In proc. Twelth National Conference of the American Association for Artificial Intelligence (AAAI-94),

Seattle, WA, USA, Jul-Aug. 1994, pp. 998-1003

Tractable Planning with State Variables
by Exploiting Structural Restrictions

Peter Jonsson and Christer Backstrom!
Department of Computer and Information Science
Linkoping University, S-581 83 Linkoping, Sweden

email: {petej,cha}@ida.liu.se
phone: +46 13 282429
fax: +46 13 282606

Abstract

So far, tractable planning problems reported in
the literature have been defined by syntactical
restrictions. To better exploit the inherent struc-
ture in problems, however, it is probably nec-
essary to study also structural restrictions on
the state-transition graph. Such restrictions are
typically computationally hard to test, though,
since this graph is of exponential size. Hence,
we take an intermediate approach, using a state-
variable model for planning and restricting the
state-transition graph implicitly by restricting
the transition graph for each state variable in iso-
lation. We identify three such restrictions which
are tractable to test and we present a planning
algorithm which is correct and runs in polyno-
mial time under these restrictions.

Introduction

Many planning problems in manufacturing and pro-
cess industry are believed to be highly structured, thus
allowing for efficient planning if exploiting this struc-
ture. However, a ‘blind’ domain-independent planner
will most likely go on tour in an exponential search
space even for tractable problems. Although heuris-
tics may help a lot, they are often not based on a
sufficiently thorough understanding of the underlying
problem structure to guarantee efficiency and correct-
ness. Further, we believe that if having such a deep
understanding of the problem structure, it i1s better to
use other methods than heuristics.

Some tractability results for planning have been re-
ported in the literature lately (Backstrom & Klein
1991; Backstrom & Nebel 1993; Bylander 1991; Erol,
Nau, & Subrahmanian 1992). However, apart from
being very restricted, they are all based on essentially
syntactic restrictions on the set of operators. Syntac-
tic restrictions are very appealing to study, since they
are typically easy to define and not very costly to test.

! This research was sponsored by the Swedish Research
Council for the Engineering Sciences (TFR) under grants
Dnr. 92-143 and Dnr. 93-00291.

However, to gain any deeper insight into what makes
planning problems hard and easy respectively proba-
bly require that we study the structure of the prob-
lem, in particular the state-transition graph induced
by the operators. To some extent, syntactic restric-
tions allow us this since they undoubtedly have impli-
cations for what this graph looks like. However, their
value for this purpose seems somewhat limited since
many properties that are easy to express as explicit
structural restrictions would require horrendous syn-
tactical equivalents. Putting explicit restrictions on
the state-transition graph must be done with great
care, however. This graph is typically of size expo-
nential in the size of the planning problem instance,
making i1t extremely costly to test arbitrary proper-
ties. In this paper, we take an intermediate approach.
We adopt the state-variable model SAS*(Backstrom
& Nebel 1993) and define restrictions not on the whole
state-transition graph, but on the domain-transition
graph for each state variable in isolation. This is
less costly since each such graph is only of polyno-
mial size. Although not being a substitute for restric-
tions on the whole state-transition graph, many inter-
esting and useful properties of this graph can be indi-
rectly exploited. In particular, we identify three struc-
tural restrictions which makes planning tractable and
which properly generalize previously studied tractable
SAS* problems (Béackstrom & Klein 1991; Backstrom
& Nebel 1993). We present an algorithm for generat-
ing optimal plans under our restrictions. Despite being
structural, our restrictions can be tested in polynomial
time. Further, note that this approach would not be
very useful for a planning formalism based on propo-
sitional atoms, since the resulting two-vertex domain-
transition graphs would not allow for very interesting
structure to exploit.

