
Tractable Planning with State Variablesby Exploiting Structural RestrictionsIn proc. Twelth National Conference of the American Association for Arti�cial Intelligence (AAAI-94),Seattle, WA, USA, Jul-Aug. 1994, pp. 998{1003Peter Jonsson and Christer B�ackstr�om1Department of Computer and Information ScienceLink�oping University, S-581 83 Link�oping, Swedenemail: fpetej,cbag@ida.liu.sephone: +46 13 282429fax: +46 13 282606AbstractSo far, tractable planning problems reported inthe literature have been de�ned by syntacticalrestrictions. To better exploit the inherent struc-ture in problems, however, it is probably nec-essary to study also structural restrictions onthe state-transition graph. Such restrictions aretypically computationally hard to test, though,since this graph is of exponential size. Hence,we take an intermediate approach, using a state-variable model for planning and restricting thestate-transition graph implicitly by restrictingthe transition graph for each state variable in iso-lation. We identify three such restrictions whichare tractable to test and we present a planningalgorithm which is correct and runs in polyno-mial time under these restrictions.IntroductionMany planning problems in manufacturing and pro-cess industry are believed to be highly structured, thusallowing for e�cient planning if exploiting this struc-ture. However, a `blind' domain-independent plannerwill most likely go on tour in an exponential searchspace even for tractable problems. Although heuris-tics may help a lot, they are often not based on asu�ciently thorough understanding of the underlyingproblem structure to guarantee e�ciency and correct-ness. Further, we believe that if having such a deepunderstanding of the problem structure, it is better touse other methods than heuristics.Some tractability results for planning have been re-ported in the literature lately (B�ackstr�om & Klein1991; B�ackstr�om & Nebel 1993; Bylander 1991; Erol,Nau, & Subrahmanian 1992). However, apart frombeing very restricted, they are all based on essentiallysyntactic restrictions on the set of operators. Syntac-tic restrictions are very appealing to study, since theyare typically easy to de�ne and not very costly to test.1This research was sponsored by the Swedish ResearchCouncil for the Engineering Sciences (TFR) under grantsDnr. 92-143 and Dnr. 93-00291.

However, to gain any deeper insight into what makesplanning problems hard and easy respectively proba-bly require that we study the structure of the prob-lem, in particular the state-transition graph inducedby the operators. To some extent, syntactic restric-tions allow us this since they undoubtedly have impli-cations for what this graph looks like. However, theirvalue for this purpose seems somewhat limited sincemany properties that are easy to express as explicitstructural restrictions would require horrendous syn-tactical equivalents. Putting explicit restrictions onthe state-transition graph must be done with greatcare, however. This graph is typically of size expo-nential in the size of the planning problem instance,making it extremely costly to test arbitrary proper-ties. In this paper, we take an intermediate approach.We adopt the state-variable model SAS+(B�ackstr�om& Nebel 1993) and de�ne restrictions not on the wholestate-transition graph, but on the domain-transitiongraph for each state variable in isolation. This isless costly since each such graph is only of polyno-mial size. Although not being a substitute for restric-tions on the whole state-transition graph, many inter-esting and useful properties of this graph can be indi-rectly exploited. In particular, we identify three struc-tural restrictions which makes planning tractable andwhich properly generalize previously studied tractableSAS+ problems (B�ackstr�om & Klein 1991; B�ackstr�om& Nebel 1993). We present an algorithm for generat-ing optimal plans