case,
the loop body searches A for an action, which takes O(jAj) operations.
A � A and, by def 4.5, jAj = jHj, giving jAj � jAj = jHj, so the search
takes O(jAj) � O(jHj) � O(jMj) operations. Hence, the whole loop does
O(jMj2) operations in the worst case.

3. To analyze the while loop in line 21{39, we must �rst determine how many
iterations are done by the while loop and the outer for loop (iterating
over P). Let m be the smallest k s.t. Pk = ?. We observe that the
while loop terminates as soon as P = ?, and, by lemmata 4.29 and 4.30,
P = Pk after the k:th iteration of the loop, so the loop terminates after
th m:th iteration. By lemma 4.28, [mk=0Pk = � � A, so, since all Pk
are disjoint, the body of the combined while loop and outer for loop doesPm

k=0 jPkj = j�j � jAj = jHj iterations. The inner for loop does jMj turns,
so the body of the inner for loop is executed O(jHjjMj) times. In worst
case, the loop body searches D once and A twice, but D � A and A � A
so the loop body does O(jAj) = O(jHj) operations. Hence, the while loop
does O(jHj2jMj) � O(jMj3) operations in the worst case.

4. Initializing r takes �(jDj2) operations, but D � A, so �(jDj2) � O(jAj2) =
O(jHj2) � O(jMj2). Hence, the initialization takes O(jMj2) operations.

5. The double for loop in line 43{50 does �(jDj2jMj) � O(jMj3) operations.

6. Baase (1988) proves that Warshalls algorithm can be used to compute the
transitive closure of any relation over D using �(jDj3) � O(jMj3) opera-
tions.

Clearly, the algorithm does O(jMj3) operations in the worst case. 2

An alternative `standard' method for SAS-PUBS planning would be to construct
a graph with the states in S as vertices and the actions in A as arcs. Assuming
that all arcs have unit cost, we could apply a shortest path algorithm to the graph.
Unfortunately, the time complexity for constructing the graph is exponential in
jMj and the time consumed by the shortest path algorithm is at least linear in
the size of the graph , so this approach is no e�ective alternative to our algorithm.
On the other hand, this latter method is applicable to a larger class of problems
than the SAS-PUBS class.

It is also appropriate to remark on the parameter used for measuring time com-
plexity. While the number of actions in the solution, that is the generated plan, is
usually used as parameter, for example by Chapman (1987) and Dean and Boddy

33

(1988), we use the number of features. We �nd our parameter more natural since
it is known in advance, while, in the former approach, we �rst have to �nd the so-
lution before we can say how hard it is to �nd. In defense of the former approach,
it should be said that, for constraint-posting planners with in�nite domains, it is
hard to measure the complexity in other parameters.

Theorem 4.39 Deciding whether a given SAS problem is in the SAS-PUBS class
can be done in O(jMj3) time. 2

Proof: Testing whether S is binary requires examining Si, for each i 2 M, to see
whether it contains more than two elements or not. This requires O(jMj) opera-
tions. Testing whetherH is unary requires testing for each h 2 H whether there is
more than one i 2 M s.t. b(h)[i] 6= u. This can be done in O(jHjjMj) � O(jMj2)
time. To test whether H is post-unique requires examining each pair h; h0 2 H
to see if e(h)[i] = e(h0)[i] for some i 2 M. This can be done in O(jHj2jMj) �
O(jMj3) time. Checking whether H is single-valued requires checking for each
pair h; h0 2 H whether u 6= f(h)[i] 6= f(h0)[i] 6= u for some i 2 M. This takes
O(jHj2jMj) � O(jMj3) time. Consequently, deciding whether a given SAS prob-
lem is SAS-PUBS thus takes O(jMj3) time. 2

Theorem 4.40 Testing whether H ful�lls axioms 2.3{2.7 takes O(jMj3) time.
2

Proof: Testing whether H ful�lls the �rst four axioms requires looping through
H and M and thus takes O(jHjjMj) � O(jMj2) time. Testing that the last
axiom is ful�lled requires testing each i 2 M for each pair h; h0 2 H and thus
takes O(jHj2jMj) � O(jMj3) time. Hence, testing whether H ful�lls the axioms
takes O(jMj3) time. 2

Theorem 4.41 Given a planning problem hM;S1; : : : ;SjMj;H; so; s?i ful�lling

de�nitions 2.1 and 2.2, it takes O(jMj3) time to decide whether algorithm 4.1 is
applicable and, if so, �nd a minimal plan from so to s? or report that no plan at
all exists from so to s?. 2

Proof: Immediate from theorems 4.38, 4.39 and 4.40. 2

34

Theorem 4.42 Algorithm 4.1 uses O(jMj2) space. 2

Proof: We assume that states are represented as arrays of feature values. We
further assume that actions are represented as tuples hl; b(h); f(h)i, that is, we
represent the action type by its corresponding pre- and prevail-conditions. Note
that the post-condition is implicit in the pre-condition for the SAS-PUBS class.
Sets are assumed to be represented as linked lists, and matrices as arrays.