The SAST Formalism

We use the SAST formalism (Backstrom & Klein
1991; Backstrom & Nebel 1993), which is a variant
of propositional STRIPS, generalizing the atoms to
multi-valued state variables. Furthermore, what is
called a precondition in STRIPS is here divided into

two conditions, the precondition and the prevailcon-
dition. Variables which are required and changed
by an operator go into the precondition and those
which remain unchanged, but are required, go into
the prevailcondition.? We briefly recapitulate the
SAST formalism below, referring to Backstrom and
Nebel (Backstrom & Nebel 1993) for further explana-
tion. We follow their presentation, except for replacing
the variable indices by variables and some other minor
changes.

Definition 1 An instance of the SAST planning prob-
lem is given by a tuple L = (V, O, sq, s.) with compo-
nents defined as follows:

o V={v,...,un} is a sel of state variables. Each
variable v € V has an associated domain D,,, which
implicitly defines an extended domain D} = D, U
{u}, where u denotes the undefined value. Fur-
ther, the total state space & = Dy, x ... x D,
and the partial state space ST =Df x ... xDF
are implicitly defined. We wrile s[v] to denole the
value of the variable v in a state s.

e O is a set of operators of the form (b e f), where
b,e,f € ST denote the pre-, post- and prevail-
condition respectively. If o = (b,e,f) is a SAST
operator, we write b(o), e(0) and f(o) to denote b, e
and f respectively. O is subject to the following two
restrictions

(R1) for allo € O and v € V if b(o)[v] # u, then
b(o)[v] # e(0)[v] # u,
(R2) for all o € O and v € V, e(o)[v] = u or
f(o)[v] = u.
o 50 € ST and s, € 8T denote the initial state and
goal state respectively.
We write s C t if the state s is subsumed (or sat-
isfied) by state t, ie. if s[v] = u or s[v] = t[v]. We
extend this notion to whole states, defining

sCtiff forall v eV, s[v] =u or s[v] = t[v].

Seqs(O) denotes the set of operator sequences over O
and the members of Seqs(Q) are called plans. Given
two states s, € ST, we define for allv €V,

(s@)] = { (o] i U] £,

s[v] otherwise.

The ternary relation Valid C Seqs(Q) x 8T x 8t is
defined recursively s.t. for arbitrary operator sequence
(01,...,04) € Seqs(Q) and arbitrary states s,t € ST,
Valid({o1,...,0n),s,t) iff either

1. n=0andtCs or

2. n>0,b(o1)Cs, f(o1) Es and

Valid({o2, ..., 0n), (s @ e(01)),1).
Finally, a plan {01,...,0,) € Seqs(O) solves II iff
Valid({o1, ..., 0n), S0, $«).

?Drummond & Currie (1988) make the same distinction.

To define partially ordered plans, we must intro-
duce the concept of actions, te. instances of operators.
Given an action a, type(a) denotes the operator that
@ instantiates. Furthermore, given a set of actions A,
we define type(A) = {type(a) | « € A} and given a se-
quence & = {ay, ..., a,) of actions, type(a) denotes the
operator sequence (type(ay), ..., type(ay)).

Definition 2 A partial-order plan is a tuple (A, <)
where A is a set of actions, te. instances of op-
erators, and < is a strict partial order on A. A
partial-order plan (A, <) solves a SASY instance 11 iff
(type(ay), ..., type(an)) solves I for each topological
sort {ay,...,an) of (A, <).

Further, given a set of actions A over O, and a vari-
able v € V, we define A[v] = {a € A | e(a)[v] £ u}, te.

the set of all actions in A affecting v.

Structural Restrictions

In this section we will define three structural restric-
tions (I, A and O) on the state-transition graph, or,
rather, on the domain-transition graphs for each state
variable in isolation. We must first define some other
concepts, however. Most of these concepts are straight-
forward, possibly excepting the set of requestable val-
ues, which plays an important role for the planning
algorithm in the following section. Unary operators is
one of the restrictions considered by Backstrom and
Nebel (1993), but the others are believed novel. For
the definitions below, let TT = (V, O, 50, s.) be a SAS™T

Instance.