under our restrictions. Despite beingstructural, our restrictions can be tested in polynomialtime. Further, note that this approach would not bevery useful for a planning formalism based on propo-sitional atoms, since the resulting two-vertex domain-transition graphs would not allow for very interestingstructure to exploit.The SAS+ FormalismWe use the SAS+ formalism (B�ackstr�om & Klein1991; B�ackstr�om & Nebel 1993), which is a variantof propositional STRIPS, generalizing the atoms tomulti-valued state variables. Furthermore, what iscalled a precondition in STRIPS is here divided into

two conditions, the precondition and the prevailcon-dition. Variables which are required and changedby an operator go into the precondition and thosewhich remain unchanged, but are required, go intothe prevailcondition.2 We brie
y recapitulate theSAS+ formalism below, referring to B�ackstr�om andNebel (B�ackstr�om & Nebel 1993) for further explana-tion. We follow their presentation, except for replacingthe variable indices by variables and some other minorchanges.De�nition 1 An instance of the SAS+ planning prob-lem is given by a tuple � = hV;O; s0; s�i with compo-nents de�ned as follows:� V = fv1; : : : ; vmg is a set of state variables. Eachvariable v 2 V has an associated domain Dv, whichimplicitly de�nes an extended domain D+v = Dv[fug, where u denotes the unde�ned value. Fur-ther, the total state space S = Dv1 � : : : � Dvmand the partial state space S+ = D+v1 � : : :�D+vmare implicitly de�ned. We write s[v] to denote thevalue of the variable v in a state s.� O is a set of operators of the form hb; e; fi, whereb; e; f 2 S+ denote the pre-, post- and prevail-condition respectively. If o = hb; e; fi is a SAS+operator, we write b(o), e(o) and f(o) to denote b, eand f respectively. O is subject to the following tworestrictions(R1) for all o 2 O and v 2 V if b(o)[v] 6= u, thenb(o)[v] 6= e(o)[v] 6= u,(R2) for all o 2 O and v 2 V, e(o)[v] = u orf(o)[v] = u.� s0 2 S+ and s� 2 S+ denote the initial state andgoal state respectively.We write s v t if the state s is subsumed (or sat-is�ed) by state t, ie. if s[v] = u or s[v] = t[v]. Weextend this notion to whole states, de�nings v t i� for all v 2 V; s[v] = u or s[v] = t[v]:Seqs(O) denotes the set of operator sequences over Oand the members of Seqs(O) are called plans. Giventwo states s; t 2 S+, we de�ne for all v 2 V,(s � t)[v] = � t[v] if t[v] 6= u;s[v] otherwise.The ternary relation Valid � Seqs(O) � S+ � S+ isde�ned recursively s.t. for arbitrary operator sequenceho1; : : : ; oni 2 Seqs(O) and arbitrary states s; t 2 S+,Valid(ho1; : : : ; oni; s; t) i� either1. n = 0 and t v s or2. n > 0, b(o1) v s, f(o1) v s andValid(ho2; : : : ; oni; (s� e(o1)); t).Finally, a plan ho1; : : : ; oni 2 Seqs(O) solves � i�Valid(ho1; : : : ; oni; s0; s�).2Drummond & Currie (1988) make the same distinction.

To de�ne partially ordered plans, we must intro-duce the concept of actions, ie. instances of operators.Given an action a, type(a) denotes the operator thata instantiates. Furthermore, given a set of actions A,we de�ne type(A) = ftype(a) j a 2 Ag and given a se-quence � = ha1; : : : ; ani of actions, type(�) denotes theoperator sequence htype(a1); : : : ; type(an)i.De�nition 2 A partial-order plan is a tuple hA;�iwhere A is a set of actions, ie. instances of op-erators, and � is a strict partial order on A. Apartial-order plan hA;�i solves a SAS+ instance � i�htype(a1); : : : ; type(an)i solves � for each topologicalsort ha1; : : : ; ani of hA;�i.Further, given a set of actions A over O, and a vari-able v 2 V , we de�ne A[v] = fa 2 A j e(a)[v] 6= ug, ie.the set of all actions in A a�ecting v.Structural RestrictionsIn this section we will de�ne three structural restric-tions (I, A and O) on the state-transition graph, or,rather, on the domain-transition graphs for each statevariable in isolation. We must �rst de�ne some