
Customizing Interaction for Natural Language Inter-
faces

Lars Ahrenberg, Arne J�onsson, �Ake Thur�ee
Department of Computer and Information Science
Linkping University
S- 58183 LINK�OPING, Sweden
email: lah@ida.liu.se arj@ida.liu.se aketh@ida.liu.se

Abstract

Habitability and robustness have been noted as important qualities of natural-language

interfaces. In this paper we discuss how these requirements can be met, in particular as

regards the system's ability to support a coherent and smooth dialogue. The discussion is

based on current work on customizing a dialogue system for three di�erent applications.

We adopt a sublanguage approach to the problem and propose a method for customization

combining bottom-up use of empirical data with a global pragmatic analysis of a given

application. Finally, we suggest some design principles that have emerged from our work.

1 Introduction

Research on computational models of discourse can be motivated from two di�erent standpoints.

One approach is to develop general models and theories that apply to all kinds of agents and

situations. The other is to develop accounts of speci�c discourse genres (Dahlb�ack & J�onsson,

1992). It is not obvious that the two approaches should produce similar computational theories of

discourse and we believe it is important to distinguish the two tasks from each other. Moreover,

in the case of dialogues for natural-language interfaces (NLIs), which is our prime concern in

this paper, there is not merely the question of modelling some external linguistic reality but also

an important element of design, linguistic as well as otherwise.

The following requirements are widely recognized as being important for NLIs.

� habitability: the user should conveniently be able to express the commands and requests

that the background system can deal with, without transgressing the linguistic capabilities

of the interface (Watt, 1968);

� e�ciency: the NLI should not slow down the interaction with the background system

noticeably;



Lars Ahrenberg, Arne J�onsson, �Ake Thur�ee

� robustness: the system should be able to react sensibly to all input (cf. Hayes & Reddy,

1983);

� transparency: the system's capabilities and limitations should be evident to the user from

experience;

In this paper we discuss ways of making teletype natural-language interfaces satisfy these re-

quirements in the context of applications which belong to the domain that Hayes and Reddy (1983)

call simple service systems, i.e. systems that \require in essence only that the customer or client

identify certain entities to the person providing the service; these entities are parameters of the

service, and once they are identi�ed the service can be provided" (ibid. p. 252). These systems

exhibit the kind of dialogue that Van Loo and Bego (1993) term parameter dialogue.

The requirement that puts the highest demand on linguistic competence is the one con-

cerning habitability. However, habitability does not necessarily imply that the system must

understand any relevant request. Where extended linguistic coverage comes in conict with

either robustness, transparency or e�ciency, it may be compromised (though cf. Ogden, 1988).

This trade-o� between requirements recon�rms the need for good design. The importance of

habitability, however, suggests that a dialogue system must handle those phenomena that oc-

cur frequently in typed human-computer interaction correctly and e�ciently, so that the user

does not feel constrained or restricted when using the interface. The trade-o� implies that the

interface should not waste e�ort on complex computations in order to handle irrelevant or rare

phenomena. For instance, the system need not be able to handle features such as jokes or

surprise, when these are not demanded by the purposes of the system.

On these grounds we have adopted a sublanguage approach (Grishman & Kittredge, 1986)

to dialogue systems of this kind. All aspects of linguistic communication, including interaction

patterns and the use of indexical language is assumed to depend on the application and domain.

For this reason the interface system must be designed to facilitate customization to meet the

needs of di�erent applications. Moreover, we must �nd methods that allow us to determine

what the needs of a given application are. Such a method, based on Wizard of Oz-simulations,

will be outlined below.

The rest of this paper is organized as follows. The next section briey describes our system

and applications, and the ways in which the system can be customized. The following section

presents ways of meeting the requirements listed above as they apply to dialogue behaviour. In

the third and �nal section we discuss our solutions from a more general perspective and propose

three design principles relating to the notion of sublanguage, the quantity of information, and

asymmetries between users and systems.



Customizing Interaction for Natural-Language Interfaces

2 The linlin model

The natural language interface linlin (Ahrenberg, J�onsson, & Dahlb�ack, 1990; J�onsson, 1991,

1993a); is designed to facilitate customization to various applications. Dialogue in linlin is

modelled using dialogue objects which represent speech acts and speech act sequences. The dia-

logue objects are structured in terms of parameters that represent their properties and relations.