Definition 3 An operator o € O is unary iff there is
exactly one v €V s.t. e(0)[v] £ u.

A value z € D, where z # u for some variable v €
V is said to be requestable if there exists some action
o € O such that o needs x in order to be executed.

Definition 4 For eachv € V and O’ C O, the set RUOI
of requestable values for O is defined as

R = {f(o)] o€ O'}U
{b(0)[v],e(0)[v] | 0 € O and o non-unary }

—{u}.

Stmalarly, for a set A of actions over O, we define

RA — th)ype(v“)‘

Obviously, R C D, for all v €V. For each state
variable domain, we further define the graph of possible
transitions for this domain, without taking the other
domains into account, and the reachability graph for
arbitrary subsets of the domain.

Definition 5 For each v €V, we define the corre-
sponding domain transition graph G, as a directed
labelled graph G, = (D}, T,) with vertex set D} and
arc set T, s.t. for allz,y € D} and o € O, {x,0,y) €
T, iff b(o)[v] = = and e(o)[v] = y # u. Further, for

each X C D} we define the reachability graph for
X as a directed graph G = (X, Tx) with verter set
X and arc set Tx s.t. for all z,y € X, (»,y) € Tx iff
there is a path from x to y i G,.

Alternatively, GX can be viewed as the restriction to
X C DF of the transitive closure of GG, but with unla-
belled arcs. When speaking about a path in a domain-
transition graph below, we will typically mean the se-
quence of labels, ze. operators, along this path. We say
that a path in Gy 1s via a set X C D, iff each member
of X is visited along the path, possibly as the initial
or final vertex.

Definition 6 An operator o € O s irreplaceable
wrt. a variable v € V iff removing an arc labelled with
o from Gy splits some component of G, into two com-
ponents.

In the remainder of this paper we will be primarily
interested in SAST instances satisfying the following
restrictions.

Definition 7 A SAST instance (V,0, 5o, s.) 1s:

(I) Interference-safe iff every operator o € O is ei-
ther unary or trreplaceable wrt. cvery v € V it af-
fects.

(@]

(A) Acyclic iff GR s acyclic for each v € V.

(O) prevail-Order-preserving iff for each veYV,
whenever there are two x,y € DF s.i. G, has a
shortest path {(01,...,0m) from x to y via some set
X CRY and it has any path (o}, ...,0.) fromz toy
via some set Y CRY s.t. X C Y, there exists some
subsequence (..., 0} ,...,0; ,...) s.t. f(or) Cf(o})

for1 <k <m.

We will be mainly concerned with SAST-IA and SASt-
IAO instances, that is, SAST instances satisfying the
two restrictions T and A and SAST instances satisfying
all three restrictions respectively. Both restrictions 1
and A are tractable to test. The complexity of test-
ing O 1n isolation is currently an open issue, but the
combinations IA and TAQO are tractable to test.

Theorem 8 The restrictions I and A can be tested
in polynomial time for arbitrary SAST instances. Re-
striction O can be tested in polynomial time for SAST
mnstances satisfying restriction A.

Proof sketch:® Testing A is trivially a polynomial
time problem. Finding the irreplaceable operators wrt.
a variable v € V can be done in polynomial time by
identifying the maximal strongly connected compo-
nents in G, collapsing each of these into a single vertex
and perform a reachability analysis. Since it is further
polynomial to test whether an operator is unary, it fol-
lows that also I can be tested in polynomial time.
Furthermore, given that the instance satisfies A, O
can be tested in polynomial time as follows. For each

®The full proofs of all theorems can be found in (Jonsson
& Backstrom 1994).

pair of vertices z,y € D, find a shortest path in G,
from z to y. If the instance satisfies O, then for each
operator o along this path, D} can be partitioned into
two disjoint sets X, Y s.t. every arc from some vertex
in X to some vertex in Y is labelled by an operator o’
satisfying that f(o) C f(o). This can be tested in poly-
nomial time by a method similar to finding shortest-
paths in GG,. Hence, O can be tested in polynomial
time if A holds. ad

Furthermore, the SAST-IAOQ problem is strictly
more general than the SAST-PUS problem (Backstrom
& Nebel 1993).