otherconcepts, however. Most of these concepts are straight-forward, possibly excepting the set of requestable val-ues, which plays an important role for the planningalgorithm in the following section. Unary operators isone of the restrictions considered by B�ackstr�om andNebel (1993), but the others are believed novel. Forthe de�nitions below, let � = hV;O; s0; s�i be a SAS+instance.De�nition 3 An operator o 2 O is unary i� there isexactly one v 2 V s.t. e(o)[v] 6= u.A value x 2 Dv where x 6= u for some variable v 2V is said to be requestable if there exists some actiono 2 O such that o needs x in order to be executed.De�nition 4 For each v 2 V and O0 � O, the set RO0vof requestable values for O0 is de�ned asRO0v = ff(o)[v] j o 2 O0g [fb(o)[v]; e(o)[v] j o 2 O0 and o non-unary g�fug:Similarly, for a set A of actions over O, we de�neRAv = Rtype(A)v .Obviously, ROv � Dv for all v 2 V . For each statevariable domain, we further de�ne the graph of possibletransitions for this domain, without taking the otherdomains into account, and the reachability graph forarbitrary subsets of the domain.De�nition 5 For each v 2 V , we de�ne the corre-sponding domain transition graph Gv as a directedlabelled graph Gv = hD+v ; Tvi with vertex set D+v andarc set Tv s.t. for all x; y 2 D+v and o 2 O, hx; o; yi 2Tv i� b(o)[v] = x and e(o)[v] = y 6= u. Further, for

each X � D+v we de�ne the reachability graph forX as a directed graph GXv = hX; TXi with vertex setX and arc set TX s.t. for all x; y 2 X, hx; yi 2 TX i�there is a path from x to y in Gv.Alternatively, GXv can be viewed as the restriction toX � D+v of the transitive closure of Gv, but with unla-belled arcs. When speaking about a path in a domain-transition graph below, we will typically mean the se-quence of labels, ie. operators, along this path. We saythat a path in Gv is via a set X � Dv i� each memberof X is visited along the path, possibly as the initialor �nal vertex.De�nition 6 An operator o 2 O is irreplaceablewrt. a variable v 2 V i� removing an arc labelled witho from Gv splits some component of Gv into two com-ponents.In the remainder of this paper we will be primarilyinterested in SAS+ instances satisfying the followingrestrictions.De�nition 7 A SAS+ instance hV;O; s0; s�i is:(I) Interference-safe i� every operator o 2 O is ei-ther unary or irreplaceable wrt. every v 2 V it af-fects.(A) Acyclic i� GROvv is acyclic for each v 2 V .(O) prevail-Order-preserving i� for each v 2 V ,whenever there are two x; y 2 D+v s.t. Gv has ashortest path ho1; : : : ; omi from x to y via some setX � ROv and it has any path ho01; : : : ; o0ni from x to yvia some set Y � ROv s.t. X � Y , there exists somesubsequence h: : : ; o0i1; : : : ; o0im ; : : :i s.t. f(ok) v f(o0ik)for 1 � k � m.We will be mainly concerned with SAS+-IA and SAS+-IAO instances, that is, SAS+ instances satisfying thetwo restrictions I and A and SAS+ instances satisfyingall three restrictions respectively. Both restrictions Iand A are tractable to test. The complexity of test-ing O in isolation is currently an open issue, but thecombinations IA and IAO are tractable to test.Theorem 8 The restrictions I and A can be testedin polynomial time for arbitrary SAS+instances. Re-striction O can be tested in polynomial time for SAS+instances satisfying restriction A.Proof sketch: 3 Testing A is trivially a polynomialtime problem. Finding the irreplaceable operators wrt.a variable v 2 V can be done in polynomial time byidentifying the maximal strongly connected compo-nents inGv, collapsing each of these into a single vertexand perform a reachability analysis. Since it is furtherpolynomial to test whether an operator is unary, it fol-lows that also I can be tested in polynomial time.Furthermore, given that the instance satis�es A, Ocan be tested in polynomial time as follows. For each3The full proofs of all theorems can be found in (Jonsson& B�ackstr�om 1994).

