
1

Discrete Events and Hybrid SystemsDiscrete Events and Hybrid Systems

pelab1 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

Picture: Courtesy Hilding Elmqvist

EventsEvents

Events are ordered in time and form an event history

time
event 1 event 2 event 3

• A point in time that is instantaneous, i.e., has zero duration

• An event condition that switches from false to true in order for the event
to take place

• A set of variables that are associated with the event, i.e. are referenced

pelab2 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

or explicitly changed by equations associated with the event

• Some behavior associated with the event, expressed as conditional
equations that become active or are deactivated at the event.
Instantaneous equations is a special case of conditional equations that
are only active at events.

2

Hybrid ModelingHybrid Modeling

Continuous-time

Hybrid modeling = continuous-time + discrete-time modeling

Real x;
Voltage v;
Current i;

time

Discrete-time

Current i;

Events

discrete Real x;
Integer i;
Boolean b;

• A point in time that is instantaneous, i.e., has zero duration

A t diti th t th t t k l

pelab3 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

• An event condition so that the event can take place

• A set of variables that are associated with the event

• Some behavior associated with the event,
e.g. conditional equations that become active or are deactivated at
the event

Event creation Event creation –– if if

model Diode "Ideal diode"
extends TwoPin;
R l

if <condition> then
<equations>

if-equations, if-statements, and if-expressions

False if s<0Real s;
Boolean off;

equation
off = s < 0;
if off then
v=s

else
v=0;

end if;
i = if off then 0 else s;

end Diode;

elseif <condition> then
<equations>

else
<equations>

end if;

a se s 0

If-equation choosing
equation for v

If-expression

pelab4 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

3

Event creation Event creation –– when when

when <conditions> then
<equations>

end when;

when-equations

time
event 1 event 2 event 3end when;

Time event
when time >= 10.0 then

...

event 1 event 2 event 3

Equations only active at event times

State event

when sin(x) > 0.5 then

pelab5 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

Only dependent on time, can be
scheduled in advance

end when; ...
end when;

Related to a state. Check for
zero-crossing

Generating Repeated EventsGenerating Repeated Events

The call sample(t0,d) returns
true and triggers events at times
t0+i*d where i 0 1

sample(t0,d)

true
t0+i*d, where i=0,1, …

model SamplingClock
Integer i;
discrete Real r;

equation
when sample(2,0.5) then

timefalse
t0 t0+d t0+2d t0+3d t0+4d

Variables need to be
discrete

Creates an event
after 2 s, then
each 0.5 s

pelab6 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

when sample(2,0.5) then
i = pre(i)+1;
r = pre(r)+0.3;

end when;
end SamplingClock; pre(...) takes the

previous value
before the event.

4

Reinit Reinit –– Discontinuous ChangesDiscontinuous Changes

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

model BouncingBall "the bouncing ball model"
parameter Real g=9.81; //gravitational acc.
parameter Real c=0.90; //elasticity constant
Real height(start=10),velocity(start=0);

equation
der(height) = velocity;
der(velocity)=-g;
when height<0 then
reinit(velocity, -c*velocity);

end when;
end BouncingBall;

pelab7 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

end BouncingBall;

Reinit ”assigns”
continuous-time variable
velocity a new value

Initial conditions

initialinitial and and terminalterminal eventsevents

Initialization actions are triggered by initial()

initial()

Actions at the end of a simulation are triggered by terminal()

t i l()

timefalse

true

event at start

pelab8 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

time

terminal()

false

true

event at end

5

Terminating a SimulationTerminating a Simulation

There terminate() function is useful when a wanted result is
achieved and it is no longer useful to continue the simulation. The
example below illustrates the use:

model terminationModel
Real y;

equation
y = time;
when y >5 then
terminate("The time has elapsed 5s");

end when;
end terminationMode;

Simulation ends before
reaching time 10terminate

pelab9 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

simulate(terminationModel, startTime = 0, stopTime = 10)

Expressing Event Behavior in ModelicaExpressing Event Behavior in Modelica

model Diode "Ideal diode"
t d T Pi

if <condition> then
<equations>

if-equations, if-statements, and if-expressions express different behavior in
different operating regions

extends TwoPin;
Real s;
Boolean off;

equation
off = s < 0;
if off then
v=s

else
v=0;

end if;
i = if off then 0 else s;

<equations>
elseif <condition> then

<equations>
else

<equations>
end if;

pelab10 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

end Diode;

equation
when x > y.start then
...