Theorem 9 All SAST-PUS instances are SAST-TAQO
instances, while a SAST-IAQ instance need not satisfy
etther P, U or S.

Planning Algorithm

Before describing the actual planning algorithm, we
make the following observations about the solutions to
arbitrary SAST instances.

Theorem 10 Let (A, <) be a partial-order plan solv-
ing some SAST instance Il = (V, 0, s, s«). Then for
each v €YV and for each action sequence o which is a
total ordering of A[v] consistent with <, the operator
sequence type(w) is a path in Gy from sp[v] to s.[v] via

a

This 18 a declarative characterization of the solu-
tions and it cannot be immediately cast in procedural
terms—the main reason being that we cannot know
the sets R in advance. These sets must, hence, be
computed incrementally, which can be done in poly-
nomial time under the restrictions I and A. We have
devised an algorithm, Plan (Figure 1), which serves as
a plan generation algorithm under these restrictions.

The heart of the algorithm is the procedure Eztend,
which operates on the global variables X1, ..., X, ex-
tending these monotonically. It also returns operator
sequences in the global variables wy, ... ,w,,, but only
their value after the last call are used by Plan. For
each 2, Fztlend first finds a shortest path w; in Gy,
from sg[v;] to s [v;] via X;. (The empty path () is con-
sidered as the shortest path from any vertex x to u,
since u C #). If no such path exists, then Extend fails

and otherwise each X; is set to Rvoll, where (0’ is the
set of all operators along the paths wi,...,w,. The
motivation for this is as follows: If f(o)[v;] = # # u
for some ¢ and some operator o in some w;, then some
action in the final plan must achieve this value, unless
it holds initially. Hence, x is added to X; to ensure
that Fztend will find a path via x in the next itera-
tion. Similarly, each non-unary operator occurring in
some w; must also appear in w; for all other j such
that o affects v;.

Starting with all X;,..., X, initially empty, Plan
calls Eztend repeatedly until nothing more is added to
these sets or Ertend fails. Viewing Ezlend as a func-
tion Fziend : ST — St ie. ignoring the side effect on

1 procedure Plan({V,0, so, 54));
2 (Xq,..., Xm) —(D,...,9);
3 repeat
4 Extend,
5 until no X; is changed;
6 Instantiate;
7 for1<i:<manda,bé€a do
8 Order a < b iff a precedes b in «y;
9 for1<i<mandaé€Ast f(a)v]#u do
10 Assume a; = (a1, ..., ax)
11 if e(a;)[v:] = f(a)[v:] for some 1 <1< k then
12 Order a; < a;
13 if l <k then Order a < aj41;
14 else Order a < a1;
15 A—{ae€a;|l1<i<m};
16 if < is acyclic then return (A, <);
17 else fail;
1 procedure Extend, (Modifies Xi1,...,Xm and
Wi, .., Win)
2 for1<:<m do
3 w; < any shortest path from so[v;] to s«[v;] in G,
4 via X;;
5 if no such path exists then fail;
6 for 1 <iz,3<mand o€ w;
S 51 e
8 if 0 not unary then
9 Xi = Xi U {b(o)[vi], e(0)[vi]} — {u};
1 procedure Instantiate; (Modifies aq, ..., am)
2 for1<:<m do
3 Assume w; = (01,...,0k)
4 for 1<I<k do
5 if 0; not unary and there is some a of type o;
6 in a; for some j <1 then a; — a;
7 else Let a; be a new instance of type(a;);
8 ai — {a1,...,ax)
Figure 1: Planning Algorithm
Wi, ...,Wmy, this process corresponds to constructing
the minimal fixed point for Eztend in St. The paths
w1, ...,wmy found in the last iteration contain all the

