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Abstract
Certain implants are imperative to detect be-
fore MRI scans. However, implant terms, like
‘pacemaker’ or ‘stent’, are sparse and difficult
to identify in noisy and hastily written elec-
tronic medical records (EMRs). In this pa-
per, we explore how to discover implant terms
in Swedish EMRs with an unsupervised ap-
proach. To this purpose, we use BERT, a
state-of-the-art deep learning algorithm, and
fine-tune a model built on pre-trained Swedish
BERT. We observe that BERT discovers a
solid proportion of indicative implant terms.

1 Introduction

Domain-specific terminology extraction is an im-
portant task in a number of areas, such as knowl-
edge base construction (Lustberg et al., 2018), on-
tology induction (Sazonau et al., 2015) or taxon-
omy creation (Šmite et al., 2014). We present an ex-
ploratory experiment on an underinvestigated type
of terminology extraction that we call “focused ter-
minology extraction”. With this expression, we
refer to terms or to a nomenclature that represent
a specific semantic field. More specifically, we ex-
plore focused terminology related to the semantic
field of terms that indicate or suggest the presence
of “implants” in electronic medical records (EMRs)
written in Swedish.

Implant terms are domain-specific words indi-
cating artificial artefacts that replace, partially or
in full, organs, bones, arteries or other parts of the
human body. Common implants are devices such
as ‘pacemaker’, ‘shunt’, ‘prosthesis’ or ‘stent’.

It is important to know if a patient has an implant
because MRI-scanning is incompatible with some
implants (e.g. the ‘pulmonary artery catheter’) or
maybe partially compatible with some of them (e.g.

the ‘mitraclip’). Unsafe implants must be consid-
ered before MRI-scanning, as they may be con-
traindicative, while conditional implants can be left
in the patient’s body, if conditions are appropriately
accounted for. One of the safety measures in MRI-
clinics is to ask patients whether they have or have
had an implant. This routine is not completely reli-
able, because a patient (especially if elderly) might
have forgotten about the presence of implants in
the body. Arguably, referring physicians are aware
of the constraints of specific implants and, prior to
an MRI-examination, they should go through the
patient’s medical history by reading the patient’s
EMRs. EMRs are digital documents, but the infor-
mation they contain is not structured or organized
in a way that makes it trivial to find implant terms
quickly and efficiently. This downside can be ad-
dressed by automatically trying to identify implant
terms from the EMRs based on their contextual us-
age, e.g. using word embeddings. To this purpose,
we use BERT (Bidirectional Encoder Representa-
tions from Transformers) (Devlin et al., 2019),
which is the state-of-the art in computational lin-
guistics and deep learning for many NLP tasks,
such as text classification, question answering, sen-
timent analysis, Named Entity Recognition and
Text Summarization. However, to our knowledge,
BERT has never been used to detect distributional
word similarity for a terminology extraction task.
In the experiment described in this paper, we ex-
plore how Swedish BERT performs on this task and
present preliminary results. The aim of the model
is to find as many valid instances of implant-related
words as possible in free-text (unstructured) EMRs.
Results are encouraging and manual domain expert-
based evaluation shows that BERT discovers a solid
proportion of indicative implant terms.



2 Related Work

“Focused terminology” refers to the mentions of a
relatively small number of technical terms. From
a semantic perspective, focused terminology ex-
traction is particularly challenging because the task
implies an unsupervised discovery of a handful of
specialized terms scattered in millions of words
across unstructured textual documents, such as
EMRs. EMRs are written by physicians who typ-
ically use a wide range of medical sublanguages
that are not only based on regular medical jargon,
but also include unpredictable word-shortening and
abbreviations, spelling variants of the same word
(including typos!), numbers, and the like. What is
more, these sublanguages vary across hospitals and
clinics.