A dialogue manager, which is the major controlling module of the system, records instances of

dialogue objects as nodes of a dialogue tree as the interaction proceeds. The dialogue tree

constitutes the global context of the dialogue.

The dialogue objects are divided into three main classes on the basis of structural complexity.

There is one class corresponding to the size of a dialogue and another corresponding to the size of

a discourse segment (cf. Grosz & Sidner, 1986). An initiative-response (IR) structure is assumed

(cf. adjacency-pairs Scheglo� & Sacks, 1973) where an initiative opens a segment by introducing

a new goal and the response closes the segment (Dahlb�ack, 1991). The third class corresponds

to the size of a single speech act, or dialogue move. Thus, a dialogue is structured in terms

of discourse segments, and a discourse segment in terms of moves and embedded segments.

Utterances are not analysed as dialogue objects, but as linguistic objects which function as

vehicles of one or more moves.1

2.1 Customization

Dialogue objects have been determined for three di�erent applications on the basis of a corpus

of 30 dialogues collected in Wizard of Oz-experiments (cf. Dahlb�ack, J�onsson, & Ahrenberg,

1993; Fraser & Gilbert, 1991). 10 dialogues were used for each application. In one application,

bildata, the system is a database providing information on properties of second-hand cars. The

other two applications are both concerned with the travel domain. In one of them, travel1,

users can only gather information on charter trips to the Greek Archipelago, while in the other,

travel2, they can also order such a charter trip.

For the purpose of customization, two kinds of information can be obtained from a corpus:

� First, it can be used as a source of phenomena which the designer of the natural language

interface was not aware of from the beginning, e.g. in the travel1 information system

some users unexpectedly tried to make orders in spite of the fact that the system does not

support it.

� Second, it can be used to rule out phenomena that do not occur in the corpus, especially

those requiring sophisticated reasoning to be handled correctly.

1The use of three levels for the hierarchical structuring of the dialogue is motivated from the analysis of the
corpora. There is no claim that they are su�cient for all types of dialogue, and even less so, to any type of
discourse. The dialogue manager can be customized to deal with any number of levels.



Lars Ahrenberg, Arne J�onsson, �Ake Thur�ee

Another matter is whether the corpus should serve as the only resource for determining what

to include in the system, or whether the corpus data needs to be augmented somehow. The

�rst, rather extreme stand is taken by Kelley (1983) who proposes a method, the User-Derived

Interface (UDI), for acquiring the lexical and grammatical knowledge of a natural language

interface in six steps. The �rst two steps are mainly concerned with determining and imple-

menting essential features of the application. In the third step, known as the �rst Wizard of

Oz-step, the subject interacts with what they believe is a natural language interface but which

in fact is a human simulating such an interface. This provides data that are used to build a �rst

version of the interface (step four). Kelley starts without grammar or lexicon. The rules and

lexical entries are those used by the users during the simulation. In step �ve, Kelley improves

his interface by conducting new Wizard of Oz simulations, this time with the interface running.

However, when the user/subject enters a query that the system cannot handle, the wizard takes

over and produces an appropriate response. The advantage is that the user's interaction is not

interrupted and a more realistic dialogue is thus obtained. This interaction is logged and in step

six the system is updated to be able to handle the situations where the wizard responded.

linlin is customized to a speci�c application using a process inspired by the method of

User-Derived Interfaces. However, there is a drawback to Kelley's method as a very large corpus

is needed for coverage of the possible actions taken by a potential user (cf. Ogden, 1988).

Our approach is thus less extreme. If a phenomenon is present in the corpus then it should

be included. If it is not present, but occurs in other studies using similar background systems

and scenarios and implementation is straightforward, the system should be customized to deal

with it. Otherwise, if it is not present and it would increase the complexity of the system, it

is not included. Knowledge from other sources is also employed (cf. Grishman, Hirshman, &

Nhan, 1986). In the customization of linlin for the bildata and travel systems, knowledge

on how the database is organised and also how users retrieve information from databases is

needed.

3 Meeting requirements

In this section we discuss how the requirements listed in the introduction: habitability, e�-

ciency, robustness and transparency, can be satis�ed, in particular as they apply to the dialogue

behaviour of the system.

3.1 Habitability

A dialogue object consists of parameters that specify di�erent kinds of information. The pa-

rameters and their values can be modi�ed for each new application, although some parameters

are likely to be needed often. Customization of the Dialogue Manager to meet requirements on



Customizing Interaction for Natural-Language Interfaces

habitability involves two major tasks:

� De�ning focal parameters of the dialogue objects and customizing heuristic principles for

changing the values of these parameters.