pair of vertices x; y 2 D+v , �nd a shortest path in Gvfrom x to y. If the instance satis�es O, then for eachoperator o along this path, D+v can be partitioned intotwo disjoint sets X;Y s.t. every arc from some vertexin X to some vertex in Y is labelled by an operator o0satisfying that f(o) v f(o0). This can be tested in poly-nomial time by a method similar to �nding shortest-paths in Gv. Hence, O can be tested in polynomialtime if A holds. 2Furthermore, the SAS+-IAO problem is strictlymore general than the SAS+-PUS problem (B�ackstr�om& Nebel 1993).Theorem 9 All SAS+-PUS instances are SAS+-IAOinstances, while a SAS+-IAO instance need not satisfyeither P, U or S.Planning AlgorithmBefore describing the actual planning algorithm, wemake the following observations about the solutions toarbitrary SAS+ instances.Theorem 10 Let hA;�i be a partial-order plan solv-ing some SAS+ instance � = hV;O; s0; s�i. Then foreach v 2 V and for each action sequence � which is atotal ordering of A[v] consistent with �, the operatorsequence type(�) is a path in Gv from s0[v] to s�[v] viaRAv .This is a declarative characterization of the solu-tions and it cannot be immediately cast in proceduralterms|the main reason being that we cannot knowthe sets RAv in advance. These sets must, hence, becomputed incrementally, which can be done in poly-nomial time under the restrictions I and A. We havedevised an algorithm, Plan (Figure 1), which serves asa plan generation algorithm under these restrictions.The heart of the algorithm is the procedure Extend,which operates on the global variables X1; : : : ; Xm, ex-tending these monotonically. It also returns operatorsequences in the global variables !1; : : : ; !m, but onlytheir value after the last call are used by Plan. Foreach i, Extend �rst �nds a shortest path !i in Gvifrom s0[vi] to s�[vi] via Xi. (The empty path hi is con-sidered as the shortest path from any vertex x to u,since u v x). If no such path exists, then Extend failsand otherwise each Xi is set to RO0vi , where O0 is theset of all operators along the paths !1; : : : ; !m. Themotivation for this is as follows: If f(o)[vi] = x 6= ufor some i and some operator o in some !j , then someaction in the �nal plan must achieve this value, unlessit holds initially. Hence, x is added to Xi to ensurethat Extend will �nd a path via x in the next itera-tion. Similarly, each non-unary operator occurring insome !i must also appear in !j for all other j suchthat o a�ects vj .Starting with all X1; : : : ; Xm initially empty, Plancalls Extend repeatedly until nothing more is added tothese sets or Extend fails. Viewing Extend as a func-tion Extend : S+ ! S+, ie. ignoring the side e�ect on

1 procedure Plan(hV;O; s0; s�i);2 hX1; : : : ;Xmi h?; : : : ;?i;3 repeat4 Extend;5 until no Xi is changed;6 Instantiate;7 for 1 � i � m and a; b 2 �i do8 Order a � b i� a precedes b in �i;9 for 1 � i � m and a 2 A s.t. f(a)[vi] 6= u do10 Assume �i = ha1; : : : ; aki11 if e(al)[vi] = f(a)[vi] for some 1 � l � k then12 Order al � a;13 if l < k then Order a � al+1;14 else Order a � a1;15 A fa 2 �i j 1 � i � mg;16 if � is acyclic then return hA;�i;17 else fail;1 procedure Extend; (Modi�es X1; : : : ;Xm and!1; : : : ; !m)2 for 1 � i � m do3 !i any shortest path from s0[vi] to s�[vi] in Gv4 via Xi;5 if no such path exists then fail;6 for 1 � i; j � m and o 2 !j do7 Xi Xi [ff(o)[vi]g � fug;8 if o not unary then9 Xi Xi [fb(o)[vi]; e(o)[vi]g � fug;1 procedure Instantiate; (Modi�es �1; : : : ; �m)2 for 1 � i � m do3 Assume !i = ho1; : : : ; oki4 for 1 � l � k do5 if ol not unary and there is some a of type ol6 in �j for some j < i then al a;7 else Let al be a new instance of type(al);8 �i ha1; : : : ; akiFigure 