State and action variables clearly use O(jMj) space. P � A, Q � A, D � A and
A � A, so P;D;Q, and A contain O(jAj) = O(jHj) � O(jMj) actions. Hence,
each of these variables occupy O(jMj2) space. The relation matrix r is of size
O(jDj2) � O(jAj2) � O(jMj2). The total space required by the algorithm is
clearly O(jMj2). 2

5 Example

In this section we apply our planning algorithm to a simple example. The prob-
lem is to refuel an aircraft using a mobile refuel vehicle, an example chosen for
pedagogical reasons rather than realism. We de�ne four features such that for
any state s 2 S, the state s = hs[1]; s[2]; s[3]; s[4]i is interpreted as:

s[1] =

(
0 if the tank of the aircraft is empty
1 if the tank of the aircraft is full

s[2] =

(
0 if the refuel vehicle is not at the aircraft
1 if the refuel vehicle is at the aircraft

s[3] =

(
0 if the aircraft is not grounded
1 if the aircraft is grounded

s[4] =

(
0 if the tank of the aircraft is open
1 if the tank of the aircraft is not open

When refuelling the aircraft, it is important to eliminate the voltage di�erence
between the aircraft and the refuel vehicle in order to avoid sparks. That the
aircraft is grounded thus means that such an electrical connection is established,
so grounding has nothing to do with whether the aircraft is airborne or not.
There are seven action types in H, and these are de�ned together with their pre-,
post-, and prevail-conditions in table 2. We furthermore assume L to consist of
the natural numbers and we let

A = fh1; refueli; h2; vehicle to aircrafti; h3; vehicle from aircrafti;

35

h4; groundi; h5; ungroundi; h6; close tanki;

h7; open tankig:

The initial state is

so = h0; 0; 0; 1i

and the �nal state is

s? = h1; 0; 0; 1i

which means that we want to refuel the aircraft. The problem of �nding a plan
from so to s? is clearly in the SAS-PUBS class. We will now work through the
algorithm on this example.

The for loop in lines 12{19 test for every i 2 M whether so[i] 6= s?[i] and, if
this is the case, R�nd is called to search A for an action that changes the i:th
feature from so[i] to s?[i]. If such an action is found R�nd removes it from A and
inserts it into D and P . Now, so[1] 6= s?[1] so R�nd searches A for an action a

s.t. b(a)[1] = so[1] and thus implicitly also e(a)[1] = s?[1]. The only action in
A satisfying this condition is h1; refueli which is deleted from A by R�nd and
inserted into D and P . The states so and s? are equal for all other features so
we have the following variable values after the for loop

A = fh2; vehicle to aircrafti; h3; vehicle from aircrafti; h4; groundi;

h5; ungroundi; h6; close tanki; h7; open tankig

D = fh1; refuelig

P = fh1; refuelig

Since P 6= ? we go through the while loop in lines 21{39 and each a 2 P is
processed by the for loop in lines 24{36. Without loss of generality we assume
the actions in P are processed in the order they were inserted into P .

The �rst time through the while loop there is only one action, h1; refueli in P .
The inner for loop goes through all i 2 M and test whether f(h1; refueli)[i] 6v
so[i]. If this is the case, the algorithms tries to satisfy this condition either by
�nding an set action for i already in D or by inserting a set/reset pair for i into
D. f(h1; refueli)[1] = u so nothing happens the �rst time through the loop.
However, f(h1; refueli)[2] = 1 6v so[2] = 0 so Find is called to search D for an
action a s.t. b(a)[2] = 1. No such a exists in D so the search fails and R�nd is
instead called to search A for a set/reset pair a1; a2 for feature 2. This succeeds
with a1 = h2; vehicle to aircrafti and a2 = h3; vehicle from aircrafti which
are removed from A and inserted into D and Q. We now have

A = fh4; groundi; h5; ungroundi; h6; close tanki; h7; open tankig

36

D = fh1; refueli; h2; vehicle to aircrafti; h3; vehicle from aircraftig

P = fh1; refuelig

Q = fh2; vehicle to aircrafti; h3; vehicle from aircraftig

The same procedure is repeated for features 3 and 4 and the set/reset pairs
h4; groundi; h5; ungroundi and h6; close tanki; h7; open tanki respectively are found.
Immediately before line 38 we have the following variable values

A = ?