when <conditions> then
<equations>

end when;

when-equations become active at events

6

model WhenConflictX // Erroneous model: two equations define x
discrete Real x;
equation
hen ti > 2 then // Wh A I b 1 5 t ti 2

Event PriorityEvent Priority

Erroneous multiple definitions, single assignment rule violated

when time>=2 then // When A: Increase x by 1.5 at time=2
x = pre(x)+1.5;
end when;
when time>=1 then // When B: Increase x by 1 at time=1
x = pre(x)+1;
end when;

end WhenConflictX;

Using event priority
model WhenPriorityX

discrete Real x;

pelab11 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

Using event priority
to avoid erroneous
multiple definitions

equation
when time>=2 then // Higher priority
x = pre(x)+1.5;

elsewhen time>=1 then // Lower priority
x = pre(x)+1;

end when;
end WhenPriorityX;

Obtaining Predecessor ValuesObtaining Predecessor Values
of a Variable Using of a Variable Using pre()pre()

At an event, pre(y) gives the previous value of y immediately
before the event, except for event iteration of multiple events at
the same point in time when the value is from the previous p p
iteration

time

y

event

y

pre(y)

pelab12 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

• The variable y has one of the basic types Boolean, Integer, Real,
String, or enumeration, a subtype of those, or an array type of one
of those basic types or subtypes

• The variable y is a discrete-time variable
• The pre operator can not be used within a function

7

Detecting Changes of BooleanDetecting Changes of Boolean
Variables Using Variables Using edge()edge()andand change()change()

Th i d (b)

Detecting changes of boolean variables using edge()

btrue

The expression edge(b)
is true at events when b
switches from false to true

Detecting changes of discrete-time variables using change()

time

event

edge(b)

event

true
false

false

v

pelab13 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

The expression change(v)
is true at instants when v
changes valuetime

event

change(v)

event

true

4.1

false

3.2

4.5

true

Creating TimeCreating Time--Delayed ExpressionsDelayed Expressions

Creating time-delayed expressions using delay()

time

t1

v

t2

4.1
3.2

4.5

t1+d

delay(v,d)

t2+d

4.1
3.2

4.5

start+d

pelab14 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

In the expression delay(v,d) v is delayed by a delay time d

8

A Sampler ModelA Sampler Model

model Sampler
parameter Real sample_interval = 0.1;
Real x(start=5);
Real y;

equationq
der(x) = -x;
when sample(0, sample_interval) then
y = x;

end when;
end Sampler;

simulate(Sampler, startTime = 0, stopTime = 10)

plot({x,y})

4

5

pelab15 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

2 4 6 8 10
t

1

2

3

Discontinuous Changes to Variables at Events via Discontinuous Changes to Variables at Events via
WhenWhen--Equations/StatementsEquations/Statements

The value of a discrete-time variable can be changed by placing the variable
on the left-hand side in an equation within a when-equation, or on the left-
hand side of an assignment statement in a when-statement

model BouncingBall "the bouncing ball model"
parameter Real g=9.18; //gravitational acc.
parameter Real c=0.90; //elasticity constant
Real x(start=0),y(start=10);

equation
der(x) = y;
der(y)=-g;
h 0 h

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

t

pelab16 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

when x<0 then
reinit(y, -c*y);

end when;
end BouncingBall;

9

A Mode Switching Model ExampleA Mode Switching Model Example

inertia1 inertia2
signalVoltage

resistor inductor
Motor side Load side

Elastic transmission with slack

tau

DC motor transmission with elastic backlash

emf

ground

elastoBacklash

signalVoltage

step phi_dev
- b/2 b/2

phi_dev < -b/2 phi_dev <= b/2

pelab17 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

A finite state automaton
SimpleElastoBacklash
model

Backward Slack Forward

tau < 0 tau > 0tau = 0

phi_dev > b/2phi_dev >= -b/2

A Mode Switching Model Example cont’A Mode Switching Model Example cont’

partial model SimpleElastoBacklash
Boolean backward, slack, forward; // Mode variables
parameter Real b "Size of backlash region";
parameter Real c = 1.e5 "Spring constant (c>0), N.m/rad";
Flange a flange a "(left) driving flange - connector";Flange_a flange_a (left) driving flange connector ;
Flange_b flange_b "(right) driven flange - connector";
parameter Real phi_rel0 = 0 "Angle when spring exerts no torque";
Real phi_rel "Relative rotation angle betw. flanges";
Real phi_dev "Angle deviation from zero-torque pos";
Real tau "Torque between flanges";

equation
phi_rel = flange_b.phi - flange_a.phi;
phi_dev = phi_rel - phi_rel0;
backward = phi_rel < -b/2; // Backward angle gives torque tau<0
forward = phi_rel > b/2; // Forward angle gives torque tau>0
slack = not (backward or forward); // Slack angle gives no torque