� Constructing a dialogue grammar for controlling the dialogue, i.e. specify parameters that

determine what actions to take in di�erent situations.

Two focal parameters, used in all three applications, are Objects and Properties. They are

focal in the sense that they can be in focus over a sequence of segments. Their basic function is to

represent the information structure of a move. Objects identify, via description or enumeration,

a set of primary referents, and Properties identify a complex predicate ascribed to this set (cf.

Ahrenberg, 1987).

Two principles for maintaining the focus structure are utilized. A general heuristic principle

is that everything not changed in an utterance is copied from one IR-node in the dialogue tree

to the newly created IR-node. Another principle is that the value for Objects will be updated

with the value from the module accessing the database, if provided.

Primary parameters for de�ning the dialogue grammar are Type and Topic. Type represents

the illocutionary force of a move. Hayes and Reddy (1983, p 266) identify two sub-goals in simple

service systems: 1) \specify a parameter to the system" and 2) \obtain the speci�cation of a

parameter". Initiatives are categorized accordingly as being of two di�erent types 1) update, U,

where users provide information to the system and 2) question, Q, where users obtain information

from the system. Responses are categorized as answer, A, for database answers from the system

or answers to clari�cation requests. Other Type categories are Greeting, Farewell and Discourse

Continuation (DC) (Dahlb�ack, 1991). The latter type is used for system utterances that signal

to the user that it is her turn.

Topic describes which knowledge source to consult. In our database applications three dif-

ferent topics are used: the background system for solving a task (T), the database model for

queries about system properties, (S) and, �nally, the dialogue tree for clari�cations relating to

the interpretation of moves (D).

A number of other parameters describing speaker, hearer, utterance content and so on, are

also used. Although they provide additional information for the dialogue manager, the structure

of the dialogue is largely captured through the parameters Type and Topic.

3.1.1 The focus structure

In the bildata application, task-related questions are about cars. Thus, the Objects parameter

holds descriptions of, or explicit lists of cars while the Properties parameter, holds a set of car

properties. In the travel systems, on the other hand, users switch their attention between



Lars Ahrenberg, Arne J�onsson, �Ake Thur�ee

Statistics on focusing heuristics

bildata travel1 travel2

Fully speci�ed initiatives 52% 48% 47%

Initiatives requiring local context 40% 42% 45%

Initiatives requiring global context 4% 2% 5%

Table 1: User-initiatives classi�ed according to context-dependence.

objects of di�erent kinds: hotels, resorts and trips. This requires a more complex behaviour of

the Objects parameter and the use of domain knowledge for focus tracking (J�onsson, 1993b).

The general focusing principles need to be slightly modi�ed to apply to the bildata and

travel applications. For the bildata application the heuristic principles apply well to the

Objects parameter. An intensionally speci�ed object description provided in a user initiative

will be replaced by the extensional speci�cation provided by the module accessing the database.

For the travel applications the principles for providing information to the Objects parameter

are modi�ed to allow hotels to be added if the resort remains the same.

For the bildata application the heuristic principles for the Properties parameter need to

be modi�ed. The modi�cation is that if the user does not add new cars to Objects, then the

attributes provided in the new user initiative are added to the old set of attributes. This is

based on the observation that users often start with a rather large set of cars and compare them

by gradually adding restrictions (cf. Kaplan, 1983), for instance using utterances like Remove

all small-sized cars. We call such responses cumulative as they summarize all information ob-

tained in a sequence of questions. For the travel applications the copy principle holds without

exception.

The results from the customizations showed that the heuristic principles worked well, mini-

mizing the need to search the global context for referents of indexical constructions. See Table

1.

In the travel2 system there is one more object; the order form. A holiday trip is not fully

de�ned by specifying a hotel at a resort. It also requires information concerning the actual trip:

length of stay, departure date and so on. The order form is �lled with user information during

a system controlled phase of the dialogue.