D = fh1; refueli; h2; vehicle to aircrafti; h3; vehicle from aircrafti;

h4; groundi; h5; ungroundi; h6; close tanki; h7; open tankig

P = fh1; refuelig

Q = fh2; vehicle to aircrafti; h3; vehicle from aircrafti; h4; groundi;

h5; ungroundi; h6; close tanki; h7; open tankig

and P is then set to Q so

P = fh2; vehicle to aircrafti; h3; vehicle from aircrafti; h4; groundi

h5; ungroundi; h6; close tanki; h7; open tankig

and we go through the while loop a second time. The �rst two actions re-
moved from P are h2; vehicle to aircrafti and h3; vehicle from aircrafti, but
f(h2; vehicle to aircrafti)[i] = f(h3; vehicle from aircrafti)[i] = u for all i 2
M so A, D, P and Q remain invariant the �rst two times through the outer for
loop. The third action removed from P is h4; groundi and f(h4; groundi)[i] = u

for all i 2 M except for i = 2. However, Find searches D for an action a0 in D

s.t. b(a0)[2] = so[2] and succeeds with a0 = h2; vehicle to aircrafti. Since Find
succeeds, nothing more happens this time through the loop and A, D, P and Q

remain invariant. The remaining three actions in P are handled the same way so
immediately before line 38 we have

A = ?

D = fh1; refueli; h2; vehicle to aircrafti; h3; vehicle from aircrafti;

h4; groundi; h5; ungroundi; h6; close tanki; h7; open tankig

P = fh2; vehicle to aircrafti; h3; vehicle from aircrafti; h4; groundi;

h5; ungroundi; h6; close tanki; h7; open tankig

Q = ?

and since P is set to Q = ? the while loop terminates.

The variable r is now initialized to a zero matrix of su�cient size to hold a relation
over D. The outer two for loops in lines 43{50 go through all pairs a; a0 of actions

37

in D. For each such pair, the inner for loop records in r that a is related to a0 if
there is some i 2 M s.t. a
a0 or a�a0 according to de�nition 4.6. Finally, r is set
to be the transitive closure of itself. The algorithm returns the plan hD; ri where

D = fh1; refueli; h2; vehicle to aircrafti; h3; vehicle from aircrafti;

h4; groundi; h5; ungroundi; h6; close tanki; h7; open tankig

and the relation r is depicted in �gure 3 (with transitive arcs omitted).

6 Discussion of the SAS-PUBS Class

In this section, we will brie
y discuss the restrictions of the SAS-PUBS class.

The restriction to binary domains is fairly harmless if H is not restricted to be
unary, since a non-binary domain Si could be represented by dlog2 jSije binary
domains, if the axioms are modi�ed accordingly. Expressibility is retained, but
the time complexity increases since the number of domains, jMj, increases. On
the other hand, when H is unary, as in the SAS-PUBS class, it is obviously a
serious restriction to require binary domains; many planning problems require
multi-valued features. Of course, this restriction appears in all planners using
propositional logic for state modelling. The restriction that H be unary is serious
for planning problems where two or more features can change simultaneously, but
it is not always the same combinations of features that change simultaneously.
Allowing multi-valued features does not help much in the general case. Although
one could represent several feature domains as one multi-valued feature, this
would most likely lead to violations of axiom 2.6 for most planning problems.
Post-uniqueness need not be a very limiting restriction for applications where
there is little or no choice what plan to use, and where the size of the problem
is the main di�culty when planning. However, for problems where H is non-
unary or not single-valued, the major problem can be to choose between several
di�erent ways of achieving the goal. In this case, it will usually be impossible
to make a post-unique formalization of the problem. Nevertheless, the most
serious restriction for the majority of practical applications is, in our opinion, the
restriction that H is single-valued. As an example, requiring single-valuedness
prevents us from modelling a problem where one action type requires a certain
valve to be open and another action type requires the same valve to be closed.
Prevail-minimality has no e�ect on the expressibility, but time complexity is
increased if H is not prevail minimal.