operators necessary in the final solution and procedure
Instantiate instantiates these as actions. This works
such that all occurrences of a non-unary operator are
merged into one unique instance while all occurrences
of a unary operator are made into distinct instances.
It remains to compute the action ordering on the set
A of all such operator instances (actions). For each v;,
the total order implicit in the operator sequence w; is
kept as a total ordering on the corresponding actions.
Finally, each action a s.t. f(a)[v;] = ¢ # u for some
i must be ordered after some action a’ providing this
condition. There turns out to always be a unique such
action, or none if v; = @ initially. Similarly, @ must be
ordered before the first action succeeding a’ that de-
stroys its prevailcondition. Finally, if < is acyclic, then
(A, <) is returned and otherwise Plan fails. Observe
that the algorithm does not compute the transitive clo-

sure <T of < since this is a costly operation and the
transitive closure is not likely to be of interest for ex-
ecuting the plan.

Procedure Plan is sound for SAST-IA instances and
it is further optimal and complete for SAST-IAO in-
stances.

Theorem 11 If Plan returns a plan (A, <) when
giwen a SAST-TA instance 11 as input, then (A, <)
solves I1 and if 11 s a SAST-TAO instance, then (A, <)
1s also minimal. Further, if Plan fails when given a
SAST-TAQ instance 1l as input, then there exists no
plan solving 1I.

Proof outline: The proofs for this theorem are quite
long, but are essentially based on the following obser-
vations. Soundness is rather straightforward from the
algorithm and Theorem 10. Further, let (A, <) be the
plan returned by Plan and let (A’, <') be an arbitrary
solution to II. Minimality follows from observing that
RA C RUAI for all v € V. The completeness proof es-
sentially builds on minimality and proving that if <
contains a cycle (ie. Plan fails in line 16), then there
can exist no solution to II. ad

Furthermore, Plan returns LC2-minimal plans
(Béckstrom 1993) which means that there does not
exist any strict (7e. irreflexive) partial order <’ on A
such that | <" | < | <t | and (A, <’) is a valid plan.
Finally, Plan runs in polynomial time.

Theorem 12 Plan has a worst-case time complexity

of O(|O(|V| maxyey [Dul)?).

Example

In this section, we will present a small, somewhat con-
trived example of a manufacturing workshop and show
how the algorithm handles this example. We assume
that there is a supply of rough workpieces and a ta-
ble for putting finished products. There are also two
workstations: a lathe and a drill. To simplify matters,
we will consider only one single workpiece. Two dif-
ferent shapes can be made in the lathe and one type
of hole can be drilled. Furthermore, only workpieces
of shape 2 fit in the drill. This gives a total of four
possible combinations for the end product: rough (ze.
not worked on), shape 1, shape 2 without a hole and
shape 2 with a hole. Note also that operator Shape2 is
tougher to the cutting tool than Shapel is—the latter
allowing us to continue using the cutting tool after-
wards. Finally, both the lathe and the drill require
that the power is on. This is all modelled by five state
variables, as shown in Table 1, and nine operators, as
shown in Table 2. This example is a SAST-IAO in-
stance, but it does not satisfy either of the P, U and S
restrictions in Backstrom and Nebel (1993).*

“Note in particular that since we do no longer require
the S restriction, we can model sequences of worksta-
tions, which was not possible under the PUS restriction
(Béackstrom & Klein 1991).

variable | domain denotes
1 {Supply,Lathe,Drill, Table} | Position of workpiece
2 {Rough,1,2} Workpiece shape
3 {Mint, Used} Condition of cutting tool
4 {Yes,No} Hole in workpiece
5 {Yes,No} Power on
Table 1: State variables for the workshop example
Operator | Precondition Postcondition Prevailcondition
MvSL v =9 v =1L
MvLT v =1L 0 =17
MvLD v =1L =D vy = 2
MvDT v =D 0 =17
Shapel vo = R v =1 vi=Lvs =M v =Y
Shape?2 v=Ruvs=M | v=2,03=U | vn=Lvs=Y
Drill ve = N v =Y =D =Y
Pon vy = N vy = Y
Poff vy = Y vy = N

Table 2: Operators for the workshop example. (Domain values will typically be denoted by their initial characters

only).