3.1.2 The dialogue structure

The dialogue structure parameters Type and Topic also require customization. In the bildata

system the users never update the database with new information, but in the travel2 system

where ordering is allowed the users update the order form. Here another Type is needed, CONF,



Customizing Interaction for Natural-Language Interfaces

Statistics on dialogue structure

bildata travel1 travel2

Number of rules 15 12 14

QT=AT 60% 83% 70%

QD=AD 12% 2% 2%

QS=AS 9% 2% 2%

QT=AD 7% 2% 3%

QT=AS 5% 6% 4%

Ordering rules - 1% 17%

Others, e.g. greetings, farewells 7% 4% 2%

Table 2: Types of dialogue segments and their relative frequency in three di�erent applications.

which is used to close an ordering session by summarizing the order and implicitly prompt for

con�rmation. For the ordering phase the Topic parameter O for order is added, which means

that the utterance a�ects the order form.

The resulting grammars from the customizations of all systems are quite simple. The most

common segment consists of a task-related initiative followed by an answer from the database,

QT=AT
2, sometimes with an embedded clari�cation sequence, QD=AD . In bildata 60% of the

initiatives start segments of this type. For travel 83% of the initiatives in the non-ordering

dialogues and 70% of the ordering dialogues are of this type. Other task related initiatives result

in a response providing system information, QT=AS , or a response stating that the intitiative

was too vague, QT=AD . There are also a number of explicit calls for system information, QS=AS .

See Table 2 for a summary of the statistics on dialogue structure.

In the work by Kelley on lexical and grammatical acquisition, the customization process was

saturated after a certain number of dialogues. The results presented here indicate that this is

the case also for the dialogue structure of our applications. From a rather limited number of

dialogues, a context free grammar can be constructed which, with a few generalizations, will

cover the interaction patterns occurring in the actual application (J�onsson, 1993a).

The IR-sequences found in the analysis of dialogue structure have a natural explanation if we

consider the purpose of the system. Although the dialogue objects do not represent information

on user's goals, it turns out that the user utterances can be classi�ed into a few classes in

goal-related terms. The segments can basically be divided into four classes, taking the user's

initiative as the basis for the classi�cation: (i) "proper" information requests that are satis�ed by

an answer with information from the database, (ii) successful queries about system properties,

(iii) successful moves satisfying subordinate goals, such as greetings or discourse continuations;

(iv) initiatives that transgress the system's knowledge and which require robust error handling.

2For brevity, when presenting the dialogue grammar, the Topic of a move is indicated as a subscript to the
Type. Labels of IR-segments have the form of a pair of move labels separated by a slash (/).



Lars Ahrenberg, Arne J�onsson, �Ake Thur�ee

Note that we can view the taxonomy as a preference order. There is a basic division between

the simple, normal segment (QT=AT with two moves) and the other segments, which in one

way or another indicates that we have left the normal smooth interaction, and do something

subordinate to the main purpose. From the point of view of e�ciency the interaction is optimal

when it consists of a sequence of QT=AT -segments. If the user resorts to a QS , there is something

about the system that she isn't aware of, but which he could be aware of. The third type is

also of a subordinate, instrumental character, but really unnecessary for an experienced user.

Uninterpretable moves are obviously the least preferred ones.

3.2 Optimal responses in normal mode

If the system determines that a certain user initiative is a complete and successful QT , the

only remaining task is to derive an appropriate SQL-query and respond with the tuples that

are returned from the database. One problem that the system can encounter in this process

is ambiguity: a certain word or expression may be translated to the query language in more

than one way. For instance, in the bildata database there is information on acceleration and

top speed, so it is not clear what a user has in mind if he asks whether a certain car make

is fast (Sw. snabb), or requests to see a list of fast cars. Similarly, the adjective rymlig (Eng.

spacious) may pertain to the booth or the space inside the car. In this case, one option is to enter

into a clari�cation sub-dialog. However, this takes time and it may be more swift to provide

information on all aspects that are potentially relevant. The user may easily ignore information,

if he is not interested.

A similar strategy is used if a question is about the same set of cars as a previous question

(cf. 3.1.1). Then the information requested in the second question is added to that of the �rst.

Some subjects actually mentioned this as a good feature of the system in their comments, as it

facilitates comparisons and evaluations to have all relevant information in a single table.

In both of these cases the system provides more information to the user than she has actually

asked for. Some other cases where this happens are described in the following section.

3.3 Communication of meta-knowledge

As regards the second type of user initiative, the system queries, there is �rst the problem of

distinguishing them from the task-oriented queries. Descriptively, these queries have a di�erent

topic. The topic is recognized from the major constituents of the query, in particular main verbs

and their complements.