Since single-valuedness seems to be the most serious restriction, it would be
natural to try to eliminate that restriction �rst. This would result in the SAS-
PUB class (Post-unique, Unary and Binary). The SAS-PUB class is, although

38

very restricted, believed to be applicable to some realistic problems in sequential
control. Unfortunately, the worst-case time for SAS-PUB planning is exponential
in the number of features.

Theorem 6.1 A lower bound for SAS-PUB planning is
(2jMj) operations in
the worst case. 2

Proof: We �rst note that a plan is not minimal if it passes some state s 2 S
more than once. Since there are 2jMj states, no minimal plan can have more
than 2jMj � 1 actions. We will now prove that there are SAS-PUB problems
with minimal plans of this size by constructing a generic example. Given an
integer m > 0, let M = f1; 2; : : : ; mg and let Si = f0; 1g for i 2 M. Construct
H = fh1; h

0
1; : : : ; hm; h

0
mg as follows:

For all k

b(hk)[i] = e(h0k)[i] =

(
0; i = k

u; i 6= k

e(hk)[i] = b(h0k)[i] =

(
1; i = k

u; i 6= k

f(hk)[i] = f(h0k)[i] =

8><
>:

0; 1 � i < k � 1
1; 1 � i = k � 1
u; k � i � m

Also de�ne so and s? s.t.

so[i] = 0 for 1 � i � m

s?[i] =

(
0; 1 � i < m

1; i = m

It can be proven by induction on m that a minimal plan from so to s? requires
2m � 1 actions.

Obviously, minimal plans for SAS-PUB problems are of size �(2jMj) in the worst
case, so a trivial lower bound for worst case planning is
(2jMj) operations.

39

2

It is thus not possible to construct a polynomial-time planning algorithm for
SAS-PUB problems. However, we conjecture that it is possible to replace single-
valuedness with other restrictions that are ful�lled for many (or even most) prac-
tical SAS-PUB problems, but which reduces the complexity drastically.

7 Discussion

We have identi�ed a class of sequential deterministic planning problems, the SAS-
PUBS class, and presented an algorithm for �nding minimal plans in this class.
The algorithm is proven sound and complete and runs in polynomial time. This
result provides a kind of lower bound for planning; at least this class of problems
can be solved in polynomial time. The SAS-PUBS class is thus of theoretical
interest, even if it is of limited practical interest.

The class one gets when lifting the single-valuedness restriction is, however, far
more interesting from a practical point of view. This class is conjectured su�-
cient for representing some interesting classes of real-world problems in sequential
control, a sub�eld of discrete event systemswithin control theory. Examples of ap-
plication areas are process plants and automated manufacturing. A particularly
interesting problem within these areas is to restart a process after a break-down
or an emergency stop. After such an event, the process may be in anyone of a
very large number of states, and it is not realistic to have precompiled plans for
how to get the process back to normal again from any such state. Restarting is
usually done manually and often by trial-and-error, and it is thus an application
where automated planning is very relevant. It is interesting to note that such
plans are complex because of their size, not because of complex actions. An ordi-
nary paper manufacturing plant can have 10000 to 15000 sensors, so the number
of state variables could be well in excess of that �gure.

We have shown that the worst case lower bound for planning in this extended
class is of
(2jMj) time, but this �gure corresponds to theoretical cases that
seem almost pathological for any practical application. It arises when the mini-
mal plans themselves are exponentially sized and no one is likely to want such a
plan since it would take to long time to execute for anything but trivially small
problems. We have some ideas about how to replace single-valuedness with other
restrictions that, hopefully, reduces the complexity �gure without severely re-
stricting the practical usefulness. It is also worth noticing that the SAS-PUBS
planning algorithm described in the previous section is sound even if the set of

40

actions is not single-valued.

One interesting branch of future research is thus to investigate how the di�erent
restrictions a�ects complexity of SAS planning problems. Another interesting
branch would be to, perhaps, retain some of the restrictions but allow extended
actions structures with keep-conditions (B�ackstr�om, 1988a; B�ackstr�om, 1988b)
or interval-valued features (B�ackstr�om, 1988b; B�ackstr�om, 1988c). It would also
be interesting to relate the work in this article to other planning formalisms and
see whether other planners enjoy the same complexity results under the same
restrictions as we use.