After iteration 1:

wy = (MvSLMvLT) | X; ={L, D}
wz = (Shape2) X> ={R,2}

W3:<> X3:{M,U}
Wy = <DI“1H> X4 = {}

ws = () Xs ={V}

After iteration 2:

wy = (MvSL,MvLD MvDT) | X; ={L, D}
wz = (Shape2) X> ={R,2}

ws = (Shape2) X ={M,U}
Wy = <DI“1H> X4 = {}

ws = (Pon,Poff) X ={Y}

Table 3: The variables w; and X; in the example.

Suppose we start in so = (S, R, M, N, N) and set the
goal s, = (T,2,u,Y, N), that is, we want to manufac-
ture a product of shape 2 with a drilled hole. We also
know that the cutting tool for the lathe is initially in
mint condition, but we do not care about its condition
after finishing. Finally, the power is initially off and
we are required to switch it off again before leaving
the workshop. Procedure Plan will make two calls to
Ezxtend before terminating the loop successfully, with
variable values as in Table 3.

The operators in the operator sequences w1, ...,ws
will be instantiated to actions, where both occurrences
of Shape2 are instantiated as the same action, since
Shape2 is non-unary. Since there is not more than one
action of each type in this plan, we will use the name
of the operators also as names of the actions. The
total orders in wi,...,wy, 1s retained in aq,..., .
Furthermore, Shape2 must be ordered after MvSL and
before MVLD since its prevailcondition on variable 1
equals the postcondition of MvLD for this variable.

Similarly, Drill must be ordered between MvLD and
MvDT because of its prevailcondition on variable 1 and
both Shape2 and Drill must be ordered between Pon
and Poff because of their prevailcondition on variable
5. Furthermore, MvLD must (once again) be ordered
after Shape2 because of its prevailcondition on variable
2. The final partial-order plan is shown in Figure 2.

Discussion

Several attempts on exploiting structural properties
on planning problems in order to decrease complexity
have been reported in the literature, but none with the
aim of obtaining polynomial-time planning problems.
Korf (1987) has defined some structural properties of
planning problems modelled by state-variables, for in-
stance serial operator decomposability. However, this
property is PSPACE-complete to test (Bylander 1992),
but does not guarantee tractable planning. Madler
(1992) extends Sacerdoti’s (1974) essentially syntac-
tic state abstraction technique to structural abstrac-
tion, identifying bottle-neck states (needle’s eyes) in
the state-transition graph for a state-variable formal-
ism. Smith and Peot (1993) use an operator graph for
preprocessing planning problem instances, identifying
potential threats that can be safely postponed during
planning—thus, pruning the search tree. The opera-
tor graph can be viewed as an abstraction of the full
state-transition graph, containing all the information
relevant to analysing threats.

A number of issues are on our research agenda for
the future. Firstly, we should perform a more careful
analysis of the algorithm to find a tighter upper bound
for the time complexity. Furthermore, the fixpoint for
the Eztend function is now computed by Jacobi itera-
tion, which 1s very inefficient. Replacing this by some
strategy for chaotic iteration (Cousot & Cousot 1977)

MvDT

Poff

Pon

Figure 2: The final partial-order plan.

would probably improve the complexity considerably,
at least in the average case. Furthermore, the algo-
rithm is likely to be sound and complete for less re-
stricted problems than SAST-IA and SAST-IAO re-
spectively. Finding restrictions that more tightly re-
flect the limits of the algorithm is an issue for future
research. We also plan to investigate some modifica-
tions of the algorithm, eg., letting the sets X1,..., X,
be partially ordered multisets, allowing a prevailcondi-
tion to be produced and destroyed several times—thus
relaxing the A restriction. Another interesting modifi-
cation would be to relax some of the restrictions and
redefine Ertend as a non-deterministic procedure. Al-
though requiring search and, thus, probably sacrificing
tractability, we believe this to be an intriguing alter-
native to ordinary search-based planning.