Focused terminology extraction is still underex-
plored. Little work exists on this task, although its
usefulness in real-world applications is extensive.
In the experiment presented here, we build on re-
search carried out at Linköping University in close
cooperation with Linköping University Hospital.
Kindberg (2019) started this exploration and relied
on Word2Vec (Mikolov et al., 2013). In his experi-
ments, carried out on the EMRs of the cardiology
clinic (660 000 EMRs), out of the 500 terms, 340
(68%) were considered relevant. For the same task,
Nilsson et al. (2020) used Swedish BERT (Malm-
sten et al., 2020) on 9,4 million sentences from the
same cardiology clinic. The results presented in
Nilsson et al. (2020) show that out of the 148 evalu-
ated terms, 68 (46%) in their given context were as-
sessed to be clearly indicative of implants or other
harmful objects. 27 words (18%) were assessed to
be possibly indicative for implants or other harm-
ful objects in the contexts they appeared in, and 53
words (36%) were considered non-indicative.

It must be emphasized that the results by Kind-
berg (2019) and by Nilsson et al. (2020) are not
directly comparable between them and with the
results presented in this paper because different
evaluation strategies and different evaluation met-
rics were used. However, although the experiment
presented in this paper is based on a larger EMR
corpus that includes two clinics, we capitalize on
the knowledge created by these two previous expe-
riences, in the way discribed in the next section.

3 Electronic Medical Records (EMRs)

The data used in our experiment is the text of EMRs
from two clinics at Linköping University Hospital,

namely the cardiology clinic and the neurosurgery
clinic. These EMRs span over the latest five years
and amount to about 1 million EMRs, when taken
individually, and about 48 000 when grouped by
unique patient. The size of the current corpus is
bout 71 million words (see Table 1). Each EMR
varies greatly in length, from just a few words to
hundreds of words. The EMRs have not been fully
anonymised, therefore we cannot release this data
at the time of this publication. However, we will
distribute secondary linguistic data, such as auto-
matically created implant glossaries and lists of
BERT terms on the project website.

Clinics Words SingleEMRs GroupedEMRs
Cardio 45 780 055 664 821 34 044
Neuro 25 440 484 314 669 14 526
Total 71 220 539 979 490 48 088

Table 1: Number of words and EMRs per clinic

4 Method

Generally speaking, a BERT model uses a transfer
learning approach, and it is pre-trained on a large
amount of data. After learning deep bidirectional
representations from unlabelled text, BERT can
be further fine-tuned for several downstream tasks.
In our experiment, we focus on the fine-tuning of
focused terminology extraction.

4.1 Pre-Trained Swedish BERT
For our focused terminology extraction task, we
used the pre-trained Swedish BERT model released
by The National Library of Sweden (Malmsten
et al., 2020)1. To provide a representative BERT
model for the Swedish language, the model was
trained on approximately 15-20 gigabyte of text
(200M sentences, 3000M tokens) from a range of
genres and text types including books, news and
internet forums. The model was trained with the
same hyperparameters as first published by Google
and corresponded to the size of Google’s base ver-
sion of BERT with 12 so-called transformer blocks
(number of encoder layers), 768 hidden units, 12
attention heads and 110 million parameters.

4.2 Fine-Tuning Swedish BERT for Focused
Terminology Extraction

To fine-tune the pre-trained model, we relied on
PyTorch (Paszke et al., 2019) using the Hugging-
face transformers library (Wolf et al., 2019) freely

1https://github.com/Kungbib/swedish-bert-models



available and ready to use. The EMRs and the pre-
trained model were fed into a Python script. The
fine-tuning was done at Linköping University Hos-
pital. For this experiment, the BERT model was
fine-tuned using only the CPU on Intel Xeon to
gauge the processing time with ordinary comput-
ing resources normally available to most users.