1: Planning Algorithm!1; : : : ; !m, this process corresponds to constructingthe minimal �xed point for Extend in S+. The paths!1; : : : ; !m found in the last iteration contain all theoperators necessary in the �nal solution and procedureInstantiate instantiates these as actions. This workssuch that all occurrences of a non-unary operator aremerged into one unique instance while all occurrencesof a unary operator are made into distinct instances.It remains to compute the action ordering on the setA of all such operator instances (actions). For each vi,the total order implicit in the operator sequence !i iskept as a total ordering on the corresponding actions.Finally, each action a s.t. f(a)[vi] = x 6= u for somei must be ordered after some action a0 providing thiscondition. There turns out to always be a unique suchaction, or none if vi = x initially. Similarly, a must beordered before the �rst action succeeding a0 that de-stroys its prevailcondition. Finally, if � is acyclic, thenhA;�i is returned and otherwise Plan fails. Observethat the algorithm does not compute the transitive clo-

sure �+ of � since this is a costly operation and thetransitive closure is not likely to be of interest for ex-ecuting the plan.Procedure Plan is sound for SAS+-IA instances andit is further optimal and complete for SAS+-IAO in-stances.Theorem 11 If Plan returns a plan hA;�i whengiven a SAS+-IA instance � as input, then hA;�isolves � and if � is a SAS+-IAO instance, then hA;�iis also minimal. Further, if Plan fails when given aSAS+-IAO instance � as input, then there exists noplan solving �.Proof outline: The proofs for this theorem are quitelong, but are essentially based on the following obser-vations. Soundness is rather straightforward from thealgorithm and Theorem 10. Further, let hA;�i be theplan returned by Plan and let hA0;�0i be an arbitrarysolution to �. Minimality follows from observing thatRAv � RA0v for all v 2 V . The completeness proof es-sentially builds on minimality and proving that if �contains a cycle (ie. Plan fails in line 16), then therecan exist no solution to �. 2Furthermore, Plan returns LC2-minimal plans(B�ackstr�om 1993) which means that there does notexist any strict (ie. irre
exive) partial order �0 on Asuch that j �0 j < j �+ j and hA;�0i is a valid plan.Finally, Plan runs in polynomial time.Theorem 12 Plan has a worst-case time complexityof O(jOj2(jVjmaxv2V jDvj)3).ExampleIn this section, we will present a small, somewhat con-trived example of a manufacturing workshop and showhow the algorithm handles this example. We assumethat there is a supply of rough workpieces and a ta-ble for putting �nished products. There are also twoworkstations: a lathe and a drill. To simplify matters,we will consider only one single workpiece. Two dif-ferent shapes can be made in the lathe and one typeof hole can be drilled. Furthermore, only workpiecesof shape 2 �t in the drill. This gives a total of fourpossible combinations for the end product: rough (ie.not worked on), shape 1, shape 2 without a hole andshape 2 with a hole. Note also that operator Shape2 istougher to the cutting tool than Shape1 is|the latterallowing us to continue using the cutting tool after-wards. Finally, both the lathe and the drill requirethat the power is on. This is all modelled by �ve statevariables, as shown in Table 1, and nine operators, asshown in Table 2. This example is a SAS+-IAO in-stance, but it does not satisfy either of the P, U and Srestrictions in B�ackstr�om and Nebel (1993).44Note in particular that since we do no longer requirethe S restriction, we can model sequences of worksta-tions, which was not possible under the PUS restriction(B�ackstr�om & Klein 1991).