Frequently the user starts a session by asking a question such as Vilka bilar �nns? (What

makes are there?) or Finns det priser p bde nya och begagnade bilar? (Can you provide prices

on both new and second-hand cars?) These questions are currently all answered by a pre-stored

message giving a brief description of the contents of the database. This text usually gives more



Customizing Interaction for Natural-Language Interfaces

information than the user has asked for, and, as with the second example above, provides an

answer only implicitly. However, it would easily be possible to make the responses more �ne-

grained given a su�cient empirical basis. Another option would be to display this text in a

separate window on the screen so that the question need not arise as part of the dialogue.

The most common type of system query in the corpus concerns how information should be

interpreted, e.g. Frklara si�rorna fr rostbengenhet. (Explain the numbers indicating susceptibil-

ity to rust). These are recognized on the basis of the occurrence of a predicate that indicates

that the interpretation of a certain value, or type of value, is at stake. The answers are then

not obtained from the bildata database, but from a special �le forming a part of the database

model. Thus, there is one text informing on how rust is evaluated and what the various numbers

in the rust column means, which is used as a response to all questions of type S relating to rust.

It should be noted that the strategy of answering system queries by pre-stored standard answers

has the e�ect that the analysis of a system question need not be as detailed as the analysis of a

task-oriented question.

3.4 Robustness

Although the model o�ers a general way to support robustness, i.e. that of engaging in a clari-

�cation sub-dialogue, this way is not always the best one. Many problems cannot be diagnosed

correctly by the system, and other problems, such as mis-spellings, can be regarded as too small

to warrant a clari�cation sub-dialog. Moreover, the model is restricted to information signalled

verbally as part of a NL-dialog. But the system may communicate with the user by other means,

e.g. in another window (pop-up window) or by non-verbal signals in the dialogue window. The

purpose of this extra channel would be to give instructions and hints that enable the user to

stay within the bounds of what the system allows with as little disturbance and time loss as

possible. That is, it can be argued that it is preferable to solve problems by giving signals to

the user that he need not respond to verbally, only interpret.

Below we discuss several types of transgressions that the user can make and discuss means

to handle them. They relate to the lexicon, the sentence grammar, the dialogue grammar and

the domain model, respectively.

It is common that the user enters a word that has no analysis in the lexicon. Considering the

requirements on e�ciency it is important that the transgression is detected as soon as possible.

If lexical processing does not start until the user enters a carriage return, a lot of time may be

wasted. The best one can achieve in this regard is to detect the mistake as soon as the user

has pressed a character key that results in a substring with no continuation in the lexicon. As

our current lexicon does not support error detection at this level, we go for the second best

alternative, i.e. to detect errors when a word separator has been encountered. The error is

presently signalled to the user by changing the font of the echoed input. There is no diagnosis



Lars Ahrenberg, Arne J�onsson, �Ake Thur�ee

performed by the system; this is a task given over to the user on the assumption that he knows

better than the system what could be the trouble.3 We believe that a non-verbal signal is more

adequate than a verbal message. The important thing is to make the user aware of the lexical

transgression while he is still engaged in writing.

Grammatical transgressions are handled similarly to lexical transgressions paying due regard

to early detection. How soon you can detect a grammatical error depends on the parsing

technique you use. To increase e�ciency we are using a left-to-right, incremental chart-parser,

which means that parsing starts as soon as the user enters some input (Wir�en, 1992; Wir�en

& R�onnquist, 1993). The time interval between the user's pressing the carriage return key

and the moment when parsing is �nished is thus reduced noticeably. For an input to receive

a grammatical analysis it is necessary that every word of the input receives an analysis as

part of some phrase, possibly as a direct descendant of the category spanning the whole input.

Thus, if a word is entered that cannot combine with active edges to its left, nor yield a phrase

that can combine with those edges (top-down �ltering is used), then the system knows that no

complete parse can be obtained. Thus, many grammatical transgressions can be detected fairly

quickly. Currently there is no diagnosis but the transgression is signalled to the user as soon

as it is detected by inverting the dialogue window. This shows the user that the input cannot

be interpreted, although it does not tell him what is at fault. We are contemplating giving

information of the following kinds: information about expressions that could follow strings that

are left unextended at the relevant vertex, and lists of example sentences that are somehow

similar to what the user has written, e.g. that contain the same initial words.