Conclusions

We have identified a set of restrictions allowing for
the generation of optimal plans in polynomial time
for a planning formalism, SAST, using multi-valued
state variables. This extends the tractability border-
line for planning, by allowing for more general prob-
lems than previously reported in the literature to be
solved tractably. In contrast to most restrictions in the
literature, ours are structural restrictions. However,
they are restrictions on the transition graph for each
state variable in isolation, rather than for the whole
state space, so they can be tested in polynomial time.
We have also presented a provably correct, polynomial
time algorithm for planning under these restrictions.

References

American Association for Artificial Intelligence. 1992.
Proceedings of the 10th (US) National Conference
on Artificial Intelligence (AAAI-92), San José, CA,
USA.

Backstrom, C.; and Klein, I. 1991. Parallel non-
binary planning in polynomial time. In Reiter and
Mylopoulos (1991), 268-273.

Backstrom, C., and Nebel, B. 1993. Complexity re-
sults for SAST planning. In Bajcsy, R., ed., Proceed-
wngs of the 13th International Joint Conference on
Artificial Intelligence (IJCAI-93). Chambéry, France:
Morgan Kaufmann.

Backstrom, C. 1993. Finding least constrained plans
and optimal parallel executions is harder than we

thought. In Backstrom, C., and Sandewall, E., eds.,
Current Trends in AI Planning: EWSP’93—2nd Fu-
ropean Workshop on Planning, Frontiers in Al and
Applications. Vadstena, Sweden: 10S Press.

Bylander, T. 1991. Complexity results for planning.
In Reiter and Mylopoulos (1991), 274-279.

Bylander, T. 1992. Complexity results for serial de-
composability. In AAAT-92 (1992), 729-734.

Cousot, P., and Cousot, R. 1977. Automatic syn-
thesis of optimal invariant assertions: Mathematical

foundations. STGPLAN Notices 12(8):1-12.

Drummond, M., and Currie, K. 1988. Exploiting tem-
poral coherence in nonlinear plan construction. Com-
putational Intelligence 4(4):341-348. Special Issue on
Planning.

Erol, K.; Nau, D. S.; and Subrahmanian, V. 5. 1992.
On the complexity of domain-independent planning.

In AAAI-92 (1992), 381-386.

Jonsson, P., and Backstrom, C. 1994. Tractable plan-
ning with state variables by exploiting structural re-
strictions. Research report, Department of Computer
and Information Science, Linkoping University.

Korf, R. E. 1987. Planning as search: A quantitative
approach. Artificial Intelligence 33:65-88.

Madler, F. 1992. Towards structural abstraction.
In Hendler, J., ed., Artificial Intelligence Planning
Systems: Proceedings of the 1st International Con-
ference, 163-171. College Park, MD, USA: Morgan

Kaufmann.

Reiter, R., and Mylopoulos, J., eds. 1991. Proceed-
wngs of the 12th International Joint Conference on
Artificial Intelligence (IJCAI-91). Sydney, Australia:

Morgan Kaufmann.

Sacerdoti, E. D. 1974. Planning in a hierarchy of
abstraction spaces. Artificial Intelligence 5(2):115—
135.

Smith, D. E., and Peot, M. A. 1993. Postponing
threats in partial-order planning. In Proceedings of
the 11th (US) National Conference on Artificial Intel-
ligence (AAAI-93), 500-506. Washington DC, USA:

American Association for Artificial Intelligence.