variable domain denotes1 fSupply,Lathe,Drill,Tableg Position of workpiece2 fRough,1,2g Workpiece shape3 fMint,Usedg Condition of cutting tool4 fYes,Nog Hole in workpiece5 fYes,Nog Power onTable 1: State variables for the workshop exampleOperator Precondition Postcondition PrevailconditionMvSL v1 = S v1 = LMvLT v1 = L v1 = TMvLD v1 = L v1 = D v2 = 2MvDT v1 = D v1 = TShape1 v2 = R v2 = 1 v1 = L; v3 =M;v5 = YShape2 v2 = R; v3 =M v2 = 2; v3 = U v1 = L; v5 = YDrill v4 = N v4 = Y v1 = D;v5 = YPon v5 = N v5 = YPo� v5 = Y v5 = NTable 2: Operators for the workshop example. (Domain values will typically be denoted by their initial charactersonly).After iteration 1:!1 = hMvSL,MvLTi X1 = fL;Dg!2 = hShape2i X2 = fR; 2g!3 = hi X3 = fM;Ug!4 = hDrilli X4 = fg!5 = hi X5 = fY gAfter iteration 2:!1 = hMvSL,MvLD,MvDTi X1 = fL;Dg!2 = hShape2i X2 = fR; 2g!3 = hShape2i X3 = fM;Ug!4 = hDrilli X4 = fg!5 = hPon,Po�i X5 = fY gTable 3: The variables !i and Xi in the example.Suppose we start in s0 = hS;R;M;N;Ni and set thegoal s� = hT; 2; u; Y;Ni, that is, we want to manufac-ture a product of shape 2 with a drilled hole. We alsoknow that the cutting tool for the lathe is initially inmint condition, but we do not care about its conditionafter �nishing. Finally, the power is initially o� andwe are required to switch it o� again before leavingthe workshop. Procedure Plan will make two calls toExtend before terminating the loop successfully, withvariable values as in Table 3.The operators in the operator sequences !1; : : : ; !5will be instantiated to actions, where both occurrencesof Shape2 are instantiated as the same action, sinceShape2 is non-unary. Since there is not more than oneaction of each type in this plan, we will use the nameof the operators also as names of the actions. Thetotal orders in !1; : : : ; !m is retained in �1; : : : ; �m.Furthermore, Shape2 must be ordered after MvSL andbefore MvLD, since its prevailcondition on variable 1equals the postcondition of MvLD for this variable.

Similarly, Drill must be ordered between MvLD andMvDT because of its prevailcondition on variable 1 andboth Shape2 and Drill must be ordered between Ponand Po� because of their prevailcondition on variable5. Furthermore, MvLD must (once again) be orderedafter Shape2 because of its prevailcondition on variable2. The �nal partial-order plan is shown in Figure 2.DiscussionSeveral attempts on exploiting structural propertieson planning problems in order to decrease complexityhave been reported in the literature, but none with theaim of obtaining polynomial-time planning problems.Korf (1987) has de�ned some structural properties ofplanning problems modelled by state-variables, for in-stance serial operator decomposability. However, thisproperty is PSPACE-complete to test (Bylander 1992),but does not guarantee tractable planning. M�adler(1992) extends Sacerdoti's (1974) essentially syntac-tic state abstraction technique to structural abstrac-tion, identifying bottle-neck states (needle's eyes) inthe state-transition graph for a state-variable formal-ism. Smith and Peot (1993) use an operator graph forpreprocessing planning problem instances, identifyingpotential threats that can be safely postponed duringplanning|thus, pruning the search tree. The opera-tor graph can be viewed as an abstraction of the fullstate-transition graph, containing all the informationrelevant to analysing threats.A number of issues are on our research agenda forthe future. Firstly, we should perform a more carefulanalysis of the algorithm to �nd a tighter upper boundfor the time complexity. Furthermore, the �xpoint forthe Extend function is now computed by Jacobi itera-tion, which is very ine�cient. Replacing this by somestrategy for chaotic iteration (Cousot & Cousot 1977)