Since no previous studies are available for word
similarity based on BERT, we relied on settings
successfully used for other tasks and documented
in the literature as our starting point. We fine-tuned
for 3 epochs with a learning rate of 5e-5 and a batch
size of 32, as in SQuAD v1.1 (Devlin et al., 2019).
The block size was set to 64, which means that
sequences with lesser than 64 tokens are padded
to meet this length, and sequences with more than
64 tokens are truncated. A block size of 64 is
based on observation of our current data. However,
since we are awaiting for additional data, this value
may change in future. The model was trained with
MLM (Masked LM), a technique which allows
bidirectional training. MLM consists in replacing
15% of the words in each sequence with a [MASK]
token before feeding word sequences into BERT.
The model then attempts to predict the original
value of the masked words, based on the context
provided by the other, non-masked, words in the
sequence. The weights for the softmax classifica-
tion layer were randomly initialized. All the other
hyperparameters not mentioned here were set to the
default. The fine-tuning with the settings described
above took approximately 15 hours per clinic to
complete.

4.3 Discovering Implant Terms

We used the MRI-safety handbook (SMRlink) pub-
licly available at the hospital website to automati-
cally create a glossary of implant or implant-related
terms. The terms in the glossary were not verified
by domain experts. Rather, on purpose, we left
some noise (i.e. non-implant terms) in the glossary
to assess the resistance to noise and the robust-
ness of the whole approach with minimum pre-
processing and no post-processing. In this experi-
ment, we use a version of the glossary containing
753 terms (unigrams) including noise. With these
terms, a keyword matching was conducted against
the EMRs. From the results of the keyword match-
ing, two separate data subsets were created. One of
them containing only sentences without glossary
terms and the other one containing sentences with

at least one glossary term. We used the same repre-
sentation scheme for both subsets. Then, for each
glossary term, a set of 15 queries was created from
the subset containing glossary terms. The queries
were used to find terms in similar distributional
contexts in the subset of sentences not contain-
ing glossary terms. We used KDTree (short for
k-dimensional tree) to search the vector space for
terms that appear in contexts that are similar to the
queries. We decided that, given our data size, the
pairwise cosine similarity metrics would have been
too inefficient with ordinary computing resources.
KDTree, on the other hand, is a binary space-
partitioning data structure for organizing points in
a k-dimensional space and it is useful when using
multidimensional search key (e.g. range searches
and nearest neighbour searches). In this experi-
ment, we used the nearest neighbour search version
of KDTree in Python (sklearn.neighbors.KDTree)
(Pedregosa et al., 2011) with the default Minkowski
distance. We extracted 7 nearest neighbours for a
given term in the subset of sentences not contain-
ing glossary terms. We realized, however, that
although DKTrees are normally efficient data struc-
tures, storing the vector values over millions sen-
tences and their values in relation to each other
inside the KDTree is extremely memory-intensive.
In order to speed up this process, the data was
split into chunks which were mapped into separate
KDTrees. Each individual KDTree was used to
generate results for all queries and then the most
contextually similar words and sentences across all
of the chunks were selected for the final results.
The results used in this paper were generated with
chunks of 50 000 tokenized sentences clustered in
each KDTree.

4.4 Expert-Based Evaluation

A manual evaluation of BERT discoveries was
carried out by two MRI-physicists, with different
level of experience, from the Radiology clinic at
Linköping University Hospital. We surmize that
the difference in expertise or experience is impor-
tant to pin down different degrees of familiarity
with technical terms. For this reason, we decided
to hand to the assessors only BERT terms without
any context, i.e. without the full sentences from
where the terms were extracted.

The two MRI-physicists received an excel file
containing the list of terms to be assessed and
short instructions (this excel file is available on



the project website). They were asked to assess the
terms using the following ratings on a three-degree
scale: Y = yes, it gives me an indication that the pa-
tient has or has had an implant; N = No, it DOES
NOT give me any indication that the patient has or
has had an implant; U = unsure, the term could or
could not give me an indication of an implant, but
I cannot decide without more context.

The evaluation was divided into two parts. The
first part focused on the inter-rater agreement be-
tween the two domain experts, who assessed inde-
pendently a subset of BERT discoveries, namely a
sample of 813 (16,4%) out of 4951 BERT terms.