Dialogue grammar transgressions occur when the user enters something which the system

can only interpret as a move which is out of place. For example, the user may interpret a system

message as a question and enter "Yes", while the system intended it as a discourse continuation

and expected a question. The transgression is detected when the dialogue manager tries to

connect the user move with the current dialogue tree. It is signalled to the user by an explicit

error message, which entails a super�cial analysis of the error and brings recovery with it. The

system takes no notice of the error, however, and does not enter the segment in the dialogue

tree. This means that the segment is treated as if it had never occurred for the purpose of focus

tracking and expectations, i.e. in the same fashion as a lexical or grammatical transgression.

The dialogue continues in the same state as before the transgressive move.

Another type of transgression is when the user requests information that is not in the

database, although the user seems to believe so. Some examples in the bildata domain con-

cern the colour of cars, or variation in the number of doors. This type of error is detected by

using information in the database model, which also should represent common knowledge of

3Of course, this need not always be the case and we are currently looking into robust parsing techniques to
support diagnosis and recovery (Ingels, 1993). However, under current circumstances, the user is better equipped
to handle lexical transgressions.



Customizing Interaction for Natural-Language Interfaces

the domain e.g. properties of cars that people like to inquire about. These properties can be

added to the database model as they are discovered and be marked there as not corresponding

to anything in the database. Thus, these transgressions are easily detected and diagnosed. The

response is an AS-move and is taken to be part of the dialogue, as the user is likely to refer to

objects and properties mentioned in his request afterwards.

A question may refer to a set of properties, or to several objects, only one of which is not in

the database. The general strategy is then to �lter out those properties and objects that there is

no information on, but supply an answer for those that are correct. In addition to the retrieved

table, an error message is included informing about the transgression. This is in line with the

preference ordering of IR-segments: we prefer database information to be exchanged as much as

possible.

4 A set of principles for design

In this section we ask whether the solutions to the speci�c problems that we have discussed,

conform to some general design principles. Indeed, we believe that they do. Before looking at the

principles we state some simple observations on the pragmatics of NL-dialogue with computers.

The importance of analysing the purpose of an application was noted in section 2.3. By

considering the global discourse purpose we can get ideas on what kinds of discourse objects are

likely to occur in a given application. This analysis can then be corroborated against empirical

data. For our applications it seems that the goals of speci�c moves are either identical with the

general discourse purpose, though constrained w r t the information requested, or subordinated

to the general purpose. As we saw above it may happen, though, that users may attempt to

pursue goals for which the system is only meant to be instrumental, as in the case of our subjects

that tried to order tickets from an information system.

The topics that users may raise can be determined from an analysis of system requirements,

which can then be tested empirically. As noted in section 3.1, we have found that topics in our

data can be classi�ed into three di�erent classes, and all of them can be explained on a rational

basis. As regards sub-classes of task-related topics, they depend very much on the domain.

An obvious, but nevertheless important observation on NLI:s and current NLP technology, is

that the user and system have di�erent abilities and knowledge. We note especially the following

interesting asymmetries between the two participants of a NLI dialogue:

� The user reads and understands natural language at good speed; morever he is able to

select information on the basis of relevance. In contrast, understanding is a hard task

for the computer, not to talk about the task of distinguishing important from irrelevant

information;



Lars Ahrenberg, Arne J�onsson, �Ake Thur�ee

� The user is often slow at writing on the terminal. In contrast, the interface can display a

lot of information on the screen in virtually no time at all.

� The system's knowledge of the standard language and its common sense knowledge of

the world is only partial, while the user's knowledge is much higher. This would be true

as far as language is concerned, even if we did not adhere to the sublanguage principle.

Moreover, it is di�cult to make the system adapt to users with di�erent linguistic and

knowledge skills, while users generally have this capacity to adapt to the competence of

others. We can all adapt more or less to the language skills of children, foreigners, people

with regional accents, and so on.

The general character of the interaction, the fact that one participant is a computer system

and the other a human and that the human partner is involved in a speci�c (work) task are

factors that all have important e�ects on the language used. The speci�c application and the

domain have similar e�ects. Apart from the general conclusion that we have a more restricted

development task to cope with than full NL-understanding and -interaction, we may also see it as

a virtue to restrict the linguistic and conceptual knowledge of the system to that which is needed

for the task at hand, since the interpretations that the system makes of the user's utterances

can be fewer (less ambiguity) and more speci�c (domain-speci�c meanings and categorizations

can be used).