The planning algorithm has been implemented in C on a Sun3 SPARCstation 1
and runs fairly fast although not optimized. An earlier version of the algorithm
has been implemented in prolog and extended with heuristics to handle a small
subclass of SAS-PUB problems (Klein, 1990). This implementation has also been
augmented with some heuristics for dealing with slightly larger classes. This has
worked well for some test examples, but no theoretical results exist regarding
this augmentation. A system for executing parallel plans expressed in action
structures has been implemented by Hultman (1987a; 1987b; 1988).

Acknowledgments

This research was supported by the Swedish Board of Technical Development.
The authors would also like thank the anonymous reviewers for their comments
on how to improve this article.

3Sun and SPARCstation 1 are trademarks of Sun Microsystems, Inc.

41

References

Allen, J. F. (1981). A general model of action and time. Technical Report 97,
Computer Science Department, University of Rochester, NY.

Allen, J. F. (1984). Towards a general theory of action and time. Arti�cial
Intelligence, 23:123{154.

Baase, S. (1988). Computer Algorithms: Introduction and Analysis. Addison
Wesley, Reading, Mass. 2nd edition.

B�ackstr�om, C. (1988a). Action structures with implicit coordination. In Proceed-
ings of the Third International Conference on Arti�cial Intelligence: Method-
ology, Systems, Applications (AIMSA-88), pages 103{110, Varna, Bulgaria.

B�ackstr�om, C. (1988b). Reasoning about interdependent actions. Licentiate
Thesis 139, Department of Computer and Information Science, Link�oping
University, Link�oping, Sweden.

B�ackstr�om, C. (1988c). A representation of coordinated actions characterized by
interval valued conditions. In Proceedings of the Third International Sym-
posium on Methodologies for Intelligent systems (ISMIS-88), pages 220{229,
Torino, Italy.

Brachman, R. J. and Levesque, H. J. (1984). The tractability of subsumption
in frame-based description languages. In Proceedings of the Fourth National
Conference on Arti�cial Intelligence (AAAI-84), pages 34{37, Austin, Texas.

Brown, F., editor (1987). The Frame Problem in Arti�cial Intelligence, Proceed-
ings of the 1987 Workshop, Lawrence, Kansas.

Chapman, D. (1987). Planning for conjunctive goals. Arti�cial Intelligence,
32:333{377.

Dean, T. and Boddy, M. (1988). Reasoning about partially ordered events. Ar-
ti�cial Intelligence, 36:375{399.

Fikes, R. E. and Nilsson, N. J. (1971). Strips: A new approach to the application
of theorem proving to problem solving. Arti�cial Intelligence, 2:189{208.

Hansson, C. (1990). A prototype system for logical reasoning about time and
action. Licentiate Thesis 203, Department of Computer and Information
Science, Link�oping University, Link�oping, Sweden.

Hayes, P. J. (1981). The frame problem and related problems in arti�cial intel-
ligence. In Webber, B. L. and Nilsson, N. J., editors, Readings in Arti�cial
Intelligence, pages 223{230. Morgan Kaufman, Los Altos, Ca.

42

Hultman, J. (1987a). COPPS - A software system for de�ning and controlling
actions in a mechanical system. In IEEE Workshop on Languages and Au-
tomation, Vienna, Austria.

Hultman, J. (1987b). COPPS - A software system for de�ning and control-
ling actions in a mechanical system. Research Report LiTH-IDA-R-87-06,
Department of Computer and Information Science, Link�oping University,
Link�oping, Sweden.

Hultman, J. (1988). A software system for de�ning and controlling actions in
a mechanical system. Licentiate thesis 146, Department of Computer and
Information Science, Link�oping University, Link�oping, Sweden.

Klein, I. (1990). Planning for a class of sequential control problems. Licenti-
ate Thesis 234, Department of Electrical Engineering, Link�oping University,
Link�oping, Sweden.

Levesque, H. J. and Brachman, R. J. (1985). A fundamental tradeo� in knowledge
representation and reasoning (revised version). In Brachman, R. J. and
Levesque, H. J., editors, Readings in Knowledge Representation, pages 41{
70. Morgan Kaufman, Los Altos, Ca.

Mendelson, E. (1987). Introduction to Mathematical Logic. Wadsworth & Brooks,
Monterey, Ca, third edition.

Newell, A. and Simon, H. A. (1972). Human Problem Solving. Prentice Hall,
Englewood Cli�s, NJ.

Sandewall, E. (1988a). Formal semantics for reasoning about change with rami-
�ed causal minimizations. Research Report LiTH-IDA-88-08, Department of
Computer and Information Science, Link�oping University, Link�oping, Swe-
den.