MvSL MvLD MvDTDrillPon Po�Shape2 - -AAAU ���� ������������������� - @@@RXXXXXXXXXXXz-.AAAUFigure 2: The �nal partial-order plan.would probably improve the complexity considerably,at least in the average case. Furthermore, the algo-rithm is likely to be sound and complete for less re-stricted problems than SAS+-IA and SAS+-IAO re-spectively. Finding restrictions that more tightly re-
ect the limits of the algorithm is an issue for futureresearch. We also plan to investigate some modi�ca-tions of the algorithm, eg., letting the sets X1; : : : ; Xmbe partially ordered multisets, allowing a prevailcondi-tion to be produced and destroyed several times|thusrelaxing the A restriction. Another interesting modi�-cation would be to relax some of the restrictions andrede�ne Extend as a non-deterministic procedure. Al-though requiring search and, thus, probably sacri�cingtractability, we believe this to be an intriguing alter-native to ordinary search-based planning.ConclusionsWe have identi�ed a set of restrictions allowing forthe generation of optimal plans in polynomial timefor a planning formalism, SAS+, using multi-valuedstate variables. This extends the tractability border-line for planning, by allowing for more general prob-lems than previously reported in the literature to besolved tractably. In contrast to most restrictions in theliterature, ours are structural restrictions. However,they are restrictions on the transition graph for eachstate variable in isolation, rather than for the wholestate space, so they can be tested in polynomial time.We have also presented a provably correct, polynomialtime algorithm for planning under these restrictions.ReferencesAmerican Association for Arti�cial Intelligence. 1992.Proceedings of the 10th (US) National Conferenceon Arti�cial Intelligence (AAAI-92), San Jos�e, CA,USA.B�ackstr�om, C., and Klein, I. 1991. Parallel non-binary planning in polynomial time. In Reiter andMylopoulos (1991), 268{273.B�ackstr�om, C., and Nebel, B. 1993. Complexity re-sults for SAS+ planning. In Bajcsy, R., ed., Proceed-ings of the 13th International Joint Conference onArti�cial Intelligence (IJCAI-93). Chamb�ery, France:Morgan Kaufmann.B�ackstr�om, C. 1993. Finding least constrained plansand optimal parallel executions is harder than we

thought. In B�ackstr�om, C., and Sandewall, E., eds.,Current Trends in AI Planning: EWSP'93|2nd Eu-ropean Workshop on Planning, Frontiers in AI andApplications. Vadstena, Sweden: IOS Press.Bylander, T. 1991. Complexity results for planning.In Reiter and Mylopoulos (1991), 274{279.Bylander, T. 1992. Complexity results for serial de-composability. In AAAI-92 (1992), 729{734.Cousot, P., and Cousot, R. 1977. Automatic syn-thesis of optimal invariant assertions: Mathematicalfoundations. SIGPLAN Notices 12(8):1{12.Drummond,M., and Currie, K. 1988. Exploiting tem-poral coherence in nonlinear plan construction. Com-putational Intelligence 4(4):341{348. Special Issue onPlanning.Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1992.On the complexity of domain-independent planning.In AAAI-92 (1992), 381{386.Jonsson, P., and B�ackstr�om, C. 1994. Tractable plan-ning with state variables by exploiting structural re-strictions. Research report, Department of Computerand Information Science, Link�oping University.Korf, R. E. 1987. Planning as search: A quantitativeapproach. Arti�cial Intelligence 33:65{88.M�adler, F. 1992. Towards structural abstraction.In Hendler, J., ed., Arti�cial Intelligence PlanningSystems: Proceedings of the 1st International Con-ference, 163{171. College Park, MD, USA: MorganKaufmann.Reiter, R., and Mylopoulos, J., eds. 1991. Proceed-ings of the 12th International Joint Conference onArti�cial Intelligence (IJCAI-91). Sydney, Australia:Morgan Kaufmann.Sacerdoti, E. D. 1974. Planning in a hierarchy ofabstraction spaces. Arti�cial Intelligence 5(2):115{135.Smith, D. E., and Peot, M. A. 1993. Postponingthreats in partial-order planning. In Proceedings ofthe 11th (US) National Conference on Arti�cial Intel-ligence (AAAI-93), 500{506. Washington DC, USA:American Association for Arti�cial Intelligence.