We refer to this guide-line as The Sublanguage Principle: Restrict the linguistic and

general knowledge of the system to that which is needed to support the users' tasks.

The Sublanguage Principle raises the question of what the necessary requirements are. In

the end this problem requires an empirical answer, and the method of customization of dialogue

structure and focus structure that we have described above is designed so as to �nd these

answers. Our results so far indicate that for simple service systems the answers can be obtained

with reasonable e�ort.

We also take The Sublanguage Principle to imply that the semantics of the language used

is jointly provided by the background system and the dialogue objects. Thus, expressions are

interpreted in terms of their contribution to a dialogue object of one of the recognized types.

Meaning distinctions that are not relevant to the dialogue objects (and thus, by implication,

to the system's behaviour, at large) are not recognized. Instead, expressions that have clearly

di�erent functions in the standard language may be treated as formal variants: Conventional

expressions of indirectness, Kan jag f (Can I have), Jag skulle vilja (I would like), and so on,

are treated as formal variants of the direct interrogative constructions. The system does not

recognize politeness, i.e. it makes no di�erence between users w r t their formality or manners.

The primary factor in determining what is to be included in the lexicon and grammar is frequency

and interpretability. This means that we de�nitely accept constructions that may be regarded



Customizing Interaction for Natural-Language Interfaces

as ungrammatical in the standard language, e.g. omitting prepositions in queries such as Pris

Mercedes? (Price Mercedes?), when they are frequent and easy to interpret.

Another case of super�cial semantic analysis is given by our current analysis of the words

annan, annat, andra (meaning 'other') as in the query Vilka andra bilar under 70000 kr har

samma eller bttre rostvrden? (What other cars below 70000 kr have the same or better �gures

for rust?). What we do in this case is simply ignoring the occurrence of the word in the semantic

interpretation, though it is allowed as a formal option. The result is that the answer will show

information also for the car(s) that served as the index for 'other'. This is not harmful, though,

as the user is often interested in those cars for the sake of comparison.

This particular solution is also motivated by another design principle, which we term The

Quantity Principle: The system may give more information to the user than has actually been

requested provided it is potentially relevant. We have seen this observation applied in several other

cases already, e.g. in responses to ambiguous or vague queries and in the use of cumulative

answers (cf. 3.3 and 3.4). The principle itself can be motivated from what we know about the

average user: she has the ability to select (within limits, of course) what is relevant for her.

Moreover, for information in tabular form, selection does not require excessive reading, either.

The Quantity Principle generally increases speed and supports robustness, while there may

be a conict with transparency, if the principle is not applied with care. We also note that it

contradicts Grice's (1975) second maxim of quantity: \Do not make your contribution more

informative than is required". But then, Grice did not have human-computer dialogue in mind

when he stated it.

We have noted several asymmetries between system and user. The guide-line that can be

derived from those observations is simply that you should look for solutions that exploits the

relative strengths of the two sides. More formally stated, we have The Asymmetry Principle:

If there is a choice, prefer solutions that make the user learn from system contributions to solutions

that require the system to learn from the user's contributions. This principle must be used with

some care, of course, and we must recognize that technical developments may make NLI:s more

powerful than they are today. For the present we generally want to minimize the inference

tasks that the system has to cope with, such as diagnosing users' errors, inferring accurate

representations of the user's goals and beliefs, instead relying on simpler means that reveal the

capabilities and limitations of the system, e.g. by providing examples of what the system can

understand or by displaying help messages.

5 Conclusion

The proposed method of customization and the design principles should be regarded as tentative

as no real users have actually put their hands on our system. Yet, taken together, the pragmatic



Lars Ahrenberg, Arne J�onsson, �Ake Thur�ee

observations on NLIs and the data from NLI dialogues that we have analysed suggest to us

that many features, e.g. user models and general text inference components, that have been

argued are important for good functionality of NLIs are not generally required for simple service

applications. Instead our principles take us in another direction. Rather than modelling the

user we prefer the system to present a good model of itself (The Asymmetry Principle) and

rather than inferring interpretations we rely on application-speci�c meanings (The Sublanguage

Principle). To put it in slogan-like phrase: if there is a choice, prefer global pragmatics at design

time to local pragmatics at run-time.

Acknowledgements

This work results from a project on Dynamic Natural-Language Understanding supported by

The Swedish Council of Research in the Humanities and Social Sciences (HSFR) and The Swedish

National Board for Industrial and Technical Development (NUTEK) in their joint Research

Program for Language Technology. We are indebted to Nils Dahlb�ack and the other members

of NLPLAB for many valuable discussions on the topics of this paper.