Sandewall, E. (1988b). Non-monotonic entailment for reasoning about time and
action. Part I: Sequential actions. Research Report LiTH-IDA-R-88-27,
Department of Computer and Information Science, Link�oping University,
Link�oping, Sweden.

Sandewall, E. (1988c). Non-monotonic entailment for reasoning about time and
action. Part II: Concurrent actions. Research Report LiTH-IDA-R-88-28,
Department of Computer and Information Science, Link�oping University,
Link�oping, Sweden.

Sandewall, E. (1988d). Non-monotonic entailment for reasoning about time and
action. Part III: Decision procedure. Research Report LiTH-IDA-R-88-29,

43

Department of Computer and Information Science, Link�oping University,
Link�oping, Sweden.

Sandewall, E. (1989). A decision procedure for a theory of actions and plans.
In Proceedings of the Fourth International Symposium on Methodologies for
Intelligent systems (ISMIS-89), pages 501{514, Charlotte, NC.

Sandewall, E. and R�onnquist, R. (1986a). A representation of action structures.
In Proceedings of the Fifth National Conference on Arti�cial Intelligence
(AAAI-86), pages 89{97, Philadelphia, Pennsylvania.

Sandewall, E. and R�onnquist, R. (1986b). A representation of action structures.
Research Report LiTH-IDA-R-86-13, Department of Computer and Infor-
mation Science, Link�oping University, Link�oping, Sweden.

Shoham, Y. (1987). Temporal logics in AI: Semantical and ontological consider-
ations. Arti�cial Intelligence, 33:89{104.

Wilkins, D. E. (1988). Practical Planning. Morgan Kaufman, San Mateo, Ca.

44

Figure Captions

Fig. 1. The lattice hS+1 ;vi in example 2.1.

Fig. 2. The lattice hS+;vi in example 2.1.

Fig. 3. The relation �� on the set �(so; s?) in the refuelling example. The
transitive arcs are omitted.

45

h b(h) e(h) f(h)

h1 hu; ui hu; 1i hk; ui

h2 hu; 0i hu; 0i h1; 0i

h3 h0; ui h1; ui hu; 1i

h4 h0; ui h1; ui hu; 1i

Table 1. Action types for example 2.2.

action type (h) b(h) e(h) f(h)

refuel h0; u; u; ui h1; u; u; ui hu; 1; 1; 0i

move vehicle to aircraft hu; 0; u; ui hu; 1; u; ui hu; u; u; ui

move vehicle from aircraft hu; 1; u; ui hu; 0; u; ui hu; u; u; ui

ground hu; u; 0; ui hu; u; 1; ui hu; 1; u; ui

unground hu; u; 1; ui hu; u; 0; ui hu; 1; u; ui

close aircraft tank hu; u; u; 0i hu; u; u; 1i hu; 1; u; ui

open aircraft tank hu; u; u; 1i hu; u; u; 0i hu; 1; u; ui
Table 2. Action types for the aircraft example.

46

u

0 1

k

@
@
@

�
�
�

�
�
�

@
@
@

B�ackstr�om, Klein: Planning in polynomial time: The SAS-PUBS class. Fig. 1.

47

uu
Q

Q
Q

Q
Q

Q
Q

A
A
A
A
A

�
�
�
�
�

�
�
�
�
�
�
�

u0 u1 0u 1u
@

@
@

@
@

�
�
�
�
�

HH
HH

HH
HH

HH

�
�
�
�
�

��
��

��
��

��

HH
HH

HH
HH

HH

��
��

��
��

��

HH
HH

HH
HH

HH

�
�
�
�
�

uk 00 10 01 11 ku
�
�
�
�
�

��
��

��
��

��

��
��

��
��

��

�
�
�
�
�

HH
HH

HH
HH

HH

�
�
�
�
�

HH
HH

HH
HH

HH

HH
HH

HH
HH

HH

@
@

@
@
@

0k 1k k0 k1
�
�
�
�
�
�
�

�
�
�
�
�

A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

kk

B�ackstr�om, Klein: Planning in polynomial time: The SAS-PUBS class. Fig. 2.

48

h2; vehicle to aircrafti

h7; open tanki

h4; groundi

h1; refueli

h6; close tanki

h5; ungroundi

h3; vehicle from aircrafti
��

��
��*

HHHHHHj

HHHHHHj

��
��

��*

��
��

��*

HHHHHHj

HHHHHHj

��
��

��*

B�ackstr�om, Klein: Planning in polynomial time: The SAS-PUBS class. Fig. 3.

49