//

pelab18 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

tau = if forward then // Forward angle gives
c*(phi_dev – b/2) // positive driving torque

else (if backward then // Backward angle gives
c*(phi_dev + b/2) // negative braking torque

else // Slack gives
0); // zero torque

end SimpleElastoBacklash

10

A Mode Switching Model Example cont’A Mode Switching Model Example cont’

Relative rotational speed between
the flanges of the Elastobacklash
t i i

0.5

0.75

1 elastoBacklash.w_rel

transmission
5 10 15 20 25 t

-0.5

-0.25

0.25

t

5 10 15 20 25

0 4

-0.2

We define a model with less mass in
inertia2(J=1), no damping d=0,
and weaker string constant c=1e-5,
to show even more dramatic

inertia1.w

pelab19 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

-1.2

-1

-0.8

-0.6

-0.4 to show even more dramatic
backlash phenomena

The figure depicts the rotational
speeds for the two flanges of the
transmission with elastic backlash

inertia2.w

Water Tank System with PI ControllerWater Tank System with PI Controller

TankPI

tank

tActuator tSensor

qIn qOut
source

model TankPI
LiquidSource source(flowLevel=0.02);
Tank tank(area=1);
PIcontinuousController piContinuous(ref=0.25);

equation
connect(source qOut, tank qIn);

piContinuous
cOut cIn

connect(source.qOut, tank.qIn);
connect(tank.tActuator, piContinuous.cOut);
connect(tank.tSensor, piContinuous.cIn);

end TankPI;

model Tank
ReadSignal tOut; // Connector, reading tank level
ActSignal tInp; // Connector, actuator controlling input flow
parameter Real flowVout = 0.01; // [m3/s]
parameter Real area = 0.5; // [m2]
parameter Real flowGain = 10; // [m2/s]
Real h(start=0); // tank level [m]

level

maxLevel

pump tank

levelSensor

out in

pelab20 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

(); // []
Real qIn; // flow through input valve[m3/s]
Real qOut; // flow through output valve[m3/s]

equation
der(h)=(qIn-qOut)/area; // mass balance equation
qOut=if time>100 then flowVout else 0;
qIn = flowGain*tInp.act;
tOut.val = h;

end Tank;

11

Water Tank System with PI Controller Water Tank System with PI Controller –– cont’cont’

partial model BaseController
parameter Real Ts(unit = "s") = 0.1 "Time period between discrete samples";
parameter Real K = 2 "Gain";
parameter Real T(unit = "s") = 10 "Time constant";
ReadSignal cIn "Input sensor level, connector";
ActSignal cOut "Control to actuator, connector";
parameter Real ref "Reference level";
Real error "Deviation from reference level";
Real outCtr "Output control signal";

equation
error = ref - cIn.val;
cOut.act = outCtr;

end BaseController;

model PIdiscreteController
extends BaseController(K = 2, T = 10);

model PIDcontinuousController
extends BaseController(K = 2, T = 10);

pelab21 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

discrete Real x;
equation

when sample(0, Ts) then
x = pre(x) + error * Ts / T;
outCtr = K * (x+error);

end when;
end PIdiscreteController;

Real x;
Real y;

equation
der(x) = error/T;
y = T*der(error);
outCtr = K*(error + x + y);

end PIDcontinuousController;

Concurrency and Resource SharingConcurrency and Resource Sharing

mutex

Dining Philosophers ExampleDining Philosophers Example

model DiningTable
parameter Integer n = 5 "Number of philosophers and forks";
parameter Real sigma = 5 " Standard deviation for the random function";
// Give each philosopher a different random start seed
// Comment out the initializer to make them all hungry simultaneously.
Philosopher phil[n](startSeed=[1:n,1:n,1:n], sigma=fill(sigma,n));
Mutex mutex(n=n);
Fork fork[n];

equation
for i in 1:n loop Thinking

Eating

Eating

pelab22 Peter Fritzson Copyright Peter Fritzson Copyright ©© Open Source Modelica Consortium

connect(phil[i].mutexPort, mutex.port[i]);
connect(phil[i].right, fork[i].left);
connect(fork[i].right, phil[mod(i, n) + 1].left);

end for;
end DiningTable;

Thinking

Thinking

Thinking

Thinking

Eating

Eating

Eating

Eating