References

Ahrenberg, L. (1987). Interrogative Structures of Swedish. Aspects of the Relation between

grammar and speech acts. Ph.D. thesis, Uppsala University.

Ahrenberg, L., J�onsson, A., & Dahlb�ack, N. (1990). Discourse representation and discourse

management for natural language interfaces. In Proceedings of the Second Nordic Confer-

ence on Text Comprehension in Man and machine, T�aby-Stockholm, Sweden, April 25-27,

1990.

Dahlb�ack, N. (1991). Representations of Discourse, Cognitive and Computational Aspects. Ph.D.

thesis, Link�oping University.

Dahlb�ack, N. & J�onsson, A. (1992). An empirically based computationally tractable dialogue

model. In Proceedings of the Fourteenth Annual Meeting of The Cognitive Science Society,

Bloomington, Indiana.

Dahlb�ack, N., J�onsson, A., & Ahrenberg, L. (1993). Wizard of oz studies - why and how. In

Proceedings from the 1993 International Workshop on Intelligent User Interfaces, Orlando,

Florida.

Fraser, N. & Gilbert, N. S. (1991). Simulating speech systems. Computer Speech and Language,

5, 81{99.



Customizing Interaction for Natural-Language Interfaces

Grice, P. H. (1975). Logic and conversation. In Cole, P. & Morgan, J. L. (Eds.), Syntax and

Semantics (vol. 3) Speech Acts. Academic Press.

Grishman, R., Hirshman, L., & Nhan, N. T. (1986). Discovery procedures for sublanguage

selectional patterns: initial experiments. Computational Linguistics, 12 (3), 205{215.

Grishman, R. & Kittredge, R. I. (1986). Analysing language in restricted domains. Lawrence

Erlbaum.

Grosz, B. J. & Sidner, C. L. (1986). Attention, intention and the structure of discourse. Com-

putational Linguistics, 12 (3), 175{204.

Hayes, P. J. & Reddy, D. R. (1983). Steps toward graceful interaction in spoken and written

man-machine communication. International Journal of Man-Machine Studies, 19, 231{

284.

Ingels, P. (1993). Robust parsing with charts and relaxation. In NODALIDA '93: Proceedings

from 9:e Nordiska Datalingvistikdagarna, Stockholm, June 1993.

J�onsson, A. (1991). A dialogue manager using initiative-response units and distributed control.

In Proceedings of the Fifth Conference of the European Chapter of the Association for

Computational Linguistics, Berlin.

J�onsson, A. (1993a). Dialogue Management for Natural Language Interfaces { An Empirical

Approach. Ph.D. thesis, Link�oping University.

J�onsson, A. (1993b). A method for development of dialogue managers for natural language

interfaces. In Proceedings of the Eleventh National Conference of Arti�cial Intelligence,

pp. 190{195.

Kaplan, S. J. (1983). Cooperative responses from a portable natural language database query

system. In Computational Aspects of Discourse, pp. 167{208. MIT Press.

Kelley, J. F. (1983). Natural Language and Computers: Six Empirical Steps for Writing an

Easy-to-Use Computer Application. Ph.D. thesis, The Johns Hopkins University.

Loo, W. V. & Bego, H. (1993). Agent tasks and dialogue management. In Workshop on Prag-

matics in Dialogue, The XIV:th Scandinavian Conference of Linguistics and the VIII:th

Conference of Nordic and General Linguistics, G�oteborg, Sweden, August 16-17, 1993.

Ogden, W. C. (1988). Using natural language interfaces. In Helander, M. (Ed.), Handbook of

Human-Computer Interaction. Elsevier Science Publishers B. V. (North Holland).

Scheglo�, E. A. & Sacks, H. (1973). Opening up closings. Semiotica, 7, 289{327.

Watt, W. C. (1968). Habitability. American Documentation, July, 338{351.



Lars Ahrenberg, Arne J�onsson, �Ake Thur�ee

Wir�en, M. (1992). Studies in Incremental Natural Language Analysis. Ph.D. thesis, Link�oping

University.

Wir�en, M. & R�onnquist, R. (1993). Fully incremental chart-parsing. In Third International

Workshop on Parsing Technologies, Tilburg, The Netherlands and Durbuy, Belgium.