The second part focused on the assessment made
only by one MRI-physicist, who evaluated a more
extensive list of BERT terms. Results are presented
in the next section.

5 Results and Discussion

We measured the inter-rater agreement between the
two MRI-physicists by using percentage (i.e. the
proportion of agreed items in relation to the whole
without chance correction), the classic unweighted
Cohen’s kappa (Cohen, 1960) and Krippendorff’s
alpha (Krippendorff, 1980) to get a straightforward
indication of the raters’ tendencies.

Table 2: Inter-rater agreement on 813 BERT terms

Terms Percentage Cohen’s Krippendorff’s
Kappa Alpha

813 75.9% 0.6 0.597

Table 2 shows the breakdown of the inter-rater
agreement. The raters agree on 617 terms, of which
248 are indicative implant terms. They tend to dis-
agree most when they have to decide if term is
NOT indicative or when they simply felt “unsure”
(88 terms). Some terms were classified as “unsure”
by one rater and indicative by the other rater (55
terms). Finally, on 53 terms the raters had com-
pletely divergent opinion: 36 terms were indicative
for one rater, but not indicative for the other, while
for 17 terms the assessment was reversed. Over-
all, the values in Table 2 show that both kappa
and alpha coefficients are approx. 0.6, and both
these values indicate a “moderate” agreement ac-
cording to the magnitude scale for kappa (Sim and
Wright, 2005), and the alpha range (Krippendorff,
2011). The moderate agreement between the two
domain experts may suggest that selective experi-
ence and/or expertise could play a role in recogniz-

ing implant terms, and BERT terms can contribute
in alerting professionals about the presence of im-
plants that could otherwise be overlooked.

Table 3: Single rating of 4443 BERT terms

Terms Y N U
4443 1470 (33%) 2603 (58.5%) 369 (8.3%)

The results of the rating by one MRI-physicist on
4443 terms (89,7%) out of 4951 is shown in Table
3. According to this rating, 33% of the BERT terms
are indicative of an implant. This percentage was
far beyond our expectation considering the size of
the corpus and the noise both in the glossary and in
the corpus. We think these results are encouraging
since the BERT model presented in this paper is
still exploratory and needs further refinements.

Undeniably the domain expertise is of funda-
mental importance for the refinement of the model,
since the model sieve through extremely noisy tex-
tual data. The evaluation has helped us identify
what kind of irrelevant words the model retrieves.
Error analysis indicates that families of irrelevant
words could be filtered out during pre-processing of
EMRs. For instance: misspelled words in Swedish
(e.g. abltaion and in English (e.g. achive), first
name person noun (e.g. Ann-Christin) and general
medical terms (e.g. epidural). The next step is then
to filter out semantic families of words that create
noise in the results.

6 Conclusion and Future Directions

In this paper, we presented preliminary results of
a fine-tuned Swedish BERT model for focused ter-
minology extraction. The model was devised to
discover terms indicative of implant in Swedish
EMRs. Although the task is challenging, manual
evaluation of BERT terms presented without any
context to the assessors reveals that the approach is
rewarding, since a solid number of indicative terms
were discovered by BERT regardless of noise in the
glossary and the EMRs. These “discoveries” will
be used to further refine the model in future experi-
ments. In upcoming experiments, we will focus on
a more systematic analysis of the hyperpameters’
space when fine-tuning the model, as well as on the
benefits (if any) of the Ball Tree search space to
overcome the limitations of both cosine similarity
and KDTrees.



Acknowledgements

This research was funded by Vinnova. Project ti-
tle: Patient-Safe Magnetic Resonance Imaging Ex-
amination by AI-based Medical Screening. Grant
number: 2020-00228.
Project Website: http://www.santini.se/mri-terms/

References
Jacob Cohen. 1960. A coefficient of agreement for

nominal scales. Educational and psychological mea-
surement, 20(1):37–46.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Erik Kindberg. 2019. Word embeddings and pa-
tient records: The identification of mri risk
patients. Bachelor’s Thesis. Linköping Uni-
